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1 INTRODUCTION 

Vehicle vibration and dynamics analysis has been a hot 
research topic due to its important role in ride comfort, 
road holding and overall vehicle performance. Ride 
comfort and road holding are two conflicting goals. 
Many researches showed that trade-off between these 
two objectives is hard to achieve [1]. In recent years 
genetic algorithm application is being more common in 
optimization problems due to its capabilities, flexibility 
and processing speed. Generally, there are three types 
of suspension system, namely, passive suspension, 
active suspension and semi-active suspension. These 
three types of suspension systems were studied by 
Bouazara in his PhD thesis for 5 and 8-DOF vehicle 
models [2].  
In this paper, all vehicle performance parameters were 
taken under consideration to achieve a certain objecting 
function using weighting coefficients. Then vertical 
acceleration of seat and relative displacement between 
sprung mass and tires were used as a comfort and road 
holding criteria respectively. Due to result extreme 
dependence on weighing coefficients, this method is 
not a suitable way to solve the multi-optimization 
problems. In further research, self-tuning PID and 
fuzzy controller were used to optimize the vertical 
motion of vehicle based on genetic algorithm [3]. 
Alkhatib et al. used genetic algorithm to optimize a 
linear 1-DOF vibration isolator mount [4]. In further 
research, this method used to optimize the linear 
vibration of a quarter car model. Nariman-zadeh et al. 
used multi-objective optimization on 5-DOF active 
suspension system with sinusoidal double bump 
excitation [5].  
The road profile has a significant effect on the vehicle’s 
vibration. Non-stationary random vibration analysis of 
a quarter-car model was studiedin [6]. Li-Xin Guo and 
Li-Ping Zhang worked on half-car model random 
vibration analysis in changeable speed [7]. In this 
paper, modified non-dominated sorting genetic 
algorithm (modified NSGA-II) is used for multi-
objective optimization of a 5-DOF vehicle model 
which excited with random road profile. The 
conflicting objective functions which have been 
considered are vertical acceleration of seat relative 
displacement between sprung mass and forward tire fd  
and relative displacement between sprung mass and 
rear tire rd . The design variables used in this 
optimization are seat damping coefficient sc , seat 
stiffness coefficient sk , forward vehicle damping 
coefficient fc , rear vehicle damping coefficient rc , 
forward vehicle stiffness coefficient fk and rear vehicle 
stiffness coefficient rk . As a result, 5-objective 
optimization is used to select the optimal parameters. 

Finally, selected points are compared with those which 
have been chosen by [5]. 

2 SIMULATION OF ROAD ROUGHNESS 

The road profile is the only input of the passive 
suspension system which has a significant effect on the 
vehicle’s vibration. Hence in order to generate a 
suitable road profile, it was investigated very carefully 
 [8]. The road profile can be represented by a PSD 
function. The power spectral densities of roads show a 
characteristic drop in magnitude with the wave number 
 [9]. Random road profiles can be approximated by a 
PSD in the form of 
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Where 2σ  denotes the road roughness variance and V
the vehicle speed, whereas α  depends on the type of 
the road surface. Since the spectral density of the road 
profile can be factored as: 
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α ω+
 is the frequency response 

function of the shaping filter,Ψω=2αVσ2is the spectral 
density of a white noise process. Hence, if the vehicle 

runs with constant velocity ds V
dt

= , then the road 

profile signal, ( )Rz t , would be obtained from the 
differential equation below: 
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density, ωψ . It can be shown that: 
 

( ) ( ) ( ) ( )
0

0
t

V tV t
R Rz t e z e dα τα ω τ τ− −−= + ∫  (5) 

 
Table 1 shows the road roughness standard deviation 
for A to E road classes. 
 

 
Table 1   Road roughness standard deviation 

Road class ( )310 mσ −

 
( ) ( )6 3

0

0
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mφ −Ω

Ω =

 ( )/rad mα
 

A (very good) 2 1 0.127 
B (good) 4 4 0.127 

C (average) 8 16 0.127 
D (bad) 16 64 0.127 

E (very bad) 32 256 0.127 
 

 
The equation above can be solved by MATLAB 
SIMULINK shown as Fig. 1. 
 

 
Fig. 1 Simulation of road roughness by Matlab Simulink 

 
 

Figure 2 shows the sample Rz  for Grade C road. 
 

 
Fig. 2 Sample Rz  for Grade C road 

3 MULTI OBJECTIVE OPTIMIZATION 

Multi-objective optimization (or multi-objective 
programming or "Pareto optimization"),  [12] and  [13] 
also known as multi-criteria or multi-attribute 
optimization, is the process of simultaneously 
optimizing two or more conflicting objectives subject 

to certain constraints. In mathematical terms, the multi-
objective problem can be written as: 
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Where iμ is the i -th objective function, g  and h are 
the inequality and equality constraints, respectively, 
and x is the vector of optimization or decision 
variables. The solution to the above problem is a set of 
Pareto points. Thus, instead of being a unique solution 
to the problem, the solution to a multi-objective 
problem is a possibly infinite set of Pareto points. A 
design point in objective space μ  is termed Pareto 
optimal if there does not exist another feasible design 
objective vector *μ  such that *

iμ μ≤  for all 

{ }1,2,...,i n∈ , and *
iμ μ〈  for at least one index of j , 

{ }1,2,...,j n∈ . 
There are many ways and methods for finding a 
solution to a multi-objective optimization problem. The 
objective way of characterizing multi-objective 
problems, by identifying multiple Pareto optimal 
candidate solutions, requires a Pareto-compliant 
ranking method, favoring non-dominated solutions, as 
seen in current multi-objective evolutionary approaches 
such as NSGA-II and SPEA2. In recent years, the 
Pareto-based approach of NSGA-II has been used in a 
wide range of problems due to its simplicity and fast 
process. 
NSGA-II proposed by Dep  [14], has some drawback in 
its main program and crowding factor subprogram 
which are completely discussed by  [15]. In this work, 
modified NSGA-II, proposed by  [16] and  [17] is used 
to find optimal characteristics of a 5-DOF vehicle 
model. 

4 VEHICLE HALF MODEL 

A 5-DOF linear mechanical model of a vehicle is 
shown in Fig. 3. In this figure, cm is the mass of driver 
and chair and sm is the mass of vehicle structure. fm
and rm are the unsprung mass of front and rear 
suspensions, respectively.  sk  and sc  are rigidity 
coefficient and damping coefficient of front and rear 
suspensions, respectively. Rfz  and Rrz  are the road 
excitation displacements at front and rear wheels, 
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respectively. r  is the distance between chair and 
vehicle mass center. a  and b  are the distances from 
the vehicle mass center to front and rear wheel axles, 
respectively. 
 
 

 
 

Fig. 3 Half vehicle model with five DOF 

 
 

Table 2 Constant parameter of the model 
Parameter Value

 

a 1.011 m 
b 1.803 m 
r 0.279 m 

tfm
 

40 kg  

trm
 

35.5 kg 

 
75 kg 

 
730 kg 

 
1230 kg.m2 

tfk
 

175500 N /m 

trk
 

175500 N /m 

 
By using Newton’s law, the mathematical model of the 
Figure 3 can be written as below: 
 
[ ]{ } [ ]{ } [ ]{ } [ ]M Z C Z K Z F+ + =  (7) 

 
Where M⎡ ⎤⎣ ⎦ , C⎡ ⎤⎣ ⎦ , K⎡ ⎤⎣ ⎦  and F⎡ ⎤⎣ ⎦  are mass, damping 
coefficient, spring stiffness and force matrixes 
respectively. These matrixes are represented in the 
Appendix. 

5 MULTI-OBJECTIVE OPTIMIZATION OF 5-DOF 
VEHICLE MODEL WITH RANDOM ROAD PROFLE 

It is well-known that the results of multi-objective 
optimization would be a set of non-dominated 
optimized points, called Pareto set. These points offer 
the wide range of parameters to the designer to choose 
the optimum point depending on his designing 
conditions. There are always conflicting objective 
functions in vehicle designing which improvement in 
one function may have unfavorable influence on other 
functions. 
In this chapter, multi-objective optimization for all 3-
objective functions is done simultaneously. It is 
supposed that the vehicle moves at constant velocity 

20mv s= over a Grade C road. It is assumed that the 
rear tire moves at the same road profile as forward tire 

with a time delay of a bt
v
+

Δ = . Table 2 shows the 

constant parameters of the model presented in  [2]. In 
this work, sk , sC , fk , fC , rk , and rC  are considered 
to be design variables with the following relations: 
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These variables should be optimally selected by multi-
objective optimization of three conflicting objective 
functions namely, vertical acceleration of seat cz , 
relative displacement between sprung mass and 
forward tire fd  and relative displacement between 
sprung mass and rear tire rd in which all of them 
should be minimized. To achieve this purpose RMS 
method is used to assign a certain value for every 
objective function against every set of design variables. 
Finally, optimum point can be easily achieved by 
mapping of the values of objective functions of all non-
dominated points into interval 0 and 1. Using the sum 
of these values for each non-dominated points, the 
design point, represented by this work, would be the 
minimum of those values.  
To solve the multi-objective optimization using genetic 
algorithm, a population of 80 individuals with a 
crossover probability of 0.9, mutation probability of 
0.1, elimination criteria of 10-6 in ε-elimination 
algorithm and a chromosomes length of 56 has been 
used in 240 generations. Table 3 shows the optimum 
points represented in  [2],  [5], and this paper.
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