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Abstract: Numerical solutions obtained by the Meshless local Petrov–Galerkin 
(MLPG) method are presented for two-dimensional steady-state heat conduction 
problems. The MLPG method is a truly meshless approach, and neither the nodal 
connectivity nor the background mesh is required for solving the initial-boundary-
value problem. The penalty method is adopted to efficiently enforce the essential 
boundary conditions, the moving least squares approximation is used for 
interpolation schemes and the Heaviside step function is chosen for test function. 
The results show that the present method is very promising in solving engineering 
two-dimensional steady-state heat conduction problems.  
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1 INTRODUCTION 

In recent years, the meshless method has emerged as an 
effective numerical approach to find solutions of 
initial-boundary-value problems. The Meshless Local 
Petrov–Galerkin (MLPG) method is one of the 
meshless schemes. The main advantage of this method 
compared with other meshless methods is that no 
background mesh is used to evaluate various integrals 
appearing in the local weak formulation of problem. 
Therefore, this method is a "truly meshless" approach 
in terms of both interpolation of variables and 
integration of energy. The MLPG method has been 
demonstrated to be quite successful in solving different 
branches of initial-boundary-value problems. Atluri 
and Zhu [1] solved elastostatic problems, Lin and 
Atluri [2] introduced the up winding scheme to analyze 
steady state convection–diffusion problems, and Liu 
and Gu [3] coupled the MLPG method with either the 
finite element or the boundary element method to 
enhance the efficiency of the MLPG method. Ching 
and Batra [4] augmented the polynomial basis 
functions with singular fields to determine 
deformations and stress fields near the crack tip for 
generally 2-D mixed-mode problems. Liu and Gu [3] 
and Ching and Batra [4] used the Newmark family of 
methods to analyze 2-D transient elastodynamic 
problems. The bending of a thin plate has been studied 
by Liu and Gu [3] and Long and Atluri [5], and Cleary 
et al. [6] scrutinized deformations of a material 
compressed in a rough rectangular cavity. Qian et al. 
[7] combined the MLPG method with a higher-order 
shear and normal deformable plate theory to analyze 
static deformations, free and forced vibrations of 
rectangular homogeneous and Functionally Graded 
(FG) plates. The objective of this work is to present the 
MLPG analysis for two-dimensional steady-state heat 
conduction problems. First, we list governing equations 
next, the weak formulations of MLPG method and the 
moving least squares (MLS) approximation is briefly 
introduced. 

2 MLPG FORMULATION 

We consider a 2D Heat Conduction problem, as shown 
in Fig. 1, for illustrating the procedure for formulating 
the MLPG method. The problem domain is denoted by 
Ω, which is bounded by boundaries including essential 
boundary 

1Γ , natural boundary 
2Γ and Robin boundary 

3Γ In the MLPG method, the problem domain is 
represented by a set of arbitrarily distributed nodes, as 
shown in same. The weighted  

residual method is used to create the discrete system 
equation. 
The major idea in MLPG is that the implementation of 
the integral form of the weighted residual method is 
confined to a very small local sub-domain of a node. 
This means that the weak form is satisfied at each node 
in the problem domain in a local integral sense. 
Therefore, the weak form is integrated over a "local 
quadrature domain" that is independent of other 
domains of other nodes. This is made possible by use 
of the Petrov-Galerkin formulation, in which one has 
the freedom to choose the test and trial functions 
independently. 
 

 
Fig. 1  Domains and their boundaries 

 

The heat conduction Poisson equation and boundary 
conditions can be written as 
 

2 2 .

2 2 (1)in
x y
θ θλ λ ψ∂ ∂
+ = Ω

∂ ∂
 
The Dirichlet boundary condition: 

 
1 1 (2)onθ θ= Γ

 
The Neumann boundary condition: 

 

2( ) (3)x yn n q on
x y
θ θλ ∂ ∂

− + = Γ
∂ ∂

 
The Robin boundary condition: 

 

3( ) ( ) (4 )x y fn n h on
x y
θ θλ θ θ∂ ∂

− + = − Γ
∂ ∂

 

where θ  represents temperature, λ   the thermal 
conductivity, xn  and yn  are the component the 
outward unit vector to Γ , q  the given heat flux, h  the 
convection heat transfer coefficient fθ  is the 
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environmental temperature, ψ&  the heat source per unit 
mass, and 1Γ , 2Γ  and 3Γ  the boundaries at which the 
Dirichlet, Neumann and Robin conditions apply, 
respectively. 
In the Ωs, the weighted integral form of Eq. (1) is given 
as 

2 2 .

2 2[( ) ] 0 (5)
s

sd
x y
θ θλ ψ ν

Ω

∂ ∂
+ − Ω =

∂ ∂∫
 

Where ν  is test function. To reduce this high-order 
differentiability requirement on θ , we can integrate 
Eq. (5) by parts. By using Gauss’s theorem, we can 
obtain the following local weak formulation equation: 
 

1

.

1

( )

( )

( ) 0 (6)

s

s

s

x y

x y s

d
x x y y

n n d
x y

n n d
x y

θ ν θ νλ λ ψ ν

θ θλ ν

θ θλ ν

Ω

Γ

Γ

∂ ∂ ∂ ∂
+ + Ω

∂ ∂ ∂ ∂
∂ ∂

− + Γ
∂ ∂

∂ ∂
− + Γ =

∂ ∂

∫

∫

∫
 

 

Substituting Eqs. (3) and (4) into Eq. (6), we can obtain 
Eq. (7). 
 

2

3
1

.

2

3 1

( )

( ) ( )

( ) 0 (7)

s

s

s

f x y

x y s

d q d
x x y y

h d n n d
x y

n n d
x y

θ ν θ νλ λ ψ ν ν

θ θθ θ ν λ ν

θ θλ ν

Ω
Γ

Γ
Γ

Γ

∂ ∂ ∂ ∂
+ + Ω + Γ

∂ ∂ ∂ ∂

∂ ∂
− − Γ − + Γ

∂ ∂

∂ ∂
− + Γ =

∂ ∂

∫ ∫

∫ ∫

∫
 

 

The MLS approximation function is given by 

1

ˆ. (8)
N

I I
I

θ φ θ
=

=∑
 

Substitution of Eq. (7) into Eq. (8) for all the nodes, we 
can obtain the following linear equations: 

3
1

1

3 1
1 1

ˆ ˆ
( )

ˆ ˆˆ ( )

x

J J J JM
I I

x
J

J J J JM M
J J

I x y I
J J

d
x x y y

h d n n d
x y

ν νφ θ φ θλ λ

φ θ φ θφ θ ν λ ν

Ω
=

Γ
= = Γ

∂ ∂∂ ∂
+ Ω

∂ ∂ ∂ ∂

∂ ∂
+ Γ − + Γ

∂ ∂

∑∫

∑ ∑∫ ∫

 

1

2 3 1

1
1 1

.

2 3 1 1

ˆ ˆ ˆ( )

(9)

s

x

J J J JM M
J J

x y I s I
J J

I x I f I I

n n d d
x y

d q d h d d

φ θ φ θλ ν α φ θ ν

ψν ν θ ν α θν

= =Γ Γ

Ω Γ Γ Γ

∂ ∂
− + Γ + Γ

∂ ∂

= Ω − Γ + Γ + Γ

∑ ∑∫ ∫

∫ ∫ ∫ ∫

Or 

^
. (10)K Fθ =

 

Where M is the total number of nodes in the entire 
domain Ω, θ̂  the vector for the unknown fictitious 
nodal values, α  the penalty parameter, which is used 
to impose the essential boundary conditions. K and F 
are the global stiffness matrix and the global vector, 
respectively, which are defined as 

3 1

1

3 1

1

( )

ˆ ˆ
( )

ˆ ˆ
( )

ˆ (11)

x

s

J J
I I

IJ x

J J J J
J

I x y I

J J J J

x y I s

J J
I

K d
x x y y

h d n n d
x y

n n d
x y

d

ν νφ φλ λ

φ θ φ θφ ν λ ν

φ θ φ θλ ν

α φ θ ν

Ω

Γ Γ

Γ

Γ

∂ ∂∂ ∂
= + Ω

∂ ∂ ∂ ∂

∂ ∂
+ Γ − + Γ

∂ ∂

∂ ∂
− + Γ

∂ ∂

+ Γ

∫

∫ ∫

∫

∫

 

2 3

1

.

2 3

1 1 (12)
x

I I x I f I

I

F d q d h d

d

ψν ν θ ν

α θ ν

Ω Γ Γ

Γ

= − Ω − Γ + Γ

+ Γ

∫ ∫ ∫

∫
 

3 THE MOVING LEAST-SQUARE 
APPROXIMATION SCHEME 

Moving Least Squares (MLS), originated by 
mathematicians for data fitting and surface 
construction, can be categorized as a method of finite 
series representation of functions. The MLS method is 
now a widely used alternative for constructing 
meshless shape functions for approximation.  
The MLS approximation has two major features that 
make it popular: (1) the approximated field function is 
continuous and smooth in the entire problem domain 
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and (2) it is capable of producing an approximation 
with the desired order of consistency. The MLS 
approximation is detailed in this part. 
Consider a sub-domain Ωx, which is located within the 
problem domain Ω (see Fig.2) and has a number of 
randomly located nodes xI (I = 1,. . . ,N). The moving 
least squares approximate θ h(x) of θ (x) by following 
definition: 
 

1

( ) ( ) ( ) ( ) ( ) (13)
m

h T

i

x p x a x p x a xθ
=

= =∑
 

 
Where pT(x)=[p1(x),p2(x), . . . ,pm(x)] is a complete 
monomial basis, m is the number of terms in the basis, 
and a(x)=[a1(x),a2(x), . . . ,am(x)] is the corresponding 
coefficient. For example, for a 2D problem, the basis 
can be chosen as 

 
T

T 2 2

Lineae Basis : p (x) [1,x, y] , m 3
Quadratic Basis : p (x) [1,x, y,x ,xy, y ] , m 6 (14)

= =

= =
 

 
 

 
 

Fig. 2 Schematics of the MLS approximation 
 
The coefficient vector a(x) is determined by 
minimizing the difference between the local 
approximation and the function, and is defined as 
 

2

1

ˆ( ( )) ( )[ ( ) ( ) ]

ˆ ˆ[ . ( ) ] . . [ . ( ) ] (15)

N
T I

I I
I

T

J a x w x p x a x

p a x W p a x

θ

θ θ
=

= −

= − −

∑

 
Where xI denotes the position vector of node I; wI(x) is 
the weight function associated with the node I; N is the 
number of node in Ωx for which the weight functions 
wI(x) > 0 are searched; the matrices P and W are 
defined as 

1

2

( )
( )
.

( ) (16)
.
.
( )

T

T

T
N

p x
p x

p N m Matrix

p x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ×⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1( ) . . . 0
. . .
. . . ( ) (17)
. . .
0 . . . ( )N

w x

W N N Matrix

w x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = ×
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
And 
 

1 2ˆ ˆ ˆ ˆ[ , , ..., ] (1 ) (18)T N N Vectorθ θ θ θ= = ×
 
In Eq. (18) ˆIθ  is the fictitious nodal value. It is not the 
nodal value of trial functions denoted by θ h(x).  
To find the coefficient a(x), we obtain the extremum by 
 

1 1

( ( )) ˆ2 ( )[ ( ) ( ) ] ( ) 0 (19)
( ( ))

N m
I

I i I i I
I I

J a x w x p x a x p x
a x

θ
= =

∂
= − =

∂ ∑ ∑
 
This leads to the following set of linear relations: 
 

ˆ( ) ( ) ( )
( )( 1) ( )( 1) (20)
A x a x B x
m m m m N N

θ=
× × = × ×

 
Where the matrices A(x) and B(x) are defined by 
 

1

1 1 2 2

( ) ( ) ( ) ( ) ( ) (21)

( ) [ ( ) ( ), ( ) ( ),..., ( ) ( )] (22)

N
T T

I I I I
I

T
N N

A x P WP B x P w x p x P x

B x P W w x p x w x p x w x p x
=

= = =

= =

∑

 
Solving a(x) from Eq. (20), and substituting it into Eq. 
(23), we can obtain the final form of the MLS 
approximation as 
 

1

ˆ ˆ( ) ( ) ( )

ˆ( ) , (23)

N
h T I I

I

h I I
I x

x x x

x x

θ θ φ θ

θ θ θ
=

= Φ =

= ≠ ∈ Ω

∑

 
Where ФT(x) = pT(x)A-1(x)B(x) is the shape function, 
and its partial derivative is : 
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1 1 1
, , , ,

1
[ ( ) ( ) ] (24)

m
I
K j k jI j K K jI

j
P A B P A B A Bφ − − −

=

= + +∑
 
In practical applications, the weight function wI(x) is 
generally nonzero over the small neighborhood of point 
xI, and this neighborhood is called the domain of 
influence of node I (see Fig. 2). Typically, the shape of 
the domain in the two-dimensional space can be 
circular, ellipse, rectangular or any other convenient 
regular closed lines and in the three-dimensional space 
can be sphere, ellipsoid, cube or any other simple cubic 
volume. In the present analysis a circular domain has 
been selected. The choice of weight function wI (x) 
affects the resulting approximation θ h(x), therefore, its 
selection is of essential importance. Numerical 
practices of [1, 2] have shown that a quadratic spline 
weight function works well. Hence in this article, the 
quadratic spline weight function is used. Thus we have  
 

3 4

1 6 8 3 0
( ) (25)

0

I I I
I I

I I I I

I I

d d d d r
W x r r r

d r

⎧ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ − + − ≤ ≤⎜ ⎟ ⎜ ⎟ ⎜ ⎟=⎨ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎪ ≥⎩

     

 
Where 

Id is the distance between points x and nod Ix  
and rI is the size of support (see Fig.2) for the weight 
functions. It can be seen that the quadratic spline 
weight function is C1 continuous over the entire 
domain.     

4 ENFORCEMENT OF ESSENTIAL (DIRICHLET) 
BOUNDARY CONDITIONS 

In MLPG shape functions do not satisfy the Kronecker 
delta property, and hence when such trial functions are 
used, it is not easy to implement the essential boundary. 
Various numerical techniques have been proposed to 
enforce the essential boundary conditions, such as the 
Lagrange multiplier method, the penalty approach, the 
transformation method, the direct interpolation method, 
etc. In the present work, the penalty approach has been 
used to enforce essential boundary condition. 
Furthermore size of the penalty factor affects on 
accuracy of solutions. In the following determination of 
penalty factor are discussed.  
Because discretization errors can be comparable in 
magnitude to the errors due to the poor satisfaction of 
the constraint, Zienkiewicz (1989) has suggested using 
the following formula for FEM analysis: 
 

1 (26)
n

const
h

α ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
Where h is the characteristic length, which can be the 
ratio of the element size to the dimension of the 
problem domain, and n is the order of the elements.  
In extending this formula to meshless methods, we 
suggest that h be the ratio of the nodal spacing to the 
dimension of the problem domain, and n=1. The 
constant in Eq. (26) should relate to the material 
property of the solid or structure. It can be 1010 times 
Young's modulus.  
This paper prefers the following simple method for 
determining the penalty factor: 
 

4 131.0 10α −= × ×max.(diagonal elements in the stiffness matrix) 
               (27) 
 
In most of the examples reported using penalty 
methods, the foregoing equation is adopted.  
It has also been suggested to use  
 

5 81.0 10α −= × ×Young Modulus                                                 (28) 
 
For some examples which work well.  
Note that trials may be needed to choose a proper 
penalty factor. 

5 RESULTS OF NUMERICAL EXAMPLES 

In this section the meshless local Petrov–Galerkin 
method is applied to compute two-dimensional steady-
state heat conduction problems. Results of three 
examples are compared with analytical solution. 
We used 6 Gauss points for numerical evaluation of 
line integrals and a 4 * 4 quadrature scheme (i.e., 16 
Gauss points) to evaluate domain integrals. 

A. Example 1 
We use these boundary conditions for Poisson’ 
equation as (see Fig.3) 
 

0 0
0

a t x
a t x a

θ
θ

= =
= =

 

sin( ) 0
0 (29)

x at y
at y b

θ
θ
= =
= =

 
The analytical solutions for this problem are 
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sinh( ) sin( )( , ) (30)
sinh( )

sinh( ) cos( )( , ) (31)
sinh( )

cosh( ) sin( )( , ) (32)
sinh( )

x

y

y xx y

y xq x y

y xq x y

πθ
π

πλ
π

πλ
π

−
=

−
=

−
= −

 
The node distribution with 49 nodes are presented in 
Fig. 4 for the case of a=b=π . 
The temperature distributions are presented in Fig. 5 
and Fig. 6. The heat flux distributions are presented in 
Fig. 7 and Fig. 8. 
As shown in these figures, the MLPG results agree 
with the values obtained by analytical solution. The 
convergence of the MLPG approach is demonstrated in 
these figures. 
 

 
 

Fig. 3 Geometry and boundary conditions  
used for example 1 

 

 
Fig. 4 Regular node distribution for example 1 

 
Fig. 5 Comparison of temperature  

distribution along y=
2
π  

 

 
Fig. 6 Comparison of temperature  

distribution along x=
2
π  

 

 

Fig. 7 Comparison of heat flux distribution along y=
2
π  
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Fig. 8 Comparison of heat flux distribution along y=
2
π  

 
B. Example 2 

In this case boundary conditions imposed are presented 
in Fig. 9 as 
 

0 0
sin( )

0 0
0 (33)

x

x

q at x
q y at x

at y
at y

λ π
θ
θ π

= =

= − =

= =
= =

 
The exact solutions for this problem are 
 
 

cosh( )sin( )( , ) (34)
sinh( )

x yx yθ
π

=

 
 

sinh( ) sin( )( , ) (35)
sinh( )x

x yq x y λ
π

=

 
 

cosh( )cos( )( , ) (36)
sinh( )y

x yq x y λ
π

=

 
 
The node distribution with 100 nodes are presented in 
Fig. 10 for the case of a=b=π . 
The temperature distribution is presented in Fig. 11 and 
the heat flux distributions are presented in     Fig. 12. 
As shown in these figures, the MLPG results agree 
with the values obtained by analytical solution.  
 

 
Fig. 9 Geometry and boundary conditions  

used for example 2 
 

      
Fig. 10 Regular node distribution for example 2  

 

 
Fig. 11 Comparison of temperature  

distribution along y=
2
π  
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Fig. 12 Comparison of heat flux distribution along y=
2
π  

 

C. Example 3  
In this example the MLPG approach is applied for heat 
conduction problem with boundary conditions imposed 
as (see Fig. 13) 
 

2

2

0 0

0 0

(37)

x

y

q at x

x at x a
q at y

y at y b

θ

θ

= =

= =
= =

= =
 
The analytical solutions for this problem are 

2 2( , ) 1 (38)x y x yθ = + −
( , ) 2 (39)xq x y xλ=
( , ) 2 (40)yq x y yλ=

 

 
Fig. 13 Geometry and boundary conditions  

used for example 3 

 
The node distribution with 25 nodes are presented in 
Fig. 14 for the case of a=b=1. 
The temperature distribution is presented in Fig. 15 and 
the heat flux distribution is presented in Fig. 16. 
As shown in this figure, the convergence of the MLPG 
approach is demonstrated. 
 

 
 

Fig. 14 Regular node distribution for example 3 
 

 
Fig. 15 Comparison of temperature  

distribution along y=1/2 
 

 
Fig. 16 Comparison of heat flux distribution along y=1/2 
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D. Example 4 
In this example the MLPG approach is applied for heat 
conduction problem with boundary conditions imposed 
as (see Fig. 17) 
 

0 0
0

0 0
21& 8 (41)

x

x

f

q at x
q at x a

at y
h at y b

θ
θ

= =
= =

= =
= = =

 

The exact solutions for this problem are 
 

2( , ) (42)
( , ) 0 (43)
( , ) 2 (44)

x

y

x y y
q x y
q x y y

θ

λ

=
=
=

 

The node distribution with 25 nodes are presented in 
Fig. 18 for the case of a=b=1. 

 
 

 
Fig. 17    Geometry and boundary conditions  

used for example 4 
 

 
Fig. 18 Regular node distribution for example 4 

The temperature distribution is presented in Fig. 19.  
The heat flux distribution is presented in Fig. 20. 
As shown in these figures, the results agree with the 
exact solution. The convergence of this approach is 
demonstrated in these figures. 
 

 
Fig. 19    Comparison of temperature distribution along x=1/2 

 

 
Fig. 20    Comparison of heat flux distribution along x=1/2 

6 CONCLUSION 

The meshless local Petrov–Galerkin (MLPG) method 
that uses a Heaviside test function is presented and 
used to analyze heat conduction problems. By using a 
Heaviside test function, the domain integral in the weak 
form is simplified. This substantially reduces the 
computation effort to construct the stiffness matrix and 
hence is computationally efficient compared to the 
conventional MLPG method. The penalty approach is 
used to impose the essential boundary conditions and 
the moving least squares approximation is used for 
interpolation schemes. The present results show that 
the MLPG algorithm with a Heaviside test function is a 
high convergence, good accurate and efficient method. 
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