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Abstract: This work presents an experimental investigation on the influence of six 
important machining parameters (tool nose radius, tool rake angle, feed rate, 
cutting speed, cutting environment (dry, wet and cooled) and depth of cut) on 
surface roughness & material removal rate in the machining unidirectional glass 
fiber reinforced plastics (UD-GFRP) composite using carbide (K10) cutting tool 
during turning operation. Orthogonal L18 array in Taguchi method was employed 
to carry out the experimental work. ANOVA is performed for significant 
parameter and later Regression model is developed for the significant parameters. 
Validation (confirmatory) results indicate that the model is suitable for surface 
roughness & material removal rate during the study. 
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1 INTRODUCTION 

Currently, the use of composite materials has increased 
in various areas of science and technology due to their 
special physical and mechanical properties. Aerospace, 
Automotive, sport, construction, and military (Navy 
ship structures, military armored vehicles) companies 
need to replace steel and cast iron in mechanical 
components with lighter high strength alloys like Al 
and Metal Matrix Composites (MMC), Polymer Matrix 
Composites and CMC. Composite materials can be 
broken down into several different categories, which 
include ceramic, metal and polymer matrices with 
reinforcing fibers of the same or different materials, 
each having advantages and limitations, as material 
performance is dictated by application environment as 
well as material-specific properties. 
Glass fiber reinforced plastics (GFRP) is the most 
commonly used composite materials, where GFRP 
consists of two distinct materials, a polymer resin as 
matrix, and reinforced with ceramic (glass) fibers. This 
material is light, tough, resilient and flexible and has a 
very good strength to weight ratio. High abrasiveness 
of glass fiber and non-homogeneous structure of this 
composite makes it very difficult to be machined [1]. 
Machining glass fiber composites is a complex and 
challenging task, where major difficulties encountered 
are reported as surface damage by delamination, 
burning or cracks, rapid tool wear, accuracy affected by 
debonding, subsurface damage and bouncing back 
phenomenon of work piece material [2]. 
Machining of fiber-reinforced materials requires 
special considerations with regard to the wear 
resistance of the tool. High speed steel (HSS) is not 
suitable for cutting purpose due to its high rate of tool 
wear and poor surface finish, hence carbide and 
diamond tools are used as suitable cutting tool 
materials [3]. Investigation by Palanikumar et al. 
focused on the multiple performance machining 
characteristics of GFRP composites using carbide 
(K10) tool [4]. Five parameters such as work piece 
(fiber orientation), cutting speed, feed rate, depth of cut 
and machining time were selected to minimize the 
surface roughness. It was found that, the machining 
performance in the composite machining process may 
be improved by including more number of parameters 
and levels.  
Davim et al. investigated the machinability in turning 
process of glass fibers reinforced plastics (GFRP) using 
polycrystalline diamond and cemented carbide tool [5]. 
While, two parameters such as cutting speed and feed 
rate were selected, it was observed that, the 
polycrystalline diamond provide a better machinability 
index in comparison to cemented carbide tool (K15). 
Arul et al. worked on the optimization of GFRP 
material machining, where they analyzed data of thrust 

force, torque and tool life by using a group method data 
handling algorithm [6].  
Hussain et al. developed a surface roughness prediction 
model for the machining of GFRP pipes using 
Response Surface Methodology and carbide tool (K20), 
where four parameters such as cutting speed, feed rate, 
depth of cut and work piece (fiber orientation) were 
selected [7]. It was found that, the depth of cut shows a 
minimum effect on surface roughness as compared to 
other parameters. Further, Hussain et al. developed a 
surface roughness and cutting force prediction model 
for the machining of GFRP tubes by using carbide tool 
(K20), cubic boron nitride (CBN) and polycrystalline 
diamond (PCD) using Response Surface Methodology 
[8]. Four parameters such as cutting speed, feed rate, 
depth of cut and work piece (fiber orientation) were 
selected, where it was found that, the polycrystalline 
diamond (PCD) cutting tool is better than other two 
tools used.  
Rajasekaran et al. used fuzzy logic for modeling and 
prediction of CFRP work piece [9]. Three parameters 
such as depth of cut, feed rate and cutting speed were 
selected to minimize surface roughness. Cubic boron 
nitride tool was used for turning process, where it was 
observed that, the fuzzy logic modeling technique may 
be effectively used for prediction of surface roughness 
in machining of CFRP composites. 
Isik et al. proposed an approach for turning of a glass 
fiber reinforced plastic composites using cemented 
carbide tool [10]. Three parameters such as depth of 
cut, cutting speed and feed rate were selected to 
minimize tangential and feed force. Weighting 
techniques was used for optimization of objective 
function. The idea of this technique is adding all the 
objective functions together using different coefficients 
for each. It means that the multi-criteria optimization 
problem is changed to a scalar optimization problem by 
creating one function. It was found that, technique will 
be more economical to predict the effect of different 
influential combination of parameters.  
Khan et al. proposed an approach for turning of a glass 
fiber reinforced plastic composite using two different 
alumina cutting tools, namely, a Ti[C, N] mixed 
alumina cutting tool (CC650) and a SiC whisker 
reinforced alumina cutting tool (CC670) [11]. Three 
parameters such as cutting speed, depth of cut and feed 
rate were selected to minimize surface roughness. It 
was found that the performance of the SiC whisker 
reinforced alumina cutting tool is better than that of the 
Ti[C, N] mixed alumina cutting tool for machining the 
GFRP composite. Recent studies on unidirectional 
glass fiber composites revealed the formation of chip in 
orthogonal cutting. In case of long oriented glass fiber, 
degradation of the matrix adjacent to the fiber occurs 
first, followed by failure of the fiber at its rear side 
[12]. In orthogonal turning process, influence of fiber 
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orientation, cutting parameters, and tool geometry in 
GFRP has been studied [13, 14]. 
In order to develop the mathematical models based on 
experimental data, careful planning of the 
experimentation is essential. In the present study, six 
parameters, namely, tool nose radius, tool rake angle, 
feed rate, cutting speed, cutting environment (dry, wet 
and cooled) and depth of cut are considered. The ranges 
of these parameters are selected based on preliminary 
investigations. In the present investigation, the 
machinability aspects have been evaluated in terms of 
surface roughness (Ra) and material removal rate 
(MRR) during the turning of UD-GFRP composite 
using carbide (K10) tools. The regression model based 
on second order model is used, where the regression 

analyses is applied in order to identify the best levels of 
cutting parameters and their significance. As a matter 
of fact insignificant parameters are not taken into 
consideration in this Regression modeling. 

2 MATERIAL AND EXPERIMENTAL TECHNIQUE 

In this investigation, pultrusion processed 
unidirectional glass fiber reinforced composite rods 
are used. The fiber used in this rod is E-glass and the 
applied resin is epoxy while the material properties are 
shown in Table 1. The rod specimen’s size is 840 mm 
in length and 42 mm in diameter. 

 
Table 1 Properties of UD-GFRP 

Sr. No. Particular Value Unit 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Glass Content (by weight) 
Epoxy Resin content (by weight) 
Reinforcement, unidirectional 
Water absorption 
Density 
Tensile Strength 
Compression Strength 
Shear Strength 
Modulus of elasticity 
Thermal Conductivity 
Weight of 840 mm in length Rod  
Electrical strength (Radial): 
Working Temperature Class: 
Martens Heat Distortion Temperature 
Test in oil : (1) At 20° C: 
(2) At 100° C: 

75±5 
25±5 

‘E’ Glass Roving 
0.07 

1.95-2.1 
6500 or (650) 
6000 or (600) 

255  
3200 or (320) 

0.30 
2.300 
3.5 

Class ‘F’ (155 ) 
210 

20 KV/cm 
20 KV/cm (50 KV / 25 mm) 

% 
% 
--- 
% 

gm/cc 
Kg / cm2 or (N/mm2) 
Kg / cm2 or (N/mm2) 
Kg / cm2 or (N/mm2) 
Kg / cm2 or (N/mm2) 

Kcal /Mhc° 
Kgs 

KV / mm 
Centigrade 
Centigrade 

 
KV/cm 

 

 
Fig. 1 a) Carbide (K10) cutting tool inserts used in the 

experiment 
 
The experiments are carried out on a NH22 lathe 
machine of 11 kW spindle power and maximum speed 
of 3000 rpm using carbide (K10) tools. The cutting tool 
insert with various rake angle (-6°, 0°, +6°) and tool 
nose radius (0.4 mm & 0.8 mm) are used as shown in 
Figures 1(a) & 1(b).  

 
Fig. 1 b) Carbide (K10) cutting tool inserts used in the 

experiment 
 
A tool holder SVJCR steel EN47 was used during the 
turning operation. The experimental results of turning 
of unidirectional glass fiber reinforced plastic 
composite is evaluated to ascertain the machining 
performance, such as (1) surface roughness (Ra) and 
(2) material removal rate (MRR).  
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The surface roughness of the turned surface was 
measured using a Tokyo Seimitsu Surfcom 130A type 
instrument as shown in Figure 2. The instrument was 
set to a cutoff length of 0.8 mm with a transverse length 
of 4 mm. 
 

 
Fig. 2   Surface Roughness Tester:  Tokyo Seimitsu Surfcom 

130A 
 
The experimental design (DOE) was set according to 
an L18 orthogonal array based on Taguchi method. The 
Taguchi method use the S/N ratio to analyze the 
average value of the test run data to derive values for 
evaluating the characteristics of cutting parameters. 
This is because the S/N ratio represents both the 
average and the variation in quality characteristics, 
where the units of the S/N ratio are decimals. The 
Taguchi parameter design is used to determine the 
optimum conditions of the engineering parameters (the 
controllable parameters) and also to minimize any 
variation in the noise (the uncontrollable parameters). 
In meantime, the S/N ratio provides a measure of the 
robustness. In this study, the smaller the better principle 
is considered to minimize the surface roughness and the 
higher the better is considered for MRR. The response 
for S/N ratio may be computed [15, 16] as follows. 
 
Smaller the best characteristics : 
 
S/N = 10 Log                                              (1)  

 
Larger the best characteristics : 

 
S/N = 10 Log ∑                                                 (2) 

 
where  n is the number of observations, and y is the 
observed data.  
The material removal rate in mm3/sec, has been 
calculated from the following relation: 
Material Removal Rate (MRR) = It is the volume of 
material being removed per unit time,  
  

                                              (3) 

 
Where N = spindle speed in rpm, D = initial Dia in 
mm, d = final dia in mm, L = length in mm, f = feed 
rate in mm/rev. However regarding Tc (machining 
time), if L is the length of the workpiece to be turned, 
then the time of cutting Tc per pass is given by, Tc = L 
/f N. 
The Taguchi’s mixed level design was selected as it 
was decided to keep two levels of tool nose radius. The 
rest five parameters were studied at three levels. Two 
level parameter has 1 DOF, and the remaining five 
three level parameters have 10 DOF, i.e., the total DOF 
required will be 11 [= (1*1+ (5*2)].  
The most appropriate orthogonal array in this case is 
L18 (21 * 37) OA with 17 [= 18-1] DOF. Standard L18 
OA with the parameters assigned by using linear graphs 
is used. The unassigned columns will be treated as 
error. The process parameters, their designated symbol 
and ranges are also given in Table 2. The plan is made 
of 18 tests (array rows) in which the tool nose radius, 
tool rake angle, feed rate, cutting speed, cutting 
environment (dry, wet and cooled) and depth of cut are 
assigned to columns 1 to 6 respectively as shown in 
Table 3. The cutting environment (dry, wet and cooled) 
was set during the machining of the rod, so as to get a 
comparative assessment of the performance of cutting 
environment which has not been studied earlier. 
 

 
Table 2 Control parameters and their level   

Process 
Parameters 

Design 

Process Parameters Levels 
 Level (1) Level  (2) Level  (3) 

A 
B 
C 
D 
E 
F 

Tool nose Radius / mm 
Tool  Rake angle / Degree 
Feed rate / (mm/rev.) 
Cutting speed / (m/min.) & rpm 
Cutting environment 
Depth of cut / mm 

0.4 
-6 

0.05 
(55.42) 420 

Dry (1) 
0.2 

0.8 
0 

0.1 
(110.84) 840 

Wet (2) 
0.8 

NIL 
+6 
0.2 

(159.66) 1210 
Cooled (3) 

1.4 
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Table 3 Experimental layout using L18 orthogonal array 

Expt. 
No. 

1 
A 

2 
B 

3 
C 

4 
D 

5 
E 

6 
F 

7 
--- 

8 
--- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
2 
3 
1 
2 
3 
2 
3 
1 
3 
1 
2 
2 
3 
1 
3 
1 
2 

1 
2 
3 
2 
3 
1 
1 
2 
3 
3 
1 
2 
3 
1 
2 
2 
3 
1 

1 
2 
3 
2 
3 
1 
3 
1 
2 
2 
3 
1 
1 
2 
3 
3 
1 
2 

1 
2 
3 
3 
1 
2 
2 
3 
1 
2 
3 
1 
3 
1 
2 
1 
2 
3 

1 
2 
3 
3 
1 
2 
3 
1 
2 
1 
2 
3 
2 
3 
1 
2 
3 
1 

 
 

Table 4 Test data summary for surface roughness and Material Removal Rate 
 

Expt.  
No. 

Ra Average  Ra   
(µm) 

S/N ratio (dB) MRR Average MRR 
(mm3/sec.) 

S/N ratio (dB)

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

1.59/1.65/ 1.49 
1.73/1.77/1.99 
2.77/4.12/5.13 
2.20/2.18/2.04 
1.83/1.83/1.77 
2.69/2.88/2.89 
1.62/1.94/2.12 
1.99/1.79/1.89 
2.58/2.94/2.10 
2.90/2.72/2.35 
2.15/2.20/ 1.95 
2.45/1.56/2.26 
1.77/1.55/1.89 
3.05/2.41/ 2.51 
2.61/1.87/3.38 
2.26/2.69/1.96 
1.65/1.68/1.38 
2.53/2.99/2.50 

1.577 
1.83 
4.00 
2.14 
1.81 
2.82 

1.893 
1.890 
2.54 

2.656 
2.1 

2. 09 
1.736 
2.656 
2.62 

2.303 
1.57 

2.673 

-3.9624 
-5.2659 

-12.3014 
-6.6131 
-5.1546 
-9.0096 
-5.5960 
-5.5373 
-8.1757 
-8.5189 
-6.4559 
-6.5462 
-4.8228 
-8.5351 
-8.6001 
-7.3200 
-3.9499 
-8.5715 

8.5/8.6/8.7 
144.96/145.02/145.02 
329.98/330.23/330.23 
36.24/36.24/36.24 
237.96/237.9/238.04 
99.0/98.9/98.93 
125.03/125.02/125.02 
52.98/52.95/52.99 
144.92/145.02/144.90 
104.39/104.41/104.39 
124.96/124.96/124.96 
73.54/73.53/73.51 
18.39/18.39/18.38 
197.7/197.06/197.92 
240.94/241.06/240.92 
170.00/170.09/170.00 
18.38/18.38/18.39 
261.00/260.93/260.8 

8.6 
145 

330.15 
36.24 

237.97 
98.93 

125.02 
52.97 

144.95 
104.40 
124.96 
73.53 
18.39 

197.56 
240.97 
170.03 
18.38 

260.91 

18.6888 
43.2274 
50.3741 
31.1838 
47.5303 
39.9077 
41.9398 
34.4811 
43.2242 
40.3737 
41.9354 
37.3289 
25.2901 
45.9139 
47.6394 
44.6105 
25.2885 
48.3298 

 
 

3 RESULTS AND DISCUSSION 

Table 4 shows the experimental results of surface 
roughness (Ra) for the carbide (K10) tool insert and 
corresponding S/N ratio. The analysis of experimental 
results for surface roughness in the turning test is 
summarized below. Table 4 shows the experimental 
conditions using Taguchi L18 orthogonal array and 
measured values of surface roughness for three 
different trial runs. 

The pooled versions of ANOVA of the raw data for 
surface roughness are also shown in Table 5. The 
percent contributions of feed rate (29.110 %), cutting 
speed (21.595%) and depth of cut (10.584 %) in 
affecting the variation of surface roughness are 
significantly larger (95 % confidence level) as 
compared to the contribution of the cutting speed as 
shown by Table 5. This analysis was carried out for a 
level of significance of 5%, i.e. for a level of 
confidence of 95%.  
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Table 5 ANOVA results for Surface roughness (raw data) 
Source SS DOF V F ratio Prob. SS/ P (%) 

Tool nose radius (A) 
Tool rake angle (B) 
Feed rate (C) 
Cutting speed (D) 
Cutting  Environment (E) 
Depth of cut (F) 
 
 
T 
e (pooled) 

    0.0017 
    0.4989 
    7.3151 
    5.5154 
    0.5283 
    2.8789 
 

       1 
       2 
       2 
       2 
       2 
       2 
 
 

       0.0017 
       0.2495 
       3.6575 
       2.7577 
       0.2641 
       1.4394 

 
 
 

       0.1717 

   Pooled 
   Pooled 
   21.30* 
   16.06* 
   Pooled 
     8.38* 

0.922 
0.245 

     0.000 
     0.000 
     0.227 

0.001 

       --- 
       --- 
    6.972 
    5.172 
         --- 
     2.535 

     --- 
     --- 
  29.110 
  21.595 
      --- 
   10.584 

 23.9501 
   7.2119 

     53 
     42  

23.9501 
   9.101 

100.00 
  37.99 

 
 

SS = sum of squares, DOF = degrees of freedom, variance (V) = (SS/DOF), T = total, SS/ = pure sum of squares, P = percent contribution, e = error, 
Fratio = (V/error), Tabulated F-ratio at 95% confidence level, * Significant at 95% confidence level 
 
From the ANOVA result, it is concluded that C – feed 
rate, D - Cutting speed, F - depth of cut have significant 
effect on surface roughness A, B and E has no effect at 
95% confidence level. It is found that feed rate is more 
significant factor than other parameters, whilst depth of 
cut is the least significant parameter. The surface 
roughness produced on the UD-GFRP workpiece is 
mainly due to the feed rate. The graph for surface 
roughness raw data & S/N ratios is presented in Figure 
3a–f.  
 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 

 
(e) 
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(f) 
 

Fig. 3   Response and S/N ratio surface roughness                
(a) effect of tool nose radius, (b) effect of tool rake angle,    

(c) effect of feed rate, (d) effect of cutting speed, (e) effect of 
cutting environment, (f) effect of depth of cut 

 
Figure 3 (a-f) shows the effect of tool nose radius, tool 
rake angle, feed rate, cutting speed, cutting 
environment (dry, wet and cooled) and depth of cut on 
surface roughness in turning of UD-GFRP composite. 
The results indicated that the increase of tool nose 
radius reduces the surface roughness up to 0.8 mm. The 
surface roughness decreases with increase in tool rake 
angle as shown in Figure 3b. The figure indicates that 
the surface roughness increased at higher feed rates as 
shown in Figure 3c. The reason is the fact that with 
increase in feed rate the surface roughness and fracture 
of the composite material increases.  
Figure 3d shows that the surface roughness increases 
with increase in cutting speed. The roughness observed 
at 55.42 m/min is more than the surface roughness 
observed at 159.66 m/min. The results indicated that 
the surface roughness increases with increase in cutting 

environment and depth of cut and is presented in Figure 
3 (e & f). The optimum combination levels of process 
parameters are determined from the raw data response 
graphs plotted in Figure 3 (a-f). As seen from Figure 
3(a-f), the selected tool nose radius at level 2 (0.8 mm), 
tool rake angle at level 3 (+6 degree), feed rate at level 
2 (0.1 mm/rev), cutting speed at level 2 (110.84 
m/min), cutting environment at level 2 (wet) and the 
optimal depth of cut at level 1 (0.2 mm). Therefore, the 
optimized combination of levels for the six control 
factors from the analysis so far was A2-B3-C2-D2-E2-
F1.  
Table 4 also shows the experimental results of material 
removal rate (MRR) for the carbide (K10) tool insert 
and corresponding S/N ratio using Taguchi L18 
orthogonal array and measured values of material 
removal rate for three different trial runs. The pooled 
versions of ANOVA of the raw data for material 
removal rate are shown in Table 6. It is clear that the 
parameters C, D and F significantly affect the MRR 
values. The percentage contribution of depth of cut is 
high (53.116%), feed rate (26.377%) and cutting speed 
(8.452%). This analysis was carried out for a level of 
significance of 5%, i.e. for a level of confidence of 
95%. From the ANOVA result, it is concluded that C–
feed rate, D-Cutting speed, F-depth of cut have 
significant effect on MRR, where A, B and E have no 
effect at 95% confidence level. It is found that depth of 
cut is more significant factor than other parameters, 
whilst cutting speed is the least significant parameter. 
The MRR produced on the UD-GFRP workpiece is 
mainly due to the depth of cut. 
 

 
Table 6 ANOVA results for Material removal rate (raw data) 

Source SS DOF V F ratio Prob. SS/ P (%) 
Tool nose radius(A) 
Tool rake angle(B) 
Feed rate(C) 
Cutting speed(D) 
Cutting  Environment(E) 
Depth of cut(F) 
 
T 
e (pooled) 

         143 
         906 
   118198 
     39209 
       4879 
   236028 
 

       1 
       2 
       2 
       2 
       2 
       2 

        143 
        453 
    59099 
    19605 
      2440 
  118014 
 
 
        983 

   Pooled 
   Pooled 
   60.10*    
   19.94*    
   Pooled 
  120.02*   

   0.705 
   0.634 
   0.000 
   0.000 
   0.096 
   0.000 

      --- 
      --- 
  116232 
    37243 
       --- 
  234062 

     --- 
     --- 
  26.377 
    8.452 
      --- 
  53.116 

   40662 
     1300 

     53 
     42 

   440662 
    52113 

100.00 
  1.826 

 
SS = sum of squares, DOF = degrees of freedom, variance (V) = (SS/DOF), T = total, SS/ = pure sum of squares, P = percent contribution, e = error, 
Fratio = (V/error), Tabulated F-ratio at 95% confidence level, * Significant at 95% confidence level 
 
The optimum combination levels of process parameters 
are determined from the raw data response graphs 
plotted in Figure 4 (a-f). Figure 4 (a-f) shows the graph 
of Material Removal Rate. The results indicated that 
the material removal rate increases with increase in tool 
nose radius, feed rate, cutting speed, cutting 
environment, depth of cut and decrease with increase in 

tool rake angle. The data plotted in these graphs may be 
used to determine the optimal set of parameters. The 
arrows in the graphs indicate the levels at which the 
MRR and S/N ratio effects are at their optimal 
magnitudes, i.e. the MRR effect at its highest 
magnitude and the S/N ratio effect at its highest 
magnitude. A conflict appears in the graph of tool nose 
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radius effects. The MRR effect is optimized at level 2, 
while the S/N ratio effect is optimized at level 2, tool 
rake angle effects; the MRR effect is optimized at level 
2, while the S/N ratio effect is optimized at level 2. 
Feed rate, cutting speed, cutting environment and depth 
of cut (MRR & S/N ratio) effects are optimized both at 
the same level 3. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4   Response and S/N ratio (a) effect of tool nose radius, 
(b) effect of tool rake angle, (c) effect of feed rate,             

(d) effect of cutting speed, (e) effect of cutting environment, 
(f) effect of depth of cut 

3.1. Regression prediction models 

Formulation: 
Multiple regression equations were modeled for a 
relationship between process parameters in a bid to 
evaluate surface roughness and material removal rate 
for any combinations of factors levels in the specified 
range. The functional relationship between dependent 
output parameters with the independent variables under 
investigation may be postulated by Equation 4. 
 
Y = A (X1) a (X2) b (X3) c       …                                     (4) 
 
Where, Y is dependent output variable such as surface 
roughness and material removal rate. X₁, X₂ and X₃ are 
independent variables such as feed rate, cutting speed 
and depth of cut. The constants a, b and c are the 
exponents of independent variables. To convert the 
above non-linear equation into linear form, a 
logarithmic transformation is applied into the above 
equation and written as Equation 5. 
 
Log y = log A + a. log(X₁) + b. log(X₂) + c.log (X₃)  (5) 
 
This is one of the most commonly used data 
transformation methods for empirical model building. 
Now the above equation is written as Equation 6. 
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η = β₀ + β₁.x₁ + β₂.x₂ + β₃.x₃    …                               (6) 
 
Where, η is the true value of dependent surface 
roughness and material removal rate on a logarithmic 
scale and x₁, x₂ and x₃ are the logarithmic 
transformation of the different parameters respectively, 
while β₀, β₁, β₂ and β₃ are the corresponding parameters 
to be estimated. Due to the experimental error, the true 
response η = y-ε, where y is the logarithmic 
transformation of the measured surface roughness and 
material removal rate parameters and the ε is the 
experimental error. For simplicity the equation is 
rewritten as: 
 
Ŷ = b₀ + b₁x₁ + b₂x₂ + b₃x₃   …                                   (7) 
 
Where Ŷ is the predicted surface roughness and 
material removal rate value after logarithmic 
transformation and b₀, b₁, b₂ and b₃ are the estimates of 
the parameters β₁, β₂ and β₃ respectively. The values of 
b₀, b₁, b₂ and b₃ is found out by linear regression 
analysis, (second order model) which is conducted with 
MINITAB standard version software (MINITAB 15.0 
for windows), using the experimental data. The first 
order model for surface roughness and material 
removal rate reveals lack of fitness due to high 
prediction errors for surface roughness and material 
removal rate. As a result, second order model has been 
developed ignoring the non-significant parameters 
according to Equation 8. 
 
Ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 
+ b11x1

2 + b22x2
2 + b33x3

2   …                                         (8) 
 

The developed empirical model for surface roughness 
(Ra) and material removal rate (MRR) are given in 
Equation 8. 
Ra = 7.35 + 1.41 x1 + (- 6.61) x2 + 0.268 x3 + 0.312 x1 
x2 + 0.133 x1 x3+ (- 0.069) x2 x3 + 0.898 x1

2 + 1.82 x2
2+ 

(- 0.229) x3
2 

MRR= - 0.17 + 1.53 x1+ 2.84 x2 + 1.10 x3 + (- 0.712) 
x1 x2 + (- 0.340) x1 x3 + (- 0.349) x2 x3+ (- 0.340) x1

2 + 
(- 0.715) x2

2+ (- 0.265) x3
2 

Predicted output values for surface roughness and 
material removal rate are calculated with the help of 
above equation and the given coefficients as shown in 
Table 7. The relative error between predicted and 
measured observed values for surface roughness and 
material removal rate is calculated and presented in 
Table 8. It has been found that relative error of surface 
roughness and material removal rate are well within 
limits. Thus, it can be stated that empirical equation 
built by using second-order model may be used. 
 

Table 7 Empirical expressions developed by second order 
model 

Predictor Coefficient of 
surface 

roughness 

Predictor Coefficient of  
material 

removal  rate 
bo 
X1 
X2 
X3 

X1 X2 
X1 X3 
X2 X3 
X1

2 
X2

2 
X3

2 

7.35 
1.41 

- 6.61 
0.268 
0.312 
0.133 

- 0.069 
0.898 
1.82 

-0.229 

bo 
X1 
X2 
X3 

X1 X2 
X1 X3 
X2 X3 
X1

2 
X2

2 
X3

2 

- 0.17 
1.53 
2.84 
1.10 

- 0.712 
- 0.340 
- 0.349 
- 0.340 
-0.715 
-0.265 

 
 

Table 8 Comparison between experimental and predicted values of surface roughness and material removal rate 
 Surface Roughness Material Removal Rate 

Expt. 
No. 

Prediction 
value 

Experimental 
value % Error 

Prediction 
value 

Experimental 
value % Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

1.746 
1.959 
3.908 
2.173 
1.941 
2.924 
1.941 
2.094 
2.656 
2.606 
1.995 
2.070 
1.659 
2.636 
2.723 
2.506 
1.513 
2.792 

1.577 
1.830 
4.000 
2.140 
1.810 
2.820 
1.893 
1.890 
2.540 
2.656 
2.100 
2.090 
1.736 
2.656 
2.620 
2.303 
1.570 
2.673 

9.679 
6.585 
-2.354 
1.519 
6.749 
3.557 
2.473 
9.742 
4.367 
-1.919 
-5.263 
-0.966 
-4.641 
-0.759 
3.783 
8.100 
-3.767 
4.262 

7.499 
144.878 
358.922 
36.644 

215.774 
89.125 

123.310 
51.999 

146.893 
103.276 
124.451 
73.114 
18.493 

177.011 
219.280 
158.125 
18.578 

232.809 

8.60 
145.00 
330.15 
36.24 

237.97 
98.93 

125.02 
52.97 

144.95 
104.40 
124.96 
73.53 
18.39 

197.56 
240.97 
170.03 
18.38 

260.91 

-14.682 
-0.084 
8.016 
1.102 

-10.287 
-11.001 
-1.387 
-1.867 
1.323 
-1.088 
-0.409 
-0.569 
0.557 

-11.609 
-9.937 
-7.529 
1.066 

-12.070 
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Table 9 Parametric setting for surface roughness and material removal rate for validation of regression model 
 Surface Roughness Material Removal Rate 

Expt.
No. 

1 
Nose 

Radius  
/mm 
(A) 

2 
Rake 

Angle / 
Degree 

(B) 

3 
Feed 

Rate/(mm
/rev.) 
(C) 

4 
Cutting Speed / 
(m/min) & rpm 

(D) 

5 
Cutting 

Environment 
(E) 

 

6 
Depth 
of Cut 
/ mm 
(F) 

1 
Nose 

Radius  
/mm 
(A) 

2 
Rake 

Angle / 
Degree 

(B) 

3 
Feed Rate / 
(mm/rev.)      

(C) 

4 
Cutting Speed / 
(m/min) & rpm 

(D) 

5 
Cutting 

Environment 
(E) 

 

6 
Depth 
of Cut 
/ mm 
(F) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

-6° 
-6° 
-6° 
0° 
0° 
0° 

+6° 
+6° 
+6° 
-6° 
-6° 
-6° 
0° 
0° 
0° 

+6° 
+6° 
+6° 

0.05 
0.1 
0.2 
0.05 
0.1 
0.2 
0.05 
0.1 
0.2 
0.05 
0.1 
0.2 
0.05 
0.1 
0.2 
0.05 
0.1 
0.2 

(55.42) 420 
(110.84) 840 
(159.66) 1210 

(55.42) 420 
(110.84) 840 
(159.66) 1210 
(110.84) 840 
(159.66) 1210 

(55.42) 420 
(159.66) 1210 

(55.42) 420 
(110.84) 840 
(110.84) 840 
(159.66) 1210 

(55.42) 420 
(159.66) 1210 

(55.42) 420 
(110.84) 840 

(Dry) 1 
(Wet) 2 

(Cooled) 3 
(Wet) 2 

(Cooled) 3 
(Dry) 1 
(Dry) 1 
(Wet) 2 

(Cooled) 3 
(Cooled) 3 

(Dry) 1 
(Wet) 2 

(Cooled) 3 
(Dry) 1 
(Wet) 2 
(Wet) 2 

(Cooled) 3 
(Dry) 1 

0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

-6° 
-6° 
-6° 
0° 
0° 
0° 

+6° 
+6° 
+6° 
-6° 
-6° 
-6° 
0° 
0° 
0° 

+6° 
+6° 
+6° 

0.05 
0.1 
0.2 
0.05 
0.1 
0.2 
0.05 
0.1 
0.2 
0.05 
0.1 
0.2 
0.05 
0.1 
0.2 
0.05 
0.1 
0.2 

(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 
(110.84) 840 

(Dry) 1 
(Wet) 2 

(Cooled) 3 
(Wet) 2 

(Cooled) 3 
(Dry) 1 
(Dry) 1 
(Wet) 2 

(Cooled) 3 
(Cooled) 3 

(Dry) 1 
(Wet) 2 

(Cooled) 3 
(Dry) 1 
(Wet) 2 
(Wet) 2 

(Cooled) 3 
(Dry) 1 

0.2 
0.8 
1.4 
0.8 
1.4 
0.2 
1.4 
0.2 
0.8 
0.8 
1.4 
0.2 
0.2 
0.8 
1.4 
1.4 
0.2 
0.8 

 

4 CONFIRMATION EXPERIMENTS 

The experimental study is carried out to validate the 
earlier developed empirical expressions for surface 
roughness and material removal rate. Depth of cut is the 
least significant for surface roughness and cutting speed 
is the least significant for material removal rate as 
observed for ANOVA Table 5 and 6. So depth of cut 
and cutting speed remained constant at 0.8 mm and 
110.84 m/min respectively for validation where other 
parameters have the same level are shown in Table 3. 

Surface roughness and material removal rate is shown 
in Table 9. To verify the goodness of the predicted 
model, the observed values and their predictive values 
of the surface roughness and material removal rate are 
given in Table 10. It has been found that the maximum 
and minimum error percentage for surface roughness is 
(8.092% and -5.444%) and material removal rate is 
(7.264% and -10.081%) which is perfectly satisfactory. 
Graphical comparison of actual and predicted values of 
surface roughness and material removal rate is shown in 
Figure 5 and Figure 6. 

 
Table 10 Validation between experimental and predicted results surface roughness and material removal rate 

 Surface Roughness Material Removal Rate 
Expt.  
No. 

Prediction 
value 

Experimental 
value % Error 

Prediction 
value Experimental value % Error 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

1.730 
1.968 
3.915 
2.170 
1.948 
2.940 
1.973 
2.000 
2.618 
2.614 
1.985 
2.120 
1.598 
2.649 
2.757 
2.496 
1.500 
2.728 

1.590 
1.865 
4.050 
2.135 
1.868 
2.805 
1.910 
1.854 
2.500 
2.645 
2.050 
2.100 
1.685 
2.669 
2.630 
2.340 
1.533 
2.627 

8.092 
5.234 
-3.448 
1.613 
4.107 
4.592 
3.193 
7.300 
4.507 
-1.186 
-3.274 
0.943 
-5.444 
-0.755 
4.606 
6.250 
-2.200 
3.702 

8.580 
142.555 
350.620 
37.221 

217.117 
92.125 

124.410 
50.660 

142.693 
101.076 
122.151 
72.000 
19.500 

180.033 
224.340 
160.225 
18.500 

236.800 

9.445 
143.220 
325.150 
36.980 

233.770 
99.940 

127.000 
51.770 

141.220 
103.400 
123.990 
73.000 
19.200 

195.570 
245.970 
170.000 
18.000 

255.890 

-10.081 
-0.466 
7.264 
0.647 
-7.670 
-8.483 
-2.082 
-2.191 
1.032 
-2.299 
-1.505 
-1.389 
1.538 
-8.630 
-9.642 
-6.101 
2.703 
-8.062 
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Fig. 5 Comparison between actual and predicted values of surface roughness 
 
 

 
 

Fig. 6 Comparison between actual and predicted values of Material Removal Rate 
 

5 CONCLUSION 

Experiments are conducted on a lathe machine for 
machining unidirectional glass fiber reinforced plastic 
(UD-GFRP). The tool used for the machining operation 
is a Carbide (K10) tool. The response surface roughness 
and material removal rate was studied.  

• From the ANOVA result, it is concluded that 
C–feed rate, D–cutting speed, F–Depth of cut, 
have significant effect on surface roughness. 

[A], [B], [E] have no effect at 95% confidence 
level.  

• Based on the Taguchi method and ANOVA, 
feed rate has a dominant effect of almost 
29.110% in contribution ratio, while cutting 
speed has 21.595% and depth of cut has 
10.589% influence on the surface roughness in 
turning of unidirectional glass fiber reinforced 
plastic (UD-GFRP). 
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• Feed rate is the factor which has great 
influence on surface roughness, followed by 
cutting speed. Depth of cut has less influence 
on surface roughness. 

• Material removal rate have been calculated. Its 
analysis based on ANOVA depicts that 
increase of any machining parameters, 
increases the material removal rate. For 
material removal rate, feed as well as depth of 
cut takes key role followed by cutting speed. 
The percent contributions of depth of cut 
(53.116%), feed rate (26.377%) and cutting 
speed (8.452%) on material removal rate are 
significantly larger (95 % confidence level) as 
compared to the contribution of the tool nose 
radius. The wet cutting environment reduced 
the surface roughness and material removal 
rate. 

• The second-order models were developed to 
predict the surface roughness and material 
removal rate using regression modeling. 

• The developed models for surface roughness 
and material removal rate using regression 
modeling are highly adequate as their R2 
values are very close to 1 and hence all the 
models may be used for reliable prediction [ R2 
value for surface roughness is 95.8% and MRR 
value is 99.7%]. 

• The second-order model for surface roughness 
and material removal rate has been developed 
from the observed data. It was found that the 
maximum and minimum error percentage for 
surface roughness is 8.092% and -5.444% and 
material removal rate is 7.264% and -10.081% 
which is thoroughly satisfactory. 

6 NOMENCLATURE 

b0, b1, b2, b3, b4         Estimates of parameters 
a, b, c, d                    Exponentially determined constant 
x0, x1, x2, x3   logarithmic transformations of machining 
parameters 
A                                                 Tool nose Radius / mm 
B                                             Tool Rake angle / Degree 
C                                                     Feed rate / (mm/rev) 
D                                   Cutting speed / (m/min.) & rpm 
E                                                     Cutting environment 
F                                                         Depth of cut / mm 
η                          Surface roughness and MRR response 
y                        Measured Surface roughness and MRR 
ε                                                         Experimental error 
L                           Length of the workpiece to be turned 
Tc                                                            Time of cutting 
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