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1 INTRODUCTION 

The analysis of a coupled piezoelectric structure has 
recently been keenly researched because piezoelectric 
materials are more extensively used either as actuators 
or sensors. Examples include the analytical modeling 
and behavior of a beam with surface-bonded or 
embedded piezoelectric sensors and actuators [1-3], use 
of piezoelectric materials in composite laminates and 
vibration control [4], [5]. The use of finite-element 
method in the analysis of piezoelectric coupled 
structures has been studied [6-10] and implemented in 
commercial FEA codes [11], [12]. 
The challenge of developing a basic mechanical model 
for the piezoelectric coupled structure has been met by 
many researchers. Crawley and de Luis developed a 
uniform strain model for a beam with surface bonded 
and embedded piezoelectric actuator patches 
accounting for the shear lag effects of the adhesive 
layer between the piezoelectric actuator and the beam 
[13]. A model to account for the coupling effect was 
later proposed based on the Euler beam assumption by 
Crawley and Anderson [14]. Leibowitz and Vinson 
derived a model based on Hamilton’s principle in 
which the elastic layers, soft-core layers or 
piezoelectric layers are included [15]. Ding et al 
obtained the general solutions for the coupled dynamic 
equations of a transversely isotropic piezoelectric 
medium [16]. Recently, Sun et al and Zhang et al 
presented their research on the analysis of a sandwich 
beam and plate structure containing a piezoelectric core 
[17-19]. The piezoelectric core is positioned such that 
an electric field in the thickness direction would 
generate shear deformation within the core. Models 
for composite structures with piezoelectric materials as 
sensors and actuators have also been published [20], 
[21]. Wang and Quek [22] presented their research on 
the free vibration of a piezoelectric sandwich beam 
structure, in which the piezoelectric effect on the 
resonance frequencies of the structure and the 
distribution of the electric potential are studied and 
analyzed. Also, they analyzed free vibration of 
piezoelectric coupled circular plate [23]. For isotropic 
elastic materials, a good account of axisymmetric static 
bending of circular plates is recorded in [24]. Similar 
problems for piezoelectric materials are discussed in 
[25], [26]. Zhang et al investigated the static and 
transient bending of a piezoelectric circular plate [27]. 
However, to the author’s best knowledge, no researches 
dealing with the forced vibration of circular plate 
integrated with the piezoelectric layer have been 
reported. Therefore, the present work attempts to solve 
the problem of providing an exact solution for forced 

vibration of thin circular plate with two full size 
surface-bonded piezoelectric layers on the top and 
bottom of plate. The formulation is based on CPT. a 
consistent formulation that satisfies the Maxwell static 
electricity equation is presented so the full coupling 
effect of the piezoelectric layer based on the dynamic 
Characteristics of the circular plate can be estimated. 
The solutions are expressed by elementary Bessel 
results obtained by the mentioned method are 
compared against finite element analysis as a measure 
of validity verification. 

2 DISPLACEMENT AND ELECTRIC POTENTIAL 
FIELD MODELS FOR CIRCULAR PLATE 

A key issue in the analysis of a piezoelectric coupled 
circular plate is in the modeling of the displacement 
field and the electric potential field. The cylindrical 
coordinate system is adopted. 

2.1. Displacement field based on the Kirchhoff thin 
plate model  

The cross section of a circular plate with a piezoelectric 
layer mounted on its surface is shown in Figure 1. In 
most practical applications, the thin plate is applicable, 
whereby the shear deformation and rotary inertia can be 
omitted. The applied external load is assumed to be 
axisymmetric. 
 

 
Fig. 1 Cross section of a circular plate with two 

piezoelectric layers mounted on its surfaces 
 

Due to symmetry, the displacement and strains in the 
plate are expressed as: 
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0=θu                                                                           (3) 
 
where ‘uz’, ‘ur’ and ‘uθ’ are the displacements in the 
transverse z-direction, radial r-direction, and tangential 
θ-direction of the plate, respectively. 
The poling direction of the piezoelectric material is 
assumed to be in the z-direction. The strain ‘ε’ in the 
plate and the piezoelectric layer with respect to the 
radial and tangential directions and the shear 
component are given by: 
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The stress components in the main plate are expressed 
as [24]: 
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Substituting Eqs. (4) and (5) into Eqs. (7) and (8) result 
in: 
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The stress components in the piezoelectric layer can be 
written as: 
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And εz for plane stress is obtained from Eq. (14) 
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Substituting Eq. (15) into Eqs. (12) and (13) results in: 
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where the superscripts 1 and 2 represent the variables 
in the main structure and the piezoelectric material, 
respectively; EE CC 1211  ,  and 31e are transformed reduced 
material constants of piezoelectric medium for the 
plane stress problem, and are given as follows: 
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where, E is the Young’s modulus of the main material; 

 11
EC and EC12  are the elastic modulus of the 

piezoelectric material in the radial and tangential 
directions, measured at constant electric field; and e31 is 
the piezoelectric constant of the piezoelectric layer. 

2.2. Distribution of electric potential in the 
piezoelectric layer 

As the piezoelectric layers are shortly connected, the 
electric potential is zero throughout the surfaces. There 
are several different models representing the input electric 
potential for such a piezoelectric layer. In this paper we 
decided to adopt the following Wang et al. electric 
potential function [23]. 
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where, z is measured from the mid-plane of the plate in 
the global z-direction, ‘h1’ is the thickness of the 
piezoelectric layer, and φ(r,t) is the electric potential on 
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the mid-surface of the piezoelectric layer. The 
electrodes on each piezoelectric layer are short-circuit. 
It is to be noted that the assumed potential function has 
satisfied the boundary conditions in which electric 
potential vanishes at the internal surfaces hz ±= and the 
external surfaces ).( 1hhz +±=  

3 ANALYSIS OF PIEZOELECTRIC COUPLED 
CIRCULAR PLATE 

Based on the displacement field model described by 
Eqs. (1)-(3), and electric potential field model of 
equations, the associated governing equations for the 
piezoelectric coupled circular plate can be deduced. 
Using Eq. (18) the components of electric field E and 
electric displacement ‘D’ is written as 
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where 11Ξ and 33Ξ  are reduced dielectric constants of 
the piezoelectric layer for the plane stress problem, 
which are given by ( )ECe 33

2
3333333311 / , +Ε=ΕΕ=Ξ ; Er, 

Eθ and Ez are the electric field intensity in the r, θ and z 
directions, respectively; Dr, Dθ and Dz are the 
corresponding electric displacement; 11Ξ and 33Ξ  are 

the dielectric constants of the piezoelectric layer; 2∇  is 
the Laplace operator and given as: 
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In order to obtain the governing differential equation of 
the coupled circular plate, we begin with resultant 
moment’s components  
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where the thickness of the main plate is 2h; the 
piezoelectric layer extends from z = h to z = h + h1 and 

D1 = 2Eh3/[3(1- υ3)], ( ) EChhhhhD 11
2
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2
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the resultant shear force is herein written as: 
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Substituting Eq. (26) into Eq. (27) and Eq. (28) and 
substituting the final results into the governing equation 
for the Kirchhoff plate, 
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where f = f(r,t) is the external load. This will result in 
the equation for the piezoelectric coupled circular plate 
as follows: 
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Where ‘ρ1’ and ‘ρ2’ are material densities of the main 
plate and piezoelectric layer, respectively. Note that all 
electrical variables, primarily, must satisfy the 
Maxwell’s equation which requires the divergence of 
the electric flux density to vanish at any point within 
the media as follows [23]: 
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Substituting Eqs. (22), (23) and (24) into above 
equation yield 
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The problem is therefore formulated to find the solution 
of two coupled partial differential equations (30) and 
(32) in association with the following mechanical and 
electrical boundary conditions and symmetry 
constraints for the clamped, fully grounded 
piezoelectric coupled plate 
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4 SOLUTION METHOD 

The forcing function, f(r,t), is assumed to be harmonic, 
with frequency ‘ω’, as: 
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So, the steady state solutions of Eqs. (29) and (31) are 
assumed to be in  the form 
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where W(r) is the displacement amplitude in the ‘z’ 
direction as a function of radial displacement only, and 
in order to obtain appropriate solution for φ(r,t) we 
assume 
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Substituting Eqs. (35) and (36) into Eqs. (30), (32) 
yields: 
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The complete solution is composed of two solutions: (i) 
for the plate under the action of F(r) and (ii) for the 
plate under the action of a radial bending moment 
applied at the edge. The complete solution is a suitable 
superposition of the two solutions, ensuring that the 
condition dw/dr = 0 holds at r = a. The solution is 
therefore written in the form 
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Meanwhile, F(r) is expanded into a series in terms of 
Bessel functions, as: 
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In Eqs. (42), (43) and (44) , J0(αr) and J1(αr) are Bessel 
functions of first kind of order zero and one, 
respectively,[28], and αj are the positive roots of 
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Substituting Eqs. (42), (43) and (44) into Eq. (37) 
yields: 
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The solutions of )(~ rW  and )(rW  satisfy the boundary 
condition of W(r = a) = 0. On the other hand they don’t 
satisfy the boundary condition of dW/dr = 0 at r = a 
separately, but sum of them satisfy both conditions. Let 
the second solution, )(rW and )(rϕ have the form: 
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where constant ‘C’ and function W1(r) have to be 
determined. Substituting Eq. (49) into Eqs. (37) and 
(38) with F(r) = 0, it is found that W1(r) and ( )rφ  
must satisfy the following equations: 
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The second solutions are expanded in the similar way 
as the first solutions, viz. 
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Following similar steps than those used to derive ‘Aj’ 
and ‘Bj’, one obtains 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

+
=

1
2

4
2044

1
2

2
20

1

1

p

pp

Cc
p

qpp

F

j

j
j

j
j

jj

j

α

α
λα

α

α

                                       (53) 

 
( )

1
2

2
2

1 p

FqCp
G

j

jjj
j

α

α

+

−
=                                                (54) 

with 

)(
8

1 aJa
q

jj
j αα
=  , 

)(
)(

1

2
4

aJa
aJ

c
jj

j
j αα

αλ
=  , j = 1,2,…   (55) 

 
The second solution, )(~ rW  and )(rϕ  satisfies Eqs. (36) 
and (37) with F(r) = 0, and (32), (33) ,except the 
boundary condition dw/dr = 0 at r = a. Substituting 

)(~ rW  and )(rW  in this boundary condition 
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Results in a linear, algebraic equation for ‘C’, whose 
value can easily be determined. Hence, the function  
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describe the exact, complete solution for the clamped 
boundary condition. Moreover, the final values of 
w(r,t) and φ(r,t) are 
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4 NUMERICAL RESULTS AND DISCUSSION 

In this section, steady state response of clamped 
circular plate subjected to a harmonically varying 
uniform pressure all over the surface area is considered. 
The amplitude of external load is 10Pa and its 
frequency, ‘ω’, is 100(rad/s). The material parameters 
and geometric size for the structure used in this paper 
are listed in table 1. In this example the thickness ratio 
of the piezoelectric layer and main plate (h1/2h) is 1/20.  
Fig. 2 shows the radial distribution of the deflection of 
plate at time t = 0.2(s).  
The curve in Fig. 2 shows that boundary conditions at  
r = a : w =dw/dr = 0 are satisfied. Since there were no 
published results for forced vibration of compound 
piezoelectric plate, we decided to verify the validity of 
the obtained results with those obtained from Abaqus 
results. Fig. 3 shows the vibration of compound piezo-
plate centre with respect to time. As seen from Fig. 2 
and Fig. 3, there is a good adaption between the curve 
obtained from our method and the curve obtained from 
FEM. 
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Table 1 Material properties and geometric size of the 
piezoelectric coupled plate [20] 

Main 
Structure(Steel) 

E = 205(GPa) 
 

ρ =7800(Kg/m3) 
 

PZT4 )(13211 GPaCE =  )(7112 GPaCE =  
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 (10124.7 9
11 F−×=Ξ /(10841.5 9

33 mF−×=Ξ
 

  )/(7500 3
2 mKg=ρ  

Geometry a = 600(mm)  , h = 10(mm)  , h1 = 2(mm)
 

 
Fig. 2 Radial distribution of deflection of plate at  

t = 0.2(s) 
 

 
 

Fig. 3 Dynamic deflection of plate at r = 0 
 
Fig. 4 shows the dynamic deflection of centre of 
piezoelectric coupled structure for piezoelectric layers 
of different thicknesses. The piezo-effect is obvious 
when a thicker piezoelectric layer is created on the 
main material. It can be seen that by increasing the 
value of ‘h1’, the deflection of system decreases under 
the same value of transverse harmonic load. If h1= 0, 
there is no piezo-layer on the plate and so, we have a 
pure structure. Note that as the forcing frequency, ‘ω’, 

approaches the jth natural frequency of vibration of the 
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2/1

1
2
20

121 1
1

)(2 j
j p
pp

hh
D α

αρρ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
+

+
, in Eqs. (46) 
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causing resonance. 
 

 
Fig. 4 Effect of piezo-layer on dynamic deflection of plate 

 
Fig. 5 shows the effect of thickness of piezoelectric 
layer on the centre deflection of the piezoelectric 
coupled structures at time t = 0.7(s). As seen from Fig. 
5 by increasing the thickness of piezo-layer linearly the 
deflection decreases non-linearly. 
 

 
Fig. 5 Effect of h1 on the deflection of plate at r = 0 and 

 t = 0.7(s) 
 

By letting 31e = 0 in Eqs. (36) and (37) the electrical 
coupling disappears and the solution reduces to that of 
a transversely isotropic circular plate. Also the solution 

)(~ rW  given in Eq. (40) shows that each term in the 
series is the product of a mode function J0(αjr) and a 
coefficient of magnitude Aj. Eq. (46) shows that 
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is positive and increases by increasing 
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31e .Thus, an increase in 31e  results in decrease in 

jA , which, in consequence, reduces the global 

deflection )(~ rW .  
Since the total deflection of the plate is the sum of 

)(~ rW  and )(rW , a more elaborate evaluation is 
required to enable a comprehensive conclusion on the 
effect of 31e but in this example 31e  has not any 
significant effect on the deflection of the plate and the 
effect of 31e can be neglected. As demonstrated in table 
(2) increasing 31e , doesn’t change at the same value of 
transverse mechanical load. 
 

Table 2 Material properties and geometric size of the 
piezoelectric coupled plate [20] 

W(µm) 

  r/a       
031 =e

      
2031 =e

      
5031 =e

    
10031 =e

 
  0          0.083           0.083             0.083             0.082 
  0.2       0.077           0.076             0.076             0.075 
  0.4       0.059           0.058             0.058             0.057 
  0.6       0.034           0.034             0.034             0.033 
  0.8       0.011           0.010             0.010             0.010 
  1              0                  0                     0                   0

5 CONCOLUSION 

A model for the analysis of a piezoelectric coupled 
circular plate structure is proposed. The equation of 
motion is achieved based on the Kirchhoff plate model 
for harmonic forced vibration. The solutions are given 
in terms of elementary Bessel functions. The model is 
validated using the results from the present method and 
those from finite-element analysis. It is shown that the 
thickness of piezo-layer has a significant effect on the 
deflection amplitude. It is also demonstrated that the 
piezoelectric constant 31e  controls the electro-
mechanical coupling and the effect of 31e  on plate 
deflection can be neglected. 
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