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radius ratio on the buckling load. 

Keywords: Buckling, Composite, Sandwich Truncated Conical Shell, Combined 
Load 

Reference: Mozaffari, A., Morovat, F., and Zaare, H., “The Analytical Solution for 
Buckling of Composite Sandwich Truncated Conical Shells under Combined 
External Pressure and Axial Compression Load”, Int J of Advanced Design and 
Manufacturing Technology, Vol. 8/ No. 4, 2015, pp. 83-94. 

Biographical notes: A. Mozaffari is Assistant Professor at the Department of 
Aerospace engineering at K.N.T. University of Technology, Iran. He received his 
PhD in Aerospace engineering from the University of MAI of Russia and a BSc in 
Mechanical Engineering from the Isfahan University of Technology of Iran. His 
current research focuses on Aerospace Structures and Composite Structures. F. 
Morovat will receive her PhD in Aerospace Engineering from K.N.T. University of 
Technology 2015. H. Zaare will receive his PhD in Aerospace Engineering from 
Sharif University of Technology 2016. 

mailto:mozaffari@kntu.ac.ir
mailto:f_morovat@yahoo.com
mailto:h.zaare@yahoo.com


84                 Int  J   Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December – 2015 

 

© 2015 IAU, Majlesi Branch 
 

1 INTRODUCTION 

Shell structures are widely used in engineering fields 

because of their strength characteristics. Conical shells, 

specifically circular cylindrical shells and annular 

plates, play an important role in many industrial fields. 

Typical sandwich structure consists of two thin face 

sheets embedding thick and soft core. The most modern 

aerospace structures are constructed of a composite 

sandwich laminate, usually carbon/epoxy face sheets 

over a honeycomb or foam core. Due to their 

outstanding flexural stiffness-to-weight ratio compared 

to other constructions, sandwich structures are widely 

used in many fields of technology, such as aerospace, 

aeronautic, marine, vehicles and etc. In many 

applications the primary concern is the stability of the 

structure and analytical solution is necessary to predict 

the critical buckling load. 

The buckling of circular sandwich shells subject to 

various types of combined loading is of current interest 

to engineers engaged in mechanical engineering 

practice. It is of great technical importance to clarify 

the buckling behavior of cylindrical and conical 

composite sandwich shells under combined external 

pressure and axial compression. The buckling of 

isotropic conical shells under various loading 

conditions has been studied by many researchers. For 

example, Seide [1] proposed a formula for buckling of 

isotropic conical shell which is independent of 

boundary conditions and best fits the behavior of long 

shells. Singer [2] presented a solution for the buckling 

of conical shells under external pressure. The stability 

of simply supported isotropic conical shells under axial 

load for four different sets of in-plane boundary 

conditions using Donnell-type theory were investigated 

by Baruch et al. [3]. Singer [4], [5] analyzed the 

buckling of orthotropic conical shells. Weigarten and 

Seide [6], [7] studied the stability of conical shells 

under axial compression and external pressure. 

Then, laminated composite materials have found 

extensive industrial applications during the past 

decades. Using Donnell-type shell theory, Tong and 

Wang [8] proposed a power series based solution for 

buckling analysis of laminated conical shells under 

axial compressive load and external pressure. Eight 

first-order differential equations were obtained for linear 

buckling analysis of laminated conical shells. These 

equations were solved by using the numerical 

integration technique and the multi-segment method. By 

analyzing the buckling of a series of conical shells, the 

effects of boundary conditions, elastic coefficients and 

the stretching-bending coupling, on the buckling loads 

and circumferential wavenumbers, were investigated.  

Sofiyev [9] found a theoretical formula for the buckling 

of an orthotropic conical shell with continuously 

varying thickness subjected to a time dependent external 

pressure. Donnell-type shell theory was assumed in his 

work and Galerkin method and variational technique 

were applied to obtain the solution. Li [10] considered 

the stability of composite stiffened shell under axial 

compression load. Static, free vibration and buckling 

analysis of laminated conical shell using finite element 

method based on higher order shear deformation theory 

was carried out by Pinto Correia et al., [11]. Goldfeld et 

al., [12] did a work that deals with the optimization of 

laminate configuration of filament-wound laminated 

conical shells for the maximum buckling load. Due to 

the complex nature of the problem a preliminary 

investigation was made into the characteristic behavior 

of the buckling load with respect to the volume as a 

function of the ply orientation. Patel et al., [13] studied 

post buckling characteristics of angle-ply laminated 

conical shells subjected to torsion, external pressure, 

axial compression, and thermal loading using the finite 

element approach. 

Wu and colleagues [14] studied 3D solution laminated 

conical shells subjected to axisymmetric loads using 

the method of perturbation. Liang et al., [15] explored 

the feasibility of using the transfer matrix method to 

analyze a composite laminated conical plate shell. 

Shadmehri et al., [16] proposed a semi-analytical 

approach to obtain the linear buckling response of 

composite conical shells under axial compression load. 

A first order shear deformation shell theory along with 

linear strain–displacement relations was assumed. 

Parametric study was performed by finding the effect 

of cone angle and fiber orientation on the critical 

buckling load of the conical composite shells. Lavasani 

[17] presented a simple and exact procedure using 

Donnell-type shell theory for linear buckling analysis 

of functionally graded conical shells under axial 

compressive loads and external pressure. Sofiyev [18] 

discussed the buckling analysis of composite 

orthotropic truncated conical shells under a combined 

axial compression and external pressure and resting on 

a Pasternak foundation. The governing equations had 

been obtained and solved by applying the 

Superposition and Galerkin methods. The novelty of 

present work was to achieve closed-form solutions for 

critical combined loads. 

Xie Xiang et al., [19] focused on the free vibration 

analysis of composite laminated conical, cylindrical 

shells and annular plates with various boundary 

conditions based on the first order shear deformation 

theory, using the Haar wavelet discretization method.  

Only few studies targeting the buckling behavior of 

sandwich cylindrical shells have been hitherto 

published. For instance, Neves et al. [20] used quasi-3d 

higher-order shear deformation theory (HOSDT) and 

mesh less technique to the static, free vibration and 

buckling analysis of isotropic and sandwich FG plates. 

Sofiyev [21] discussed the vibration and buckling of 
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sandwich cylindrical shells covered by different types 

of coatings and subjected to a uniform hydrostatic 

pressure using first order shear deformation theory 

(FOSDT).  

Rahmani [22] studied vibration of the composite 

sandwich cylindrical shell with flexible core by using a 

higher order sandwich panel theory. The formulation 

used the classical shell theory for the face sheets and an 

elasticity theory for the core and included derivation of 

the governing equations along with the appropriate 

boundary conditions. Then, an improved higher order 

sandwich plate theory, applying the first-order shear 

deformation theory for the face sheets and 

three-dimensional elasticity theory for the soft core, 

was introduced by Malekzadeh et al., [23].  

The analysis determined the damped natural 

frequencies, loss factors, and local and global mode 

shapes of plates. Biglari [24] proposed a refined higher 

order sandwich panel theory to investigate 

doubly-curved sandwich panels with flexible core. In 

this theory, equations of motion were formulated based 

on displacements and transverse stresses at the 

interfaces of the core. Parametric study was also 

included to investigate the effects of radius of curvature, 

thickness and flexibility of core. Lopatin and Morozov 

[25] presented an approximate analytical solution of the 

buckling problem formulated for a composite sandwich 

cylindrical shell under uniform external lateral pressure. 

Both ends of the shell of finite length were fully 

clamped.  

The problem was solved using the Galerkin method. 

The analytical formula for the critical load had been 

obtained and verified by comparison with a 

finite-element solution. 

The work done in [8], [16-25] does not regard the 

analysis of composite sandwich conical shells. Herein, 

we concentrate on such buckling analysis of composite 

sandwich truncated conical shells under combined 

external pressure and axial compression load. Therefore, 

there is no research on the analysis of buckling of 

composite sandwich conical shell with transversely 

compliant core under combined load. In this study, a 

higher order sandwich shell theory is used for 

analyzing the buckling of composite sandwich conical 

shell, which is paramount to study of sandwich 

structures with flexible core.  

Herein, the first order shear deformation theory is used 

for the face sheets and a 3D-elasticity solution of weak 

core is employed for the flexible core, whose material 

properties follow a power-low function. Furthermore, 

the combined loading is applied by simultaneous axial 

compressive load and external pressure, and equations 

of motion are derived by utilizing Hamilton principle. 

To the best knowledge of the researcher, it is the first 

time that the higher order governing equations of 

motion are presented for conical composite sandwich 

shells. 

2 GOVERNING EQUATIONS 

Consider a circular truncated composite sandwich 

conical shell as shown in Figure 1. Let R1 and R2 

indicate radii of the inner and the outer face sheets in 

the middle of cone length in the normal to middle axis, 

respectively. α denotes the semi-vertex angle of the 

cone and L is the cone  length  along  its  

generator.  

 

 
Fig.1 Geometry of the truncated conical composite sandwich 

shell. 

 

The displacements of any arbitrary point on the middle 

surface of the shell are denoted by u, v and w in the x, θ 

and z directions, respectively. In terms of these 

variables the cone's radius at any point along its length 

may be expressed as: 

 

𝑅𝑡 = 𝑅2 + 𝑥 sinα = 𝑟𝑡cosα 

𝑅𝑏 = 𝑅1 + 𝑥 sinα = 𝑟𝑏cosα 

𝑟𝑡𝑐 = 𝑟𝑡 −
𝑑𝑡

2
       

𝑟𝑏𝑐 = 𝑟𝑏 +
𝑑𝑏

2
                                                           (1) 
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The displacement components for face sheets in the 

longitudinal direction x, circumferential θ and the 

thickness z based on first-order shear deformation 

theory (FSDT) are considered as follows: 
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Where ui ,vi and wi are displacement components in the 

middle surface of face sheets, ψxi and ψθi are the 

rotations in the face sheets. 

The kinematic equations for the strains in the face 

sheets are as follow: 

 

𝜀𝑥𝑥𝑖 = 𝜀𝑥𝑥0𝑖 + 𝑧𝑖𝑘𝑥𝑥𝑖 
𝜀𝜃𝜃𝑖 = 𝜀𝜃𝜃0𝑖 + 𝑧𝑖𝑘𝜃𝜃𝑖 
𝛾𝑥𝜃𝑖 = 𝛾𝑥𝜃0𝑖 + 𝑧𝑖𝑘𝑥𝜃𝑖 

𝜀𝜃𝑧𝑖 = 𝜓𝜃𝑖 +
𝑤𝑖,𝜃 − 𝑣𝑖cosα

𝑅𝑖
 

𝜀𝑥𝑧𝑖 = 𝜓𝑥𝑖 + 𝑤𝑖,𝑥 

𝜀𝑧𝑧𝑖 = 0                                             (3) 
 
The following strain-displacement relations and 

curvature on the mid-surface face sheets are obtained 

 

εxx0i = ui,x+ 
1

2
wi,x

2  

εθθ0i = 
vi,θ: uisin∝:wi cos∝

Ri
 + 

1

2
 (

Wi,θ

Ri
)

2
 

γxθ0i = vi,x+
ui,θ ; vi sin∝

Ri
+

wi,x  Wi,θ 

Ri
              (4) 

kxxi = ψxi,x 

kθθi = 
ψ

θi,θ:ψxisin∝

Ri
 

kxθi = ψθi,x+ 
ψxi,θ ; ψ

θisin∝

Ri
 

 
Where (Wj),x and (ψi),θ  symbols represent the 

differentiations with respect to x and θ variables, 

respectively. 

The kinematic relations used for the core, assuming 

small linear deformations, take the following form: 

 

𝛾𝜃𝑟𝑐 = 𝑣𝑐,𝑟 +
𝑤𝑐,𝜃;𝑣𝑐 cosα

𝑅
,      𝜀𝑟𝑟𝑐 = 𝑤𝑐,𝑟 

𝛾𝑥𝑟𝑐 = 𝑤𝑐,𝑥 + 𝑢𝑐,𝑟                   (5) 

 
In this equations, Ec is elastic modulus of core and Gxc, 

Gθc are shear modulus at x and θ axis directions, 

respectively. 

The compatibility conditions, which ensure perfect 

bonding between the faces and the core at the interface 

layers for both the outer and inner faces, are: 

u̅c (r=ric) = u̅ci = ui +(−1)𝑘 di

2
ψxi 

v̅c (r=ric) = v̅ci = vi +(−1)𝑘 di

2
ψθi               (6) 

w̅c (r=ric) = w̅ci = wi 

 

Where di (i = t,b) are the thickness of the outer and the 

inner face sheets, respectively, and k = 1 when i = t, 

and k = 0 when i = b. The constitutive equations for 

each face sheet based on classical lamination theory are 

given by the following stress resultant–displacement 

relations [24]: 

 

{

𝑁𝑥
𝑖

𝑁𝜑
𝑖

𝑁𝑥𝜑
𝑖

} =  [

𝐴11𝑖 𝐴12𝑖 𝐴16𝑖

𝐴12𝑖 𝐴22𝑖 𝐴26𝑖

𝐴16𝑖 𝐴26𝑖 𝐴66𝑖

] {

𝜀𝑥𝑥0,𝑖

𝜀𝜑𝜑0,𝑖

𝛾𝑥𝜑0,𝑖

}

+ [

𝐵11𝑖 𝐵12𝑖 𝐵16𝑖

𝐵12𝑖 𝐵22𝑖 𝐵26𝑖

𝐵16𝑖 𝐵26𝑖 𝐵66𝑖

] {

𝐾𝑥𝑥0,𝑖

𝐾𝜑𝜑0,𝑖

𝐾𝑥𝜑0,𝑖

} 

{

𝑀𝑥
𝑖

𝑀𝜑
𝑖

𝑀𝑥𝜑
𝑖

} =  [

𝐵11𝑖 𝐵12𝑖 𝐵16𝑖

𝐵12𝑖 𝐵22𝑖 𝐵26𝑖

𝐵16𝑖 𝐵26𝑖 𝐵66𝑖

] {

𝜀𝑥𝑥0,𝑖

𝜀𝜑𝜑0,𝑖

𝛾𝑥𝜑0,𝑖

}

+  [

𝐷11𝑖 𝐷12𝑖 𝐷16𝑖

𝐷12𝑖 𝐷22𝑖 𝐷26𝑖

𝐷16𝑖 𝐷26𝑖 𝐷66𝑖

] {

𝐾𝑥𝑥0,𝑖

𝐾𝜑𝜑0,𝑖

𝐾𝑥𝜑0,𝑖

} 

(7) 

 

Where Nikl and Mikl are stress and moment resultants in 

the outer and inner face sheets, respectively, Amn, Bmn 

and Dmn are extensional, coupling and bending 

rigidities, respectively, and ℇkl0,i and kkl0,i are the 

mid-plane strains and the curvatures of the shell. The 

core material is assumed to behave as a linear elastic 

and specially (transversely) orthotropic solid material 

with the following constitutive relations: 

 

σrrc = Ecεrrc 

 𝜏𝑥𝑟𝑐= Gxc𝛾𝑥𝑟𝑐                                  (8) 

𝜏𝜃𝑟𝑐= 𝐺𝜃𝑐𝛾𝜃𝑟𝑐 
 

In this paper a particular set of laminated cones, namely, 

regularly anti-symmetric cross-plied cones, are 

numerically studied. The coefficients in the constitutive 

Eqs. (7) for this lamination are 

 

𝐴11𝑖 = 𝐴22𝑖 =
1

2
(𝑄11𝑖 + 𝑄22𝑖),𝐴12𝑖 = 𝑄12𝑖, 𝐴66𝑖 =

𝑄66𝑖 
𝐵11𝑖 = −𝐵22𝑖 = ±

1

4𝑁
(𝑄11𝑖 −  𝑄22𝑖)2, 𝐵12𝑖 = 0 

𝐷11𝑖 = 𝐷22𝑖 =
1

24
(𝑄11𝑖 + 𝑄22𝑖)3, 𝐷12𝑖 =

1

12
𝑄12𝑖

3 

𝐷66𝑖 =
1

12
𝑄66𝑖

3, 

𝐴𝑘6𝑖 = 𝐵𝑘6𝑖 = 𝐷𝑘6𝑖 = 0   𝑤𝑒𝑟𝑒   𝑘 = 1,2                  (9) 
 

To derivate the governing equations of motion and the 
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boundary conditions by the Hamilton principle, the 

energy functional of the conical shell must be obtained 

that is defined as: 

 

δ(U+V)=0                                     (10) 

 

Where U is the potential energy of the body, V is the 

potential of external loads. The first variation of the 

potential energy can be expressed as: 

 

𝛿𝑈 = ∭ (𝜎𝑥𝑥𝑡𝛿𝜀𝑥𝑥𝑡 + 𝛿𝜃𝜃𝑡𝛿𝜀𝜃𝜃𝑡 + 𝜏𝑥𝜃𝑡𝛿𝛾𝑥𝜃𝑡 +
 

𝑉𝑡

𝜏𝑥𝑧𝑡𝛿𝛾𝑥𝑧𝑡 + 𝜏𝜃𝑧𝑡𝛿𝛾𝜃𝑧𝑡)𝑑𝑉𝑡 + ∭ (
 

𝑉𝑏
𝜎𝑥𝑥𝑏𝛿𝜀𝑥𝑥𝑏 +

𝜎𝜃𝜃𝑏𝛿𝜀𝜃𝜃𝑏 +  𝜏𝑥𝜃𝑏𝛿𝛾𝑥𝜃𝑏 + 𝜏𝑥𝑧𝑏𝛿𝛾𝑥𝑧𝑏 +
𝜏𝜃𝑧𝑏𝛿𝛾𝜃𝑧𝑏)𝑑𝑉𝑏 + ∭ (

 

𝑉𝑐
𝜏𝑥𝑟𝑐𝛿𝜀𝑥𝑟𝑐 + 𝜏𝜃𝑟𝑐𝛿𝜀𝜃𝑟𝑐 +

 𝜎𝑟𝑟𝑐𝛿𝜀𝑟𝑟𝑐)𝑑𝑉𝑐                                                       (11) 
 

Where σxxi , σθθi, τxθi, γxθi , εθθi, εxxi(i = t, b)are 

the in-plane normal and shear stresses and strains in the 

outer and inner face sheets, respectively: 

σrrc, τθrc , εrrc , γθrc ,  γxrc ,  γxrc are the radial and 

shear stresses and strains in the core, respectively, and 

Vt, Vb, Vc are the appropriate volumes of the outer and 

inner face sheets and the core, respectively. The 

in-plane stress components containing  τxθc ,  σθθc , 

σxxcin core are disregarded. 

 

𝛿𝑉=-∫ ∫ (𝑞𝑟
𝑡 

𝜃

𝑙
2⁄

;𝑙
2⁄

𝑅𝑡𝛿𝑤𝑡 + 𝑞𝑟
𝑏𝑅𝑏𝛿𝑤𝑏 + 𝑞𝑥

𝑡 𝑅𝑡𝛿𝑢𝑡 +

𝑞𝑥
𝑏𝑅𝑏𝛿𝑢𝑏 + 𝑞𝜃

𝑡 𝑅𝑡𝛿𝑣𝑡 + 𝑞𝜃
𝑏𝑅𝑏𝛿𝑣𝑏) 𝑑𝑥 𝑑𝜃  (12) 

 

Where ui, vi, wi (i = t,b) are displacements components 

of the face sheets and qr
i , qθ

i ,qx
i  are force components 

on the outer and inner face sheets. 

Hence, by using from the obtained relations and 

applying Hamilton principle, equilibrium equations of 

conical sandwich shell are derived as follows: 

 

-𝑁𝑥
𝑡sinα– 𝑅𝑡𝑁𝑥,𝑥

𝑡 –𝑁𝑥𝜃,𝜃
𝑡 + 𝑁𝜃

𝑡sinα +  

                             𝜏𝑥𝑟𝑐(r=𝑟𝑡𝑐)𝑟𝑡𝑐cosα+ 𝑞𝑥
𝑡 𝑅𝑡=0 

 

(13) 

- 𝑁𝑥
𝑏 sin α – 𝑅𝑏𝑁𝑥,𝑥

𝑏 - 𝑁𝑥𝜃,𝜃
𝑏 + 𝑁𝜃

𝑏 sin α –

𝜏𝑥𝑟𝑐(r=𝑟𝑏𝑐)𝑟𝑏𝑐cosα+𝑞𝑥
𝑏𝑅𝑏=0 

 

(14) 

2𝑁𝑥𝜃
𝑡 sinα–𝑅𝑡𝑁𝑥𝜃,𝑥

𝑡 - 

                  𝑁𝜃,𝜃
𝑡 –

 𝑄𝜃𝑧𝑡 cosα+𝜏𝜃𝑟𝑐(r=𝑟𝑡𝑐)𝑟𝑡𝑐cosα+𝑞𝜃
𝑡 𝑅𝑡=0 

 

(15) 

2𝑁𝑥𝜃
𝑏 sinα–𝑅𝑏𝑁𝑥𝜃,𝑥

𝑏 -

 𝑁𝜃,𝜃
𝑏 + 𝑄𝜃𝑧𝑏cosα+𝜏𝜃𝑟𝑐(r=𝑟𝑏𝑐)𝑟𝑏𝑐cosα+𝑞𝜃

𝑏𝑅𝑏=0 

 

(16) 

𝑁𝜃
𝑡cosα–𝑄𝑥𝑧𝑡sinα–𝑅𝑡𝑄𝑥𝑧𝑡,𝑥–𝑄𝜃𝑧𝑡,𝜃-

*(𝑅𝑡𝑁𝑥 
𝑡 𝑤𝑡,𝑥 + 𝑁𝑥𝜃

𝑡 𝑤𝑡,𝜃),𝑥+ (
1

𝑅𝑡
𝑁𝜃

𝑡𝑤𝑡,𝜃 +

(17) 

𝑁𝑥𝜃
𝑡 𝑤𝑡,𝑥) ,𝜃 ++σrrc(r=𝑟𝑡𝑐)𝑟𝑡𝑐cosα+𝑞𝑟

𝑡𝑅𝑡=0 

 

𝑁𝜃
𝑏cosα–𝑄𝑥𝑧𝑏sinα–𝑅𝑏𝑄𝑥𝑧𝑏,𝑥–𝑄𝜃𝑧𝑏,𝜃-

*(𝑅𝑏𝑁𝑥 
𝑏𝑤𝑏,𝑥 + 𝑁𝑥𝜃

𝑏 𝑤𝑏,𝜃),𝑥+ (
1

𝑅𝑏
𝑁𝑥𝜃

𝑏 𝑤𝑏,𝑥 +

𝑁𝑥𝜃
𝑏 𝑤𝑏,𝑥),𝜃 +- 𝜎𝑟𝑟𝑐(r=𝑟𝑏𝑐)𝑟𝑏𝑐cosα + 𝑞𝑟

𝑏𝑅𝑏=0 

 

(18) 

-𝑅𝑡𝑄𝑥𝑧𝑡– 𝑀𝑥
𝑡sinα–𝑅𝑡𝑀𝑥,𝑥

𝑡 +𝑀𝜃
𝑡 sinα–𝑀𝑥𝜃,𝜃

𝑡 –

𝑟𝑡𝑐𝜏𝑥𝑟𝑐(r=𝑟𝑡𝑐 ) cosα
𝑑𝑡

2
 =0 

 

(19) 

𝑅𝑏𝑄𝑥𝑧𝑏–𝑀𝑥
𝑏sinα- 𝑅𝑏𝑀𝑥,𝑥

𝑏  + 𝑀𝜃
𝑏sinα–𝑀𝑥𝜃,𝑥

𝑏 –

𝑟𝑏𝑐𝜏𝑥𝑟𝑐(r=𝑟𝑏𝑐 ) cosα
𝑑𝑏

2
 =0 

(20) 

𝑅𝑡𝑄𝜃𝑧𝑡–𝑀𝜃,𝜃
𝑡 − 2𝑀𝑥𝜃

𝑡 sinα–𝑅𝑡𝑀𝑥𝜃,𝑥
𝑡 –

𝑟𝑡𝑐𝜏𝜃𝑟𝑐(r=𝑟𝑡𝑐 )cosα
𝑑𝑡

2
 =0 

 

(21) 

𝑅𝑏𝑄𝜃𝑧𝑏–𝑀𝜃,𝜃
𝑏 − 2𝑀𝑥𝜃

𝑏 sinα–𝑅𝑏𝑀𝑥𝜃,𝑥
𝑏 –

𝑟𝑏𝑐𝜏𝜃𝑟𝑐(r=𝑟𝑏𝑐 )cosα
𝑑𝑏

2
=0 

 

(22) 

𝜏𝜃𝑟𝑐cosα + (𝑟𝜏𝜃𝑟𝑐cosα),𝑟=0 

 

(23) 

(𝑟𝜏𝑥𝑟𝑐cosα),𝑟=0 

 

(24) 

(𝑟𝜏𝑥𝑟𝑐cosα),𝑥+ 𝜏𝜃𝑟𝑐,𝜃+ (𝑟𝜎𝑟𝑟𝑐cosα),𝑟=0 (25) 

 

Where Nkl
i  and Mkl

i (k = x, θ), (i = t, b) are the force 

and moment resultants respectively. Qkzi is shear 

forces out of plane per unit length that they are defined 

as: 

 

(𝑁𝑋
𝑖  , 𝑁𝜃

𝑖  , 𝑁𝑥𝜃
𝑖 )= 

∫ (𝜎𝑥𝑥𝑖  ,
𝑑𝑖

2⁄

; 
𝑑𝑖

2⁄

𝜎𝜃𝜃𝑖  , 𝜏𝑥𝜃𝑖) 𝑑𝑧𝑖  
( 𝑀𝑥

𝑖  , 𝑀𝜃
𝑖  , 𝑀𝑥𝜃

𝑖 )= 

∫ (𝜎𝑥𝑥𝑖  ,
𝑑𝑖

2⁄

; 
𝑑𝑖

2⁄

𝜎𝜃𝜃𝑖  , 𝜏𝑥𝜃𝑖) 𝑧𝑖𝑑𝑧𝑖  
 

(26) 

Qxzi =  ∫ τxzi

di
2⁄

; 
di

2⁄
 dz 

Qθzi =  ∫ τθzi

di
2⁄

;di
2⁄

 dz 

(27) 

 

In addition to extraction equilibrium equations using 

the energy method, boundary conditions also are 

obtained for the truncated conical composite sandwich 

shells. 

The corresponding boundary conditions for the 

clamped and simply-supported edges are considered as 

Clamped-Clamped (C-C): 
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𝑢𝑖 = 0, 𝑣𝑖 = 0, 𝑤𝑖

= 0, 𝑤𝑖
′ = 0, 𝜓𝑥𝑖

= 0, 𝜓𝜃𝑖 = 0 

When 𝑥 = ±
𝐿

2
 (i=t,b) 

(28) 

 

Simply-Supported (S-S): 

 

𝑁𝑥
𝑖 = 0, 𝑣𝑖 = 0, 𝑤𝑖 =

0, 𝑀𝑥
𝑖 =

0, 𝑀𝑥𝜃
𝑖 =

0, 𝜏𝑥𝑟𝑐 = 0      
when 𝑥 =

±
𝐿

2
       (i=t,b) 

(29) 

 

The obtained equations reduce to the governing 

equations of cylindrical sandwich shells if the 

assumption of α = 0 is applied. Evidently, the higher 

order governing equations for a conical shell are too 

complex and obtaining the exact analytical solutions 

sounds impossible. In the following section the solution 

procedure of the power series is presented to obtain an 

exact solution to the problem. 

3 SOLUTION METHODOLOGY 

In order to solve the equations of conical composite 

sandwich shell with a transversely flexible core, first 

values of stress and moment resultants are deployed in 

the Eqs. (13)-(25) according to face sheets 

displacement components in the longitudinal, 

circumferential and radial directions. Then the system 

of partial differential equations of motion in a way that 

follows the structure is obtained. Thus the equations in 

terms of the values of an unknown problem involve 

displacement of longitudinal, circumferential and radial 

middle plane procedures and component rotation 

procedures and shear stresses of core, 

τθ,  τx,  Ψθi,  Ψxi,  wi,  vi,  ui(i = t, b) offered. As seen 

from Eqs. (30)-(39), the equations of motion are 

formulated in terms of the following twelve unknowns: 

The circumferential and longitudinal displacements of 

the outer and the inner face sheets (ui, vi , i = t,b), the 

radial deflections of the outer and the inner face sheets 

(wi, i = t, b), rotation components of the outer and the 

inner face sheets in the longitudinal and circumferential 

direction (Ψθi, Ψxi , i =  t, b) and the two radial core 

shear stresses (τx, τθ), respectively 

 

−𝐴11𝑡[𝑢𝑡,𝑥sinα + 𝑅𝑡𝑢𝑡,𝑥𝑥] − 𝐴12𝑡[𝑣𝑡,𝑥𝜃 + 𝑤𝑡,𝑥cosα] − 𝐴16𝑡[𝑅𝑡𝑣𝑡,𝑥𝑥 + 2𝑢𝑡,𝑥𝜃] − 𝐵11𝑡[𝛹𝑥𝑡,𝑥sinα + 𝑅𝑡𝛹𝑥𝑡,𝑥𝑥]

− 𝐵12𝑡𝛹𝜃𝑡,𝑥𝜃 − 𝐵16𝑡[𝑅𝑡𝛹𝜃𝑡,𝑥𝑥 + 2𝛹𝑥𝑡,𝑥𝜃] + 𝐴22𝑡

sinα

𝑅𝑡

[𝑣𝑡,𝜃 + 𝑢𝑡sinα + 𝑤𝑡cosα]

+ 𝐴26𝑡 [𝑣𝑡,𝑥sinα −
sin2α

𝑅𝑡

𝑣𝑡 −
1

𝑅𝑡

(𝑣𝑡,𝜃𝜃 + 𝑤𝑡,𝜃cosα)]

+ 𝐵22𝑡

sinα

𝑅𝑡

[𝛹𝜃𝑡,𝑥sinα −
sin2α

𝑅𝑡

𝛹𝜃𝑡 −
1

𝑅𝑡

𝛹𝜃𝑡,𝜃𝜃] − 𝐴66𝑡 [𝑣𝑡,𝑥𝜃 +
1

𝑅𝑡

(𝑢𝑡,𝜃𝜃 − 𝑣𝑡,𝜃sinα)]

− 𝐵66𝑡 [𝛹𝜃𝑡,𝑥𝜃 +
1

𝑅𝑡

(𝛹𝑥𝑡,𝜃𝜃 − 𝛹𝜃𝑡,𝜃sinα)] + 𝜏𝑥(𝜃, 𝑥)cosα = 0 

(30) 

 
−𝐴11𝑏[𝑢𝑏,𝑥sinα + 𝑅𝑏𝑢𝑏,𝑥𝑥] − 𝐴12𝑏[𝑣𝑏,𝑥𝜃 + 𝑤𝑏,𝑥cosα] − 𝐴16𝑏[𝑅𝑏𝑣𝑏,𝑥𝑥 + 2𝑢𝑏,𝑥𝜃] − 𝐵11𝑏[𝛹𝑥𝑏,𝑥sinα + 𝑅𝑏𝛹𝑥𝑏,𝑥𝑥]

− 𝐵12𝑏𝛹𝜃𝑏,𝑥𝜃 − 𝐵16𝑏[𝑅𝑏𝛹𝜃𝑏,𝑥𝑥 + 2𝛹𝑥𝑏,𝑥𝜃] + 𝐴22𝑏

sinα

𝑅𝑏

[𝑣𝑏,𝜃 + 𝑢𝑏sinα + 𝑤𝑏cosα]

+ 𝐴26𝑏 [𝑣𝑏,𝑥sinα −
sin2α

𝑅𝑏

𝑣𝑏 −
1

𝑅𝑏

(𝑣𝑏,𝜃𝜃 + 𝑤𝑏,𝜃cosα)] + 𝐵22𝑏

sinα

𝑅𝑏

[𝛹𝜃𝑏,𝜃 + 𝛹𝑥𝑏sinα]

+ 𝐵26𝑏 [𝛹𝜃𝑏,𝑥sinα −
sin2α

𝑅𝑏

𝛹𝜃𝑏 −
1

𝑅𝑏

𝛹𝜃𝑏,𝜃𝜃] − 𝐴66𝑏 [𝑣𝑏,𝑥𝜃 +
1

𝑅𝑏

(𝑢𝑏,𝜃𝜃 − 𝑣𝑏,𝜃sinα)]

− 𝐵66𝑏 [𝛹𝜃𝑏,𝑥𝜃 +
1

𝑅𝑏

(𝛹𝑥𝑏,𝜃𝜃 − 𝛹𝜃𝑏,𝜃sinα)] − 𝜏𝑥(𝜃, 𝑥)cosα = 0 

(31) 
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−𝐴12𝑡𝑢𝑡,𝑥𝜃−𝐴22𝑡

1

𝑅𝑡

[𝑣𝑡,𝜃𝜃 + 𝑢𝑡,𝜃sinα + 𝑤𝑡,𝜃cosα]−𝐴26𝑡 [2𝑣𝑡,𝑥𝜃 + 𝑢𝑡,𝑥sinα + 𝑤𝑡,𝑥cosα +
1

𝑅𝑡

𝑢𝑡,𝜃𝜃

+
sinα

𝑅𝑡

(𝑢𝑡sinα + 𝑤𝑡cosα)] −𝐵12𝑡𝛹𝑥𝑡,𝑥𝜃−𝐵22𝑡

1

𝑅𝑡

[𝛹𝜃𝑡,𝜃𝜃 + 𝛹𝑥𝑡,𝜃sinα]−𝐵26𝑡 [2𝛹𝜃𝑡,𝑥𝜃 + 𝛹𝑥𝑡,𝑥sinα

+
1

𝑅𝑡

𝛹𝑥𝑡,𝜃𝜃 +
sin2α

𝑅𝑡

𝛹𝑥𝑡] −𝐴16𝑡[2𝑢𝑡,𝑥sinα + 𝑅𝑡𝑢𝑡,𝑥𝑥]−𝐴66𝑡 [𝑣𝑡,𝑥sinα + 𝑅𝑡𝑣𝑡,𝑥𝑥 + 𝑢𝑡,𝑥𝜃

+
sinα

𝑅𝑡

(𝑢𝑡,𝜃 − 𝑣𝑡sinα)] −𝐵16𝑡[2𝛹𝑥𝑡,𝑥sinα + 𝑅𝑡𝛹𝑥𝑡,𝑥𝑥]−𝐵66𝑡 [𝛹𝜃𝑡,𝑥sinα + 𝛹𝑥𝑡,𝑥𝜃 + 𝑅𝑡𝛹𝜃𝑡,𝑥𝑥

+
sinα

𝑅𝑡

(𝛹𝑥𝑡,𝜃 − 𝛹𝜃𝑡sinα)] −𝑘𝐺𝜃𝑧𝑡𝑑𝑡 (𝛹𝜃𝑡 +
𝑤𝑡,𝜃 − 𝑣𝑡cosα

𝑅𝑡

) cosα +
𝜏𝜃(𝜃, 𝑥)

𝑟𝑡𝑐

cosα = 0 

(32) 

−𝐴12𝑏𝑢𝑏,𝑥𝜃−𝐴22𝑏

1

𝑅𝑏

[𝑣𝑏,𝜃𝜃 + 𝑢𝑏,𝜃sinα + 𝑤𝑏,𝜃cosα]−𝐴26𝑏 [2𝑣𝑏,𝑥𝜃 + 𝑢𝑏,𝑥sinα + 𝑤𝑏,𝑥cosα +
1

𝑅𝑏

𝑢𝑏,𝜃𝜃

+
sinα

𝑅𝑏

(𝑢𝑏sinα + 𝑤𝑏cosα)] −𝐵12𝑏𝛹𝑥𝑏,𝑥𝜃−𝐵22𝑏

1

𝑅𝑏

[𝛹𝜃𝑏,𝜃𝜃 + 𝛹𝑥𝑏,𝜃sinα]−𝐵26𝑏 [2𝛹𝜃𝑏,𝑥𝜃

+ 𝛹𝑥𝑏,𝑥sinα +
1

𝑅𝑏

𝛹𝑥𝑏,𝜃𝜃 +
sin2α

𝑅𝑏

𝛹𝑥𝑏] −𝐴16𝑏[2𝑢𝑏,𝑥sinα + 𝑅𝑏𝑢𝑏,𝑥𝑥]−𝐴66𝑏 [𝑣𝑏,𝑥sinα + 𝑅𝑏𝑣𝑏,𝑥𝑥

+ 𝑢𝑏,𝑥𝜃 +
sinα

𝑅𝑏

(𝑢𝑏,𝜃 − 𝑣𝑏sinα)] −𝐵16𝑏[2𝛹𝑥𝑏,𝑥sinα + 𝑅𝑏𝛹𝑥𝑏,𝑥𝑥]−𝐵66𝑏 [𝛹𝜃𝑏,𝑥sinα + 𝛹𝑥𝑏,𝑥𝜃

+ 𝑅𝑡𝛹𝜃𝑏,𝑥𝑥 +
sinα

𝑅𝑏

(𝛹𝑥𝑏,𝜃 − 𝛹𝜃𝑏sinα)] −𝑘𝐺𝜃𝑧𝑏𝑑𝑏 (𝛹𝜃𝑏 +
𝑤𝑏,𝜃 − 𝑣𝑏cosα

𝑅𝑏

) cosα −
𝜏𝜃(𝜃, 𝑥)

𝑟𝑏𝑐

cosα

= 0 
(33) 

𝐴12𝑡𝑢𝑡,𝑥cosα+𝐴22𝑡

cosα

𝑅𝑡

[𝑣𝑡,𝜃 + 𝑢𝑡sinα + 𝑤𝑡cosα]+𝐴26𝑡 [𝑣𝑡,𝑥cosα

+
cosα

𝑅𝑡

(𝑢𝑡,𝜃 − 𝑣𝑡sinα)] +𝐵12𝑡𝛹𝑥𝑡,𝑥cosα+𝐵22𝑡

cosα

𝑅𝑡

[𝛹𝜃𝑡,𝜃 + 𝛹𝑥𝑡sinα]+𝐵26𝑏 [𝛹𝜃𝑡,𝑥cosα

+
cosα

𝑅𝑡

(𝛹𝑥𝑡,𝜃 − 𝛹𝜃𝑡sinα)] −𝑘𝐺𝑥𝑧𝑡𝑑𝑡(𝛹𝑥𝑡 + 𝑤𝑡,𝑥)sinα−𝑅𝑡𝑘𝐺𝑥𝑧𝑡𝑑𝑡(𝛹𝑥𝑡,𝑥 + 𝑤𝑡,𝑥𝑥)−𝑘𝐺𝜃𝑧𝑡𝑑𝑡 (𝛹𝜃𝑡,𝑡

+
𝑤𝑡,𝜃𝜃 − 𝑣𝑡,𝜃cosα

𝑅𝑡

) − [(𝑅𝑡𝑁𝑥0
𝑡 𝑤𝑡,𝑥 + 𝑁𝑥𝜃0

𝑡 𝑤𝑡,𝜃)
,𝑥

+ (
1

𝑅𝑡

𝑁𝜃0
𝑡 𝑤𝑡,𝜃 + 𝑁𝑥𝜃0

𝑡 𝑤𝑡,𝑥)
,𝜃

]

+
𝜏𝜃,𝜃

𝑟𝑡𝑐cosα
[

𝑟𝑡𝑐 − 𝑟𝑏𝑐

𝑟𝑏𝑐𝑙𝑛 (
𝑟𝑏𝑐

𝑟𝑡𝑐
)

+ 1] cosα − 𝜏𝑥,𝑥 [
𝑟𝑡𝑐 − 𝑟𝑏𝑐

𝑙𝑛 (
𝑟𝑏𝑐

𝑟𝑡𝑐
)

+ 𝑟𝑡𝑐] cosα +
𝐸𝑐

𝑙𝑛 (
𝑟𝑏𝑐

𝑟𝑡𝑐
)

(𝑤𝑏 − 𝑤𝑡)cosα   = 0 

(34) 
 

𝐴12𝑏𝑢𝑏,𝑥cosα+𝐴22𝑏

cosα

𝑅𝑏

[𝑣𝑏,𝜃 + 𝑢𝑏sinα + 𝑤𝑡cosα]+𝐴26𝑡 [𝑣𝑡,𝑥cosα

+
cosα

𝑅𝑡

(𝑢𝑡,𝜃 − 𝑣𝑡sinα)] +𝐵12𝑡𝛹𝑥𝑡,𝑥cosα−𝐵22𝑡

cosα

𝑅𝑡

[𝛹𝜃𝑡,𝜃 + 𝛹𝑥𝑡sinα]+𝐵26𝑡 [𝛹𝜃𝑡,𝑥cosα

+
cosα

𝑅𝑡

(𝛹𝑥𝑡,𝜃 − 𝛹𝜃𝑡sinα)] −𝑘𝐺𝑥𝑧𝑡𝑑𝑡(𝛹𝑥𝑡 + 𝑤𝑡,𝑥)sinα−𝑅𝑡𝑘𝐺𝑥𝑧𝑡𝑑𝑡(𝛹𝑥𝑡,𝑥 + 𝑤𝑡,𝑥𝑥)−𝑘𝐺𝜃𝑧𝑡𝑑𝑡 (𝛹𝜃𝑡,𝜃

+
𝑤𝑡,𝜃𝜃 − 𝑣𝑡,𝜃cosα

𝑅𝑡

) − [(𝑅𝑏𝑁𝑥0
𝑏 𝑤𝑏,𝑥 + 𝑁𝑥𝜃0

𝑏 𝑤𝑏,𝜃)
,𝑥

+ (
1

𝑅𝑏

𝑁𝑥𝜃0
𝑏 𝑤𝑏,𝜃 + 𝑁𝑥𝜃0

𝑏 𝑤𝑏,𝑥)
,𝜃

]

−
𝜏𝜃,𝜃

𝑟𝑏𝑐cosα
[

𝑟𝑡𝑐 − 𝑟𝑏𝑐

𝑟𝑡𝑐 𝑙𝑛 (
𝑟𝑏𝑐

𝑟𝑡𝑐
)

+ 1] cosα + 𝜏𝑥,𝑥 [
𝑟𝑡𝑐 − 𝑟𝑏𝑐

𝑙𝑛 (
𝑟𝑏𝑐

𝑟𝑡𝑐
)

+ 𝑟𝑏𝑐] cosα −
𝐸𝑐

𝑙𝑛 (
𝑟𝑏𝑐

𝑟𝑡𝑐
)

(𝑤𝑏 − 𝑤𝑡)cosα = 0 

(35) 
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−𝐵11𝑡[𝑢𝑡,𝑥sinα + 𝑅𝑡𝑢𝑡,𝑥𝑥] − 𝐵12𝑡[𝑣𝑡,𝑥𝜃 + 𝑤𝑡,𝑥cosα] − 𝐵16𝑡[𝑅𝑡𝑣𝑡,𝑥𝑥 + 2𝑢𝑡,𝑥𝜃] − 𝐷11𝑡[𝛹𝑥𝑡,𝑥sinα + 𝑅𝑡𝛹𝑥𝑡,𝑥𝑥]

− 𝐷12𝑡𝛹𝜃𝑡,𝑥𝜃 − 𝐷16𝑡[𝑅𝑡𝛹𝜃𝑡,𝑥𝑥 + 2𝛹𝑥𝑡,𝑥𝜃] + 𝐵22𝑡

sinα

𝑅𝑡

[𝑣𝑡,𝜃 + 𝑢𝑡sinα + 𝑤𝑡cosα]

+ 𝐵26𝑡 [𝑣𝑡,𝑥sinα −
1

𝑅𝑡

𝑣𝑡sin2α −
1

𝑅𝑡

(𝑣𝑡,𝜃𝜃 + 𝑤𝑡,𝜃cosα)] + 𝐷22𝑡

sinα

𝑅𝑡

[𝛹𝜃𝑡,𝑡 + 𝛹𝑥𝑡sinα]

+ 𝐷26𝑡 [𝛹𝜃𝑡,𝑥sinα −
1

𝑅𝑡

𝛹𝜃𝑡sin2α −
1

𝑅𝑡

𝛹𝜃𝑡,𝜃𝜃] −𝐵66𝑡 [𝑣𝑡,𝑥𝜃sinα +
1

𝑅𝑡

(𝑢𝑡,𝜃𝜃 − 𝑣𝑡,𝜃sinα)]

− 𝐷66𝑡 [𝛹𝜃𝑡,𝑥𝜃 +
1

𝑅𝑡

(𝛹𝑥𝑡,𝜃𝜃 − 𝛹𝜃𝑡,𝜃sinα)] + 𝑅𝑡𝑘𝐺𝑥𝑧𝑡𝑑𝑡(𝛹𝑥𝑡 + 𝑤𝑡,𝑥) − 𝜏𝑥(𝜃, 𝑥)
𝑑𝑡

2
cosα = 0 

(36) 
 

−𝐵11𝑏[𝑢𝑏,𝑥sinα + 𝑅𝑏𝑢𝑏,𝑥𝑥] − 𝐵12𝑏[𝑣𝑏,𝑥𝜃 + 𝑤𝑏,𝑥cosα] − 𝐵16𝑏[𝑅𝑏𝑣𝑏,𝑥𝑥 + 2𝑢𝑏,𝑥𝜃] − 𝐷11𝑏[𝛹𝑥𝑏,𝑥sinα + 𝑅𝑏𝛹𝑥𝑏,𝑥𝑥]

− 𝐷12𝑏𝛹𝜃𝑏,𝑥𝜃 − 𝐷16𝑏[𝑅𝑏𝛹𝜃𝑏,𝑥𝑥 + 2𝛹𝑥𝑏,𝑥𝜃] + 𝐵22𝑏

sinα

𝑅𝑏

[𝑉𝑏,𝜃 + 𝑢𝑏sinα + 𝑤𝑏cosα]

+ 𝐵26𝑏 [𝑣𝑏,𝑥sinα −
1

𝑅𝑏

𝑣𝑏sin2α −
1

𝑅𝑏

(𝑣𝑏,𝜃𝜃 + 𝑤𝑏,𝜃cosα)] + 𝐷22𝑏

sinα

𝑅𝑏

[𝛹𝜃𝑏,𝑥 + 𝛹𝑥𝑏sinα]

+ 𝐷26𝑏 [𝛹𝜃𝑏,𝑥sinα −
1

𝑅𝑏

− 𝛹𝜃𝑏sin2α −
1

𝑅𝑏

𝛹𝜃𝑏,𝜃𝜃] − 𝐵66𝑏 [𝑣𝑏,𝑥𝜃 +
1

𝑅𝑏

(𝑢𝑏,𝜃𝜃 − 𝑣𝑏,𝜃sinα)]

− 𝐷66𝑏 [𝛹𝜃𝑏,𝑥𝜃 +
1

𝑅𝑏

(𝛹𝑥𝑏,𝜃𝜃 − 𝛹𝜃𝑏,𝜃sinα)] + 𝑅𝑏𝑘𝐺𝑥𝑧𝑏𝑑𝑏(𝛹𝑥𝑏 + 𝑤𝑏,𝑥) − 𝜏𝑥(𝜃, 𝑥)
𝑑𝑏

2
cosα = 0 

(37) 

−𝐵12𝑡𝑢𝑡,𝑥𝜃−𝐵22𝑡

𝑣𝑡,𝜃𝜃 + 𝑢𝑡,𝜃sinα + 𝑤𝑡,𝜃cosα

𝑅𝑡

−𝐵26𝑡 [2𝑣𝑡,𝑥𝜃 + 𝑢𝑡,𝑥sinα + 𝑤𝑡,𝑥cosα

+
𝑢𝑡,𝜃𝜃 + 𝑢𝑡sin2α + 𝑤𝑡sinαcosα

𝑅𝑡

] −𝐷12𝑡𝛹𝑥𝑡,𝑥𝜃−𝐷22𝑡

𝛹𝜃𝑡,𝜃𝜃 + 𝛹𝑥𝑡,𝜃sinα

𝑅𝑡

−𝐷26𝑡 [2𝛹𝜃𝑡,𝑥𝜃

+ 𝛹𝑥𝑡,𝑥𝑠𝑖𝑛𝛼 +
𝛹𝑥𝑡,𝜃𝜃 + 𝛹𝑥𝑡sin2α

𝑅𝑡

] −𝐵16𝑡[2𝑢𝑡,𝑥sinα + 𝑅𝑡𝑢𝑡,𝑥𝑥]−𝐵66𝑡 [𝑣𝑡,𝑥sinα + 𝑢𝑡,𝑥𝜃 + 𝑅𝑡𝑣𝑡,𝑥𝑥

+
𝑢𝑡,𝜃sinα − 𝑣𝑡sin2α

𝑅𝑡

] −𝐷16𝑡[2𝛹𝑥𝑡,𝑥sinα + 𝑅𝑡𝛹𝑥𝑡,𝑥𝑥]−𝐷66𝑡 [𝛹𝜃𝑡,𝑥sinα + 𝑅𝑡𝛹𝜃𝑡,𝑥𝑥 + 𝛹𝑥𝑡,𝑥𝜃

+
𝛹𝑥𝑡,𝜃sinα − 𝛹𝜃𝑡sin2α

𝑅𝑡

] + 𝑅𝑡𝑘𝐺𝜃𝑧𝑡𝑑𝑡 (𝛹𝜃𝑡 +
𝑤𝑡,𝜃 − 𝑣𝑡cosα

𝑅𝑡

) −
𝜏𝜃

𝑟𝑡𝑐

𝑑𝑡

2
cosα = 0 

 
(38) 

−𝐵12𝑏𝑢𝑏,𝑥𝜃−𝐵22𝑏
𝑣𝑏,𝜃𝜃:𝑢𝑏,𝜃sinα:𝑤𝑏,𝜃𝑐𝑜𝑠𝛼

𝑅𝑏
−𝐵26𝑏 *2𝑣𝑏,𝑥𝜃 + 𝑢𝑏,𝑥sinα + 𝑤𝑏,𝑥cosα +

𝑢𝑏,𝜃𝜃:𝑢𝑏sin2α:𝑤𝑏sinαcosα

𝑅𝑏
+ −𝐷12𝑏𝛹𝑥𝑏,𝑥𝜃−𝐷22𝑏

𝛹𝜃𝑏,𝜃𝜃:𝛹𝑥𝑏,𝜃sinα

𝑅𝑏
−𝐷26𝑏 *2𝛹𝜃𝑏,𝑥𝜃 + 𝛹𝑥𝑏,𝑥sinα +

𝛹𝑥𝑏,𝜃𝜃:𝛹𝑥𝑏sin2α

𝑅𝑏
+ −𝐵16𝑏[2𝑢𝑏,𝑥sinα + 𝑅𝑏𝑢𝑏,𝑥𝑥]−𝐵66𝑏 *𝑣𝑏,𝑥sinα + 𝑢𝑏,𝑥𝜃 + 𝑅𝑏𝑣𝑏,𝑥𝑥 +

𝑢𝑏,𝜃sinα;𝑣𝑏sin2α

𝑅𝑏
+ −𝐷16𝑏[2𝛹𝑥𝑏,𝑥sinα+𝑅𝑏𝛹𝑥𝑏,𝑥𝑥]−𝐷66𝑏 *𝛹𝜃𝑏,𝑥sinα + 𝑅𝑏𝛹𝜃𝑏,𝑥𝑥 + 𝛹𝑥𝑏,𝑥𝜃 +

𝛹𝑥𝑏,𝜃sinα;𝛹𝜃𝑏sin2α

𝑅𝑏
+ +

𝑅𝑏𝑘𝐺𝜃𝑧𝑏𝑑𝑏 (𝛹𝜃𝑏 +
𝑤𝑏,𝜃;𝑣𝑏cosα

𝑅𝑏
) −

𝜏𝜃

𝑟𝑏𝑐

𝑑𝑏

2
cosα = 0                                                                                                                              (39) 

 
Following the solution procedure outlined in [8], let us 

assume the solutions of Eqs. (30)-(39) as the following: 

 

𝑢𝑖(𝑥, 𝜃) = ∑ 𝑎𝑚𝑖𝑥𝑚cosnθ

∞

𝑚<0

 

𝑣𝑖(𝑥, 𝜃) = ∑ 𝑏𝑚𝑖𝑥𝑚sinnθ

∞

𝑚<0

 

𝑤𝑖(𝑥, 𝜃) = ∑ 𝑐𝑚𝑖𝑥𝑚cosnθ

∞

𝑚<0

 

𝜓𝑥𝑖(𝑥, 𝜃) = ∑ 𝑑𝑚𝑖𝑥𝑚cosnθ∞
𝑚<0                    (40) 

𝜓𝜃𝑖(𝑥, 𝜃) = ∑ 𝑓𝑚𝑖𝑥𝑚sinnθ

∞

𝑚<0

 

𝜏𝑥(𝑥, 𝜃) = ∑ 𝑔𝑚𝑥𝑚cosnθ

∞

𝑚<0
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𝜏𝜃(𝑥, 𝜃) = ∑ 𝑚𝑥𝑚sinnθ

∞

𝑚<0

 

 

Where n is an integer representing the circumferential 

wave number of the buckled shell, ami, bmi, cmi, dmi, fmi, 

gm and hm (i=t,b) are constants to be determined by 

means of recursive expressions. 

Substituting Eqs. (40) into Eqs. (30)-(39) for a finite 

number of terms in the series, using Eqs. (1), and 

matching the terms of the same order in x, we develop 

twelve linear algebraic equations and obtain the 

recursive relations. As a consequence of the complexity 

of the equations, it is not possible to obtain a closed 

form recursive expression. Fortunately, since the 

governing equations are linear, the superposition 

principle can be utilized to simplify the solution. A total 

number of 22 base functions (fundamental solutions) 

are needed. The final solution is in fact the summation 

of the fundamental solutions.  

Recurrence relations allow that unknown 

constants ami, bmi, cmi, dmi, fmi,  gm and hm (i=t,b) 

and (m ≥ 2) are expressed in terms of a0i, a1i, b0i, b1i,
c0i, c1i, d0i, d1i, f0i, f1i, g0 and g1 . Therefore, the 

solutions to Eqs. (13)-(25) are: 

𝑢i(x, θ) = [u1(x)a0t + u2(x)a1t + u3(x)a0b + u4(x)a1b + u5(x)b0t + u6(x)b1t + u7(x)b0b + u8(x)b1b + u9(x)c0t

+ u10(x)c1t + u11(x)c0b + u12(x)c1b + u13(x)d0t + u14(x)d1t + u15(x)d0b + u16(x)d1b

+ u17(x)f0t + u18(x)f1t + u19(x)f0b + u20(x)f1b + u21(x)g0 + u22(x)g1]cosnθ      (i = t, b) 

(41) 

 

𝑣i(x, θ) = [v1(x)a0t + v2(x)a1t + v3(x)a0b + v4(x)a1b + v5(x)b0t + v6(x)b1t + v7(x)b0b + v8(x)b1b + v9(x)c0t

+ v10(x)c1t + v11(x)c0b + v12(x)c1b + v13(x)d0t + v14(x)d1t + v15(x)d0b + v16(x)d1b

+ v17(x)f0t + v18(x)f1t + v19(x)f0b + v20(x)f1b + v21(x)g0 + v22(x)g1]cosnθ      (i = t, b) 

(42) 

 

𝑤i(x, θ) = [w1(x)a0t + w2(x)a1t + w3(x)a0b + w4(x)a1b + w5(x)b0t + w6(x)b1t + w7(x)b0b + w8(x)b1b

+ w9(x)c0t + w10(x)c1t + w11(x)c0b + w12(x)c1b + w13(x)d0t + w14(x)d1t + w15(x)d0b

+ w16(x)d1b + w17(x)f0t + w18(x)f1t + w19(x)f0b + w20(x)f1b + w21(x)g0

+ w22(x)g1]cosnθ      (i = t, b) 

(43) 

 

𝛹i(x, θ) = [𝛹x1(x)a0t + 𝛹x2(x)a1t + 𝛹x3(x)a0b + 𝛹x4(x)a1b + 𝛹x5(x)b0t + 𝛹x6(x)b1t + 𝛹x7(x)b0b + 𝛹x8(x)b1b

+ 𝛹x9(x)c0t + 𝛹x10(x)c1t + 𝛹x11(x)c0b + 𝛹12(x)c1b + 𝛹13(x)d0t + 𝛹14(x)d1t + 𝛹15(x)d0b

+ 𝛹x16(x)d1b + 𝛹x17(x)f0t + 𝛹x18(x)f1t + 𝛹x19(x)f0b + 𝛹x20(x)f1b + 𝛹x21(x)g0

+ 𝛹x22(x)g1]cosnθ      (i = t, b) 

(44) 

 

𝛹i(x, θ) = [𝛹θ1(x)a0t + 𝛹θ2(x)a1t + 𝛹θ3(x)a0b + 𝛹θ4(x)a1b + 𝛹θ5(x)b0t + 𝛹θ6(x)b1t + 𝛹θ7(x)b0b + 𝛹θ8(x)b1b

+ 𝛹θ9(x)c0t + 𝛹θ10(x)c1t + 𝛹θ11(x)c0b + 𝛹θ12(x)c1b + 𝛹θ13(x)d0t + 𝛹θ14(x)d1t + 𝛹θ15(x)d0b

+ 𝛹θ16(x)d1b + 𝛹θ17(x)f0t + 𝛹θ18(x)f1t + 𝛹θ19(x)f0b + 𝛹θ20(x)f1b + 𝛹θ21(x)g0

+ 𝛹θ22(x)g1]𝑠𝑖𝑛nθ   (i = t, b) 

(45) 

 

𝜏i(x, θ) = [𝑇x1(x)a0t + 𝑇x2(x)a1t + 𝑇x3(x)a0b + 𝑇x4(x)a1b + 𝑇x5(x)b0t + 𝑇x6(x)b1t + 𝑇x7(x)b0b + 𝑇x8(x)b1b

+ 𝑇x9(x)c0t + 𝑇x10(x)c1t + 𝑇x11(x)c0b + 𝑇12(x)c1b + 𝑇13(x)d0t + 𝑇14(x)d1t + 𝑇15(x)d0b

+ 𝑇x16(x)d1b + 𝑇x17(x)f0t + 𝑇x18(x)f1t + 𝑇x19(x)f0b + 𝑇x20(x)f1b + 𝑇x21(x)g0

+ 𝑇x22(x)g1]cosnθ      (i = t, b) 

(46) 

 

𝜏i(x, θ) = [𝑇θ1(x)a0t + 𝑇θ2(x)a1t + 𝑇θ3(x)a0b + 𝑇θ4(x)a1b + 𝑇θ5(x)b0t + 𝑇θ6(x)b1t + 𝑇θ7(x)b0b + 𝑇θ8(x)b1b

+ 𝑇θ9(x)c0t + 𝑇θ10(x)c1t + 𝑇θ11(x)c0b + 𝑇θ12(x)c1b + 𝑇θ13(x)d0t + 𝛹θ14(x)d1t + 𝑇θ15(x)d0b

+ 𝑇θ16(x)d1b + 𝑇θ17(x)f0t + 𝑇θ18(x)f1t + 𝑇θ19(x)f0b + 𝑇θ20(x)f1b + 𝑇θ21(x)g0

+ 𝑇θ22(x)g1]cosnθ              (i = t, b) 

(47) 

 

Where ui, vi, wi, Ψxi, Ψθi, τx, τθ (i = t, b) are the 

fundamental solutions of the equations of motion.  

As an example, the first base functions 

u1(x), v1(x), w1(x), Ψx1(x), Ψθ1, Tx1  and  Tθ1 are 

obtained in terms of the natural frequency by assuming 

that 
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a0t = 1                        

a1t = a0b = a1b = b0t = b1t = b0b = b1b = c0t = c1t

= c0b = c1b = d0t = d1t = d0b

= d1b = f0t = f1t = f0b = f1b = g0

= g1 = 0 

(48) 

 

Now, to determine the unknown coefficients, the 

boundary conditions are applied to the Eqs. (41)-(47). 

To have a nontrivial solution for the unknown 

coefficients, the determinant of the coefficient matrix 

obtained from applying the boundary conditions at both 

ends of the cone must vanish which gives the critical 

buckling loads of the conical composite sandwich shell. 

4 VALIDATION AND NUMERICAL RESULTS 

As the first case study, the convergence of the solution 

procedure is studied. To this aim, the two boundary 

conditions of clamped-clamped (C-C) and 

simply-simply (S-S) edges are considered and the 

convergence of the critical buckling load is studied. 

Table1 shows that the number of expansion terms for 

the C-C boundary conditions is less than those of S-S 

boundary conditions.  

Table 1 Effect of expansion terms on the convergence of the 

critical buckling load (α = 30, h = 0.02) 

          n=0              n=1             n=2 

m C-C 
S-
S 

C-C 
S-

S 
C-C 

S-

S 

10 0.25e6 0.35e6 0.05e6 0.25e6 0.15e6 0.15e6 

20 0.05e6 0.15e6 0.15e6 0.25e6 0.15e6 0.05e6 

30 0.05e6 0.25e6 0.05e6 0.05e6 0.35e6 0.05e6 

40 0.15e6 0.05e6 0.15e6 0.15e6 0.05e6 0.05e6 

50 0.05e6 0.15e6 0.15e6 0.25e6 0.05e6 0.05e6 

60 0.05e6 0.25e6 0.15e6 0.25e6 0.15e6 0.35e6 

70 0.05e6 0.15e6 0.15e6 0.25e6 0.15e6 0.05e6 

80 

 
0.05e6 0.05e6 0.15e6 0.25e6 0.15e6 0.05e6 

90 

 
0.05e6 0.05e6 0.15e6 0.25e6 0.15e6 0.05e6 

100 0.05e6 0.05e6 0.15e6 0.25e6 0.15e6 0.05e6 

 

  

Material properties of conical sandwich shell applied 

for buckling analysis in this research are listed in Table 

2. 

 
Table 2 Material properties of conical sandwich shell for 

buckling analysis [22] 

Face sheets Core 

E1=131Gpa,     

E2=E3=10.34Gpa 

G12=G23=6.895Gpa   

G13=6.205Gpa 

ʋ 12=ʋ 13=0.22 

ʋ 23=0.49 

ρ=1627kg/m3 

E1=E2=E3=0.00689Gpa 

G12=G23=G13=0.00345Gpa 

ʋ =0 

ρ=97kg/m3 

 

 

In order to show the validity and feasibility of the 

buckling analysis of composite sandwich conical shells 

using improved higher-order sandwich shell theory, 

some comparisons are made with the results of a finite 

element software. After buckling analysis on each 

boundary condition, the frequency parameters are 

obtained by using solid elements (6 degrees of 

freedom). The obtained results from the FEM software 

and exact solution are tabulated in Table 3. 

Therefore, anti-symmetric cross-ply laminated 

composite sandwich conical shells (L/R1 = 8) having 

lamination schemes as (0/90/core/0/90) and 

(0/90/0/90/core/0/90/0/90) with simply supported and 

clamped boundary conditions are considered. Some 

geometric parameters such as thickness have significant 

effects on the dynamic behavior of the shell. The effect 

of thickness on the buckling loads is considered in 

Table4. To this aim conical shell with the semi-vertex 

angle of α = 30◦ is considered which have h/R1 = 0.1 to 

h/R1 = 0.4. Assuming R1 and face thickness to core 

thickness ratio are constant, It is shown that any 

increase in the thickness ratio results in an increase in 

the buckling load. Results also show that for any of the 

C-C and S-S boundary conditions and at any thickness 

ratio, increasing the thickness to radius ratio increases 

the corresponding frequency parameter. 

 

 

 

 

 

 

 

 

Table 3 Comparisons of buckling loads obtained via analytical and FEM methods 

 S-S C-C 

 Analytical FEM Analytical FEM 

Lamination/ critical loads pcr(N) qcr (pa) pcr(N) qcr (pa) pcr(N) qcr (pa) pcr(N) qcr (pa) 

(0°/90°/0°/90°/core/0°/90°/0°/90°) 2.9e5 1.2e5 2.98e5 1.21e5 2.85e5 1.2e5 2.97e5 1.21e5 
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(0°/90°/core/0°/90°) 1.3e5 0.9e5 1.31e5 0.9471e5 1.3e5 0.9e5 1.31e5 0.9477e5 

 

 

Table 4 Effect of thickness on frequency parameter for the 

conical composite sandwich shell 

 S-S C-C 

h/R1 Analytical FEM Analytical FEM 

0.1 0.77 0.77978 0.78 0.78009 

0.2 1.5 1.5062 1.501 1.5064 

0.4 3 3.013 3.01 3.0131 

5 CONCLUSION 

Buckling analysis of conical composite sandwich shells 

has been performed through an Improved Higher-order 

Sandwich Shell theory. The buckling analysis of 

composite truncated sandwich conical shells with 

higher- order theory are presented for the first time. 

The principle of minimum potential energy has been 

used to obtain the governing equation and to find the 

solution for buckling problem. Results show that the 

implemented method gives the exact results with a 

finite number of expansion terms. As the thickness ratio 

increases, the number of terms needed for a reasonable 

convergence decreases, and the buckling load increases. 

The results obtained by the analytical method have 

been compared with the numerical results from FEM 

analysis and good agreements have been reached. 
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