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Abstract: High Weissenberg boundary layer flow of viscoelastic fluids on a 
stretching surface has been studied. The flow is considered to be steady and two 
dimensional. Flows of viscoelastic liquids at high Weissenberg number exhibit 
stress boundary layers near walls. These boundary layers are caused by the 
memory of the fluid. Upon proper scaling and by means of an exact similarity 
transformation, the non-linear momentum and constitutive equations of each layer 
transform into the respective system of highly nonlinear and coupled ordinary 
differential equations. Effects of variation in pressure gradient and Weissenberg 
number on velocity profile and stress components are investigated. It is observed 
that the value of stress components decrease by Weissenberg number. Moreover, 
the results show that increasing the pressure gradient results in thicker velocity 
boundary layer. It is observed that unlike the Newtonian flows, in order to maintain 
a potential flow, normal stresses must inevitably develop in far fields. 

Keywords: Boundary Layer, High Weissenberg Flow, Nonlinear Viscoelastic 
Fluid, Similarity Solution 

Reference: Mohamadali, M., Ashrafi, N., “Development of Boundary Layer of 
Highly Elastic Flow of the Upper Convected Maxwell fluid over a Stretching 
Sheet”, Int J of Advanced Design and Manufacturing Technology, Vol. 9/ No. 2, 
2016, pp. 35-44. 

Biographical notes: M. Mohamadali received his PhD in Mechanical 
Engineering from the University of IAU, Science and Research Branch, in 2015. His 
current research interest includes boundary layer in Non-Newtonian fluids.          
N. Ashrafi is assistant professor of Mechanical engineering at the University of 
IAU, Science and Research Branch, Iran. He received his PhD in Mechanical 
engineering from the University of Western Ontario of Canada. His current 
research focuses on Non-Newtonian fluid dynamics and nonlinear mechanics. 



36                                     Int  J   Advanced Design and Manufacturing Technology, Vol. 9/ No. 2/ June – 2016 
  

© 2016 IAU, Majlesi Branch 

 

1 INTRODUCTION 

The flow of a liquid within a thin film over stretching 

plate is often encountered in most manufacturing 

processes. Examples include extrusion of plastic sheets, 

fabrication of adhesive tapes, and application of coating 

layers onto rigid substrates. Coating processes demand 

a smooth glossy surface to meet the requirements for 

best appearance and optimum service properties such 

as low friction, transparency and strength. Due to the 

moving surface, the main flow is closed to the extruded 

material while the far field stays almost stagnant. In 

view of such applications Crane [1] initiated the 

analytical study of boundary layer flow due to a 

stretching sheet. He assumed the velocity of the sheet 

to vary linearly as the distance from the slit and 

obtained an analytical solution. The work of Crane was 

subsequently extended mostly on both Newtonian and 

non-Newtonian (inelastic) boundary layer flows (See 

for example [2-5]) and only a few works on 

viscoelastic and elastic boundary layer flows [6]. Also 

the fluid employed in materials processing or protective 

coatings are in general viscoelastic, there have been 

little work done on the problem of flow of these fluids 

film on a stretching surface. In this connection, 

Hassanien [7] studied the second-grade fluid boundary 

layer over a linearly stretching sheet. The study was on 

boundary layer approximations of Newtonian flows [8] 

in order to simplify the governing equations. Here 

boundary layer equations were solved by a similarity 

method for elastic flows of Weissenberg numbers (Wi) 

of up to 0.2. The upper-convected Maxwell fluid is a 

class of visco-elastic fluid that can explain 

characteristics of  the fluid relaxation time. It excludes 

complicated effects of shear-dependent viscosity and 

thus allows one to emphasize the influence of fluid’s 

elasticity on characteristics of its boundary layer. So 

far, the exact solutions corresponding to the unsteady 

flow of a Maxwell fluid induced by the impulsive 

motion of a plate between two side walls perpendicular 

to the plate is developed employing the Fourier sine 

transforms [9]. Furthermore, Shateyi [10] studied the 

MHD flow of UCM past a vertical stretching sheet in a 

Darcian porous medium under the influence of 

thermophoresis, thermal radiation and a uniform 

chemical reaction for Weissenberg number as high as 

unity. Moreover the unsteady flow of Maxwell fluid 

induced over oscillating accelerated sheet was 

investigated in [11]. In another work, Hayat et al. used 

Homotopy method to simulate the flow and heat 

transfer of an UCM fluid over a moving permeable 

surface in a parallel free stream with the convective 

surface boundary condition [12]. Recently time-

dependent three-dimensional boundary layer flow of a 

Maxwell fluid over a stretched sheet has been 

investigated by Homotopy method [13]. 

In the above viscoelastic flows the governing equations 

are scaled by Reynolds number only (similar to 

Newtonian fluids). Effect of viscoelasticity and normal 

stresses are therefore not properly presented. It is 

already reported that even at low Reynolds and high 

Weissenberg numbers, a boundary layer develops in the 

flow of viscoelastic fluid [14]. Additionally formation 

of normal stresses in viscoelastic flows is reported in 

many experiments which were done in high 

Weissenberg condition [23]. High Weissenberg flows 

mean long relaxation time in which the velocity of fluid 

vanishes at the wall and particles away from the wall 

travel long distances within one relaxation time so that 

particles close to the wall travel only a short distance. 

This leads to creating boundary layer in the shear stress 

[15]. The viscoelastic boundary layer is formed in a 

thin region closer to the wall in which the relaxation 

terms are recovered. 

 Up to now the boundary layer equations for the UCM 

fluids in two-dimensional flow along a flat boundary 

for high Weissenberg numbers are derived [15-16]. It 

was shown by that scaling parameters in view of the 

high Weissenberg condition and taking the leading 

terms of the upper convected Maxwell fluid governing 

equations result in the viscoelastic boundary layer 

development of order Wi
-1

.Similar studies on the Phan-

Thien-Tanner (PTT) and the Giesekus fluids results in 

the boundary layer development of order Wi
-1/3

 and 

order Wi
-1/2

 respectively [17]. This phenomenon can 

also be physically interpreted that “elastic” boundary 

layers for the Phan-Thien–Tanner and Giesekus fluid 

are similar to those for the upper-convected Maxwell 

model and arise when the dimensionless parameter 

measuring the size of the quadratic term is small. In 

fact, if the quadratic term is not small, the PTT model 

will have “viscometric” boundary layers in which it 

behaves like a generalized Newtonian fluid [18]. For 

the Giesekus model, the viscometric behaviour is 

different in that the shear stress remains bounded at 

infinite shear rate. Using an implicit function, the 

existence of solutions for viscoelastic boundary layer 

which arises from spatially periodic perturbations of 

uniform shear flow was addressed [19]. Also, the well-

posedness of boundary layer equations for time-

dependent flow of a UCM fluid in the limit of high 

Weissenberg and Reynolds numbers was analyzed [20]. 

Furthermore, a systematic perturbation procedure to 

solve the initial value problem for creeping flow of the 

UCM fluid at high Weissenberg number is formulated 

[21]. For instance, citing an analogy between a 

viscoelastic medium and an electrically conducting 

fluid containing a magnetic field, Ogilvie and Proctor 

[22] showed that the dynamics of the Oldroyd-B fluid 

in the limit of large Weissenberg number corresponds 

to that of a magnetohydrodynamic (MHD) fluid in the 

limit of large magnetic Reynolds number. In some 
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aspects, the problem of high Weissenberg number 

asymptotic for viscoelastic flows is similar to high 

Reynolds number asymptotic for Newtonian flows. The 

boundary layer also arises in high Weissenberg number 

flows since the convected derivative terms become 

essential at a short distance from the wall, leading to 

the formation of the aforementioned sharp boundary 

layer in the stresses [15]. 

The aim of this work is study of the boundary layer 

formation in high Weissenberg flow of UCM fluids 

past a stretching plate using similarity transformation. 

The stretching rate is assumed to be proportional to the 

ratio of horizontal distance on the direction. Using 

similarity transformation, the partial differential 

governing equations are transformed to a set of 

ordinary differential equations. The ordinary 

differential equations are then integrated numerically 

using a Runge–Kutta subroutine and shooting 

technique. Typical results for the velocity and stress 

profiles are presented.  

2 GOVERNING EQUATIONS 

The steady flow of a viscoelastic fluid over a (linearly) 

stretching sheet (Us = bx) is brought to attention here. 

Consider two-dimensional steady flow of an Upper 

Convected Maxwell fluid occupying the half-plane y > 

0. The fluid is flown by the movement of a thin elastic 

sheet emerging from a narrow slit at the origin of a 

Cartesian coordinate system under investigation shown 

schematically in Fig. 1. The continuity and momentum 

equations are written as [23]: 

. = 0V                                                                       (1) 

 

( . ) . p   V V T                                                   (2) 

Where T = Tij is the extra-stress tensor, V = (u, v) is the 

velocity field, p and ρ are the pressure and density 

respectively. 

For a UCM fluid, the stress tensor, T, can be related to 

the deformation-rate tensor as [23]: 

( ( ) )T T V V 


     t                                (3-1) 

 

( . ) ( ) ( )T V T V T T V


      t

                     (3-2) 

Where λ and η are the relaxation time and viscosity 

respectively and the symbol  stands for the upper-

convected derivative. Here, the Cartesian axes are 

assigned to the flow with the x-axis being along the 

plate and the y-axis normal to it (Fig. 1). The governing 

equations may be rewritten in dimensionless form by 

introducing typical scales for length, velocity, stress 

and pressure as follows [16]: 

                                                                                    (4) 

Where the capitals and primes represent reference and 

dimensionless values respectively. The reference 

velocity of stretching sheet is assumed to be U=bL. The 

dimensionless form of the governing equations is 

obtained by substituting the dimensionless parameter 

Eq. (4) into governing equations (1-3): 

 

. = 0V'                                                                   (5-1) 

 

Re( . ) . 'p  V' V' T'                                           (5-2) 

  

      (5-3) 

 
Where Re=ρUL/η is the Reynolds number, and 

Wi=λU/L is the Weissenberg number characterizing the 

elastic effects [1]. The no slip condition on the sheet 

and the far field condition boundary in dimensionless 

form are: 

 

( ,0) , ( ,0) 0u x x v x                                   (6-1) 

 

( , ) 0u x                                                               (6-2) 

 

The basic reason for the formation of viscoelastic 

boundary layer is quite simple to elaborate. The 

convected derivatives in the constitutive relation vanish 

at the wall, forcing the stresses to be viscometric. 

However, at high Weissenberg number, the convected 

derivative terms become important at a short distance 

from the wall, leading to the formation of a boundary 

layer in the stresses. To maintain the balance between 

inertial force, viscous and elastic stresses to the leading 

order, a self-consistent set of scaling of variables is 

proposed [15]: 

2

11 11 12 22 22 22

' / , ' ( , ) / , ' ( , ) /

' ( , ), ' ( , ), ( , ) /

y y Wi u u x y Wi v v x y Wi

T Wi T x y T T x y T T x y Wi

  

  

     (7) 

 

Substituting the above scalings into Eqs. (5) and 

keeping only the leading order terms in the rescaled 

equations, the scaled continuity and momentum 

equations in the boundary layer become as follows 

[21]: 

 

0
u v

x y

 
 

 
                                                             (8-1) 

 

11 12T T p

x y x

  
 

  
                                                     (8-2) 

' / , ' / , ' / , ' / ( / ),

' / ( / )

x x L y y L U U L

p p U L





   



V V T T

1

1

(( . ) ( ) ( ) )

( ( ) )

t

t

Wi

Wi





      

  

T' V' T' V' T' T' V'

V' V'
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0
p

y





                                                                     (8-3) 

 

And the stresses equations in the boundary layer are 

obtained from Eq. (5-3): 

 

11 11
11 11 122 2 0

T T u u
T u v T T

x y x y

   
    

   

 (9-1) 
 

 

12 12
12 22 11

T T u v u
T u v T T

x y y x y

    
    

    

 (9-2) 
 

 

22 22
22 12 222 2 2

T T v v v
T u v T T

x y x y y

    
    

    
 (9-3) 

 

The scaled governing equations do not now contain 

Weissenberg number, so that the solutions of this 

system, i. e. the velocity and stress components are also 

independent of the Weissenberg number.  

 

 
Fig. 1 Schematic diagram showing the physical 

configuration and coordinate system 

 

The practical importance of this similarity with respect 

to Weissenebrg number consists of the fact that it 

suffices to find the solution to the boundary layer 

problem only once in terms of the above dimensionless 

variables. 

3 SIMILARITY TRANSFORMATION 

In order to solve the governing equation subject to the 

viscoelastic boundary layer, several similarity 

transformations were tried among which the following 

set appears to be computationally useful: 

 

11

11 22 22 12 12

( , ) , ( , ) '( ), ( , )

( ) , ( , ) ( ), ( , ) ( ),

y
x y u x y xf T x y

x

T x y T x y

 

     

  

 

              (10) 

 

Where ξ is similarity variable and f, τ11, τ12 and τ22 are 

unknown similarity functions and prime is derivation 

respect to the similarity variable ξ. Next using these 

transformations in Eq. (8-1), gives the normal velocity 

component by: 

 

( , ) (2 ( ) '( ))v x y x f f   

                                       

(11) 

 

In terms of the new variables, the transformed 

momentum and stress equations, i.e. Eqs. (8)- (9) can 

be rewritten as: 

 

11 12'( ) '( ) C     
                                                

(12-1) 

 

11 11 11

12

( ) 2 '( ) ( ) 2 ( )( '( ) ''( ))

2 ( ) ''( ) 0

f f f

f

         

  

  

         (12-2) 

 

12 12 11

2

22

( ) 2 ( ) '( ) ( )(2 ( ) 2 '( )

''( )) ( ) ''( ) ''( )

f f f

f f f

         

     

  

  
          (12-3) 

 

22 22 22

12

( ) 2 '( ) ( ) ( )(2 '( ) ''( ))

2 ( )(2 '( ) ''( )) 2( '( ) ''( ))

f f f

f f f f

         

       

  

    
 (12-4)

 

 

Where the integration constant C can be interpreted as 

a pressure gradient and the prime indicates derivation 

with respect to the similarity variable ξ. The boundary 

conditions are: 

 

(0) 1, '(0) 1, '( ) 0f f f                                   (13) 

 

The no-slip boundary conditions are imposed at the 

wall, however, due to the singularity of transformed 

equation on the wall at ξ = 0, it is not possible to 

integrate right from the wall [24, 25]. Expanding the 

velocity similarity function, f, at a minute distance 

above the plate (meaning ξ*) returns the following 

approximation for f (ξ) [24]: 

 
*2

* *3( ) "(0) ( )
2!

f f O 


 
                                   

(14) 

 

In the same manner, the other similarity functions are 

expanded as follows [25]: 
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* *

11 0 1

* *

12 0 1

* *

22 0 1

( ) ...

( ) ...

( ) ...

a a

b b

c c

  

  

  

  

  

  

                                               

(15) 
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12

 
(d) 

(—— C= 0    —— C = -0.5       —— C = -1.5) 

Fig. 2 Velocity and stress profiles for several values of 

pressure gradient constant, C 

 

(a) 

 
(b) 

 

(c) 

 

Fig.3 Scaled stress components in x-y plane in the 

absence of pressure gradient 

 

Substituting the expanded functions in Eqs. (14) and 

(15) for a very close distance above the wall of nearly  

ξ * = 10
-4 

into the Eqs. (12), the constants are evaluated 

as: 

 

2

0 0 0

2 "(0) 2
"(0) , ,

3 3 3

f
a f b c    

                        
(16) 

1 1 1

'''(0)
0, , 0

3

f
a b c     

 

It appears, in the above expressions, that the 

coefficients of the similarity functions contain 

independent parameters, f’’(0) and f’’’(0). In what 

follows, however, a relation between these two 

parameters can be established. The parameter f’’(0) is 

f’ 

ξ 

τ22 

ξ 

τ11 

ξ 

- 

- 

- 

- 

- 

- 

τ12 

ξ 

- 

- 

- 

- 

- 

- 

- 
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pertinent to the wall shear stress as it determines τ12 on 

the wall, while the parameter f’’’(0) may be given a 

physical interpretation by substituting the Eqs. (14) and 

(15) in transformed momentum equation (12-1) for 

ξ→0 in near wall region, which gives: 

 

'''(0) 3f C                                                             (17) 

 

 (a) 

 
(b) 

 
(c) 

 

Fig.4 Scaled stress components in x-y plane for C = -0.5 

4 NUMERICAL METHOD 

The non-linear differential equations (8) together with 

the boundary conditions (13-16) constitute a boundary 

value problem (BVP) which is solved numerically by 

the shooting technique (see, for example [26]). In doing 

so, inevitably the following function changes are 

introduced. The resulted BVP is equivalent to a system 

of six first order differential equations [26]: 

 

2'( ) ( )f f 
                                                       (18-1) 

 

2''( ) '( )f f 
                                                      (18-2) 

 

11 12'( ) '( ) C     
                                          (18-3) 

 

12 12 11 2

2

2 22 2 2

( ) 2 ( ) '( ) ( )(2 ( ) 2 ( )

'( )) ( ) '( ) '( )

f f f

f f f

         

     

  

  
        (18-4) 

 

11 11 11 2 2

12 2

( ) 2 '( ) ( ) 2 ( )( ( ) '( ))

2 ( ) '( ) 0

f f f

f

         

  

  

    (18-5) 

 

(a) 

 
(b) 

 

(c) 

 

Fig.5 Scaled stress components in x-y plane for C = -1.5 
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22 22 22 2 2

12 2 2 2 2

( ) 2 '( ) ( ) ( )(2 ( ) '( ))

2 ( )(2 ( ) '( )) 2( ( ) '( ))

f f f

f f f f

         

       

  

    
    

(18-6) 

 

To numerically solve the above equations, the infinite 

value of ξ must be replaced by a finite value of ξ (say 

ξ∞) which is sufficiently large to satisfy the asymptotic 

condition. Here the value of 1000 turned out to be 

appropriate. Consequently equations (18) are integrated 

numerically by fourth order Runge–Kutta scheme from 

ξ = ξ* to ξ = ξ∞ with Eqs. (14)-(17) and guessed trail 

values f’’(0) which should satisfy the right-end 

boundary condition in Eq.(14). The Newton–Raphson 

scheme is employed to correct the arbitrary guess value 

such that the numerical solution will eventually satisfy 

the required boundary conditions to a precision of 10
-4

. 

For further details on the numerical procedure, the 

reader is referred to [26]. As the first set of results, the 

values of f’’(0) for various pressure gradients are 

tabulated in Table. 1. This shows that f’’’(0) is related 

to the coefficient of the pressure gradient C and the 

wall shear stress [24]. 
 

(a) 

  
(b) 

  
(c) 

  
Fig. 6 Dimensionless stress components on a plate in the 

x-y plane for C = 0 for Wi = 10 

5 RESULTS AND DISCUSSION 

In this section the boundary layer formed by the flow of 

viscoelastic fluid over stretching sheet is presented. The 

flow is at high Weissenberg number and low Reynolds 

number. Within the boundary layer, therefore, the flow 

variables such as velocity, shear and normal stresses 

are evaluated for several values of pressure gradients. 

Fig. 2a shows variation of velocity profiles f’(ξ) with ξ 

for different pressure gradients, C. It can be seen that 

the velocity profiles decrease continuously to zero with 

the increase of the similarity parameter. Additionally, it 

is clear that increasing the values of C results in 

increasing the magnitude of velocity function causing 

velocity boundary layer to thicken. 

Figure 2b reveals that regardless of the pressure 

gradient, the normal stress function in the flow 

direction, τ11, monotonically reaches a constant value. 

In other fashion, the normal stress component 

perpendicular to the flow, τ22, 

 

(a) 

  
(b) 

  
(c) 

  
Fig. 7 Dimensionless stress components on a plate in the 

x-y plane for C = 0 for Wi = 100 
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Grows by increasing ξ as shown in Fig. 2c. 

Additionally, the values of both normal stress functions 

increase with increase of pressure gradient. Also, the 

value of shear stress, τ12, decreases monotonically to 

zero, implying that the stresses are non-existent shear 

force far from the plate. Finally, it is observed that the 

wall shear stress increases in line with increase of 

pressure gradient. 

 

(a) 

  
(b) 

 

  
(c) 

  
Fig. 8 Dimensionless stress components on a plate in the 

x-y plane for C = -0.5 for Wi = 10 

 

In continuation, Figs. 3-5 show scaled stress 

components, near the stretching wall in x–y plane. The 

figures are arranged in a way that the pressure is 

increased incrementally in each row. Generally, the 

stress contours of first normal stress,  and shear stress,  

are denser near the wall. On the contrary, an opposite 

behaviour is observed for second normal stress. This 

phenomenon is maybe explained that, in high 

Weissenberg flows, far from the solid boundary, the 

elastic property of the flow is dominant which leads to 

formation of normal stress in the absence of velocity 

gradient and elimination of the shear stress.  
In this region the normal stress in the flow direction 

goes to a constant value and the other normal stress 

component, increases by distancing far from the plate. 

A point to make here is that, adjacent to the wall as the 

pressures gradient increases, the values of all stress 

components rise. 
In continuation, Figs. 6-9 show dimensionless stress 

components, T’ij, near the solid wall in x–y plane for  

Wi = 10 and 100 and pressure gradients equal to 0 and  

-1.5, respectively. Generally, the stress contours are 

denser near the wall. The viscoelastic boundary layer 

becomes thinner with increase of Wi number. 

 

(a) 

  
(b) 

  

(c) 

  
Fig. 9 Dimensionless stress components on a plate in the 

x-y plane for C = -0.5 for Wi = 100 

 

Furthermore, to provide a better physical sense of the 

overall problem, the dimensionless streamlines and 

velocity vector are drawn in Figs. 10 for Wi equal to 10 

in the absence of pressure gradient. As seen in this 
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figure, far from the plate, the velocity is essentially 

vertical. This maybe pertinent to the normal stresses 

developed within the viscoelastic due to high elastic 

nature of high Weissenberg flow. 

 
Table 1 Values of f’’(0) for various pressure gradients 

 

f’’(0) C 

-2.0215 0 

-2.110 -0.5 

-2.140 -1 

-2.156 -1.5 

-2.162 -2 

 

 

 
(a) 

 

 

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

x

y

 
 

(b) 

Fig. 10 Development of scaled (a) Stream lines and (b) 

Velocity vector field for viscoealstic boundary layer (C=0) 

 

6 CONCLUSION 

Stress boundary layer of highly elastic flow of the 

Upper Convected Maxwell fluid over a linear 

stretching sheet is studied numerically. Using similarity 

transformations, the scaled dimensionless momentum 

and constitutive equations are converted to a system of 

ordinary differential equations for which a numerical 

solution is sought. A custom-made shooting technique 

is devised to ensure arriving at credible solution of the 

derived highly coupled and highly nonlinear equations. 

It can be concluded that, in general, the velocity 

boundary layer thickness increases with pressure 

gradient. As well, the values of both normal stress 

functions increase with increase of pressure gradient. 

However, the normal stress function in the flow 

direction, τ11, monotonically reaches a constant value. 

In other fashion, the normal stress component 

perpendicular to the flow, τ22, grows by increasing the 

parameter ξ. Also, the value of shear stress, τ12, 

decreases monotonically to zero, implying that the 

shear stress is non-existent force far from the plate. 

Additionally, in high Weissenberg flows, far from the 

solid boundary, the elastic property of the flow is 

dominant. This fact, results in formation of normal 

stress in the absence of velocity gradient and 

elimination of the shear stress so that a “potential” flow 

is observed while, contrary to the Newtonian flow, the 

fluid velocity is essentially vertical to the plate. In this 

region the normal stress in the flow direction T11, goes 

to a constant value and the other normal stress 

component, increases by distancing from the plate. 

Finally, it is observed that the value of stress 

components decrease by Weissenberg number. 
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