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Abstract: Channels have various types of cross-sectional shapes, including trapezoidal, 
rectangular, semi-circular, parabolic, chain-curved, semi-cubic parabolic, egg-shaped, and 
circular as the most common shapes. A channel designer has many design options in different 
conditions, including hydraulic, economic, and hydrological conditions, leakage, etc. Among 
the above-mentioned sections, the first two have a horizontal bottom while the other sections 
are curve-shaped with bottom curvature. The primary goal in the design of hydraulic channels 
is to achieve the maximum flow capacity considering the minimum channel construction 
cost. A variety of studies has been conducted on the different types of hydraulic channels so 
far, each dealing with the subject from a certain perspective. However, most of the studies 
have focused on circular, rectangular and trapezoidal channels. This study has focused on the 
parabolic channel. Genetic algorithm (GA) and particle swarm optimization (PSO) or GRG 
algorithms and their combination are usually used for optimization. However, this research 
adopts a novel and updated meta-heuristic algorithm, namely the Harris Hawks Optimization 
(HHO) algorithm, to optimize the parabolic channel with a fixed roughness coefficient and 
determine the optimal dimensions of the channel with different flow rates. This channel uses 
different flow rates, namely 50, 100, 150, 200, 250, and 300 m3/s to solve the optimization 
problem. Finally, it was found that the lowest construction cost and the highest efficiency for 
water supply is achieved with a roughness coefficient of 0.015 and a flow rate of 100 m3/s. 
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1 INTRODUCTION 

The flow of water in an open channel is a familiar sight, 

whether it is a natural channel like that of a river, or an 

artificial channel like that of an irrigation ditch. Its 

movement poses a difficult problem when everything is 

considered especially with the variability of natural 

channels, but in many cases the major features can be 

expressed in terms of only a few variables, whose 

behavior can be described by a simple theory. The 

principal forces at work are those of inertia, gravity and 

viscosity, each playing an important role [1]. 

Open-channel flow occurs when a liquid flowing due to 

gravity is only partially enclosed by its solid boundary. 

The flowing liquid has a free surface that meets the 

atmosphere and is not subjected to any pressure other 

than that caused by its own weight and atmospheric 

pressure. The force affecting the open-channel flow is 

gravity. This type of flow can be seen in rivers, gravity 

sewer systems, drains, irrigation canals and many other 

examples in nature. Flow in open channels, or conduits 

where water has a free surface, differs from that in pipes 

because the pressure at the free surface is constant 

(usually atmospheric) and does not vary from point to 

point in the direction of flow as does pressure in a 

pipeline. Another difference is that the cross-section is 

not controlled by fixed boundaries, because the depth 

can change from one section to another without 

restrictions [2]. 

Investigations into open-channel flow types have many 

functions in civil engineering and some other branches 

of engineering, e.g. chemical and mechanical. Open-

channel flow can be described and classified in various 

ways according to the change in flow depth with respect 

to time and space. They also have various types of cross-

sectional shapes, including trapezoidal, rectangular, 

semi-circular, parabolic, chain-curved, semi-cubic 

parabolic, egg-shaped, and circular as the most common 

shapes. A channel designer has many design options in 

different conditions including hydraulic, economic, and 

hydrological conditions, leakage, etc. Researchers have 

considered the advantages of curved sections as follows: 

1). Sharp angles that cause stress concentration are 

hardly found in them. 2). Since the amount of lateral 

slope in the channel surface is always lower than that in 

the water level in these channels, the curved channels are 

physically more stable. 3). Non-lined channels and 

irrigation grooves tend to approximate their cross-

sectional shape as curves, which makes them 

hydraulically stable. 4). Normally, channels with curved 

sections have a higher water flow capacity than those 

with trapezoidal and rectangular sections [3]. 

A quadratic parabolic channel was analyzed by [4], and 

the hydraulic optimal section was specified as a section 

with 0.514 as the slope coefficient. Reference [5] 

presented an approach for calculating slope coefficient 

and parabolic exponent was considered as a variable for 

designing a power-law exponential parabolic channel 

section with an acceptable hydraulic efficiency. In [6], 

the relation between the specific energy of a parabolic 

channel section and the depth of the channel section was 

considered and the supercritical and subcritical depths 

were obtained in an analytic manner through finding a 

solution for a quartic Equation. Using the undetermined 

Lagrange multiplier optimization algorithm and a 

complex function technique, the hydraulic optimal 

section of a cubic parabola was theoretically solved and 

the superior hydraulic performance of the cubic 

parabolic section was indicated [3], [7]. Accordingly, 

Gaussian hypergeometric functions were used for 

determining the section parameters of the power-law 

exponential parabolic channel and finding the hydraulic 

optimal section. Reference [8] determined the hydraulic 

optimal section of a power-law exponential parabolic 

channel. For this purpose, the practical economic section 

was calculated. Reference [9] considered the lining 

thickness, and for an arch foot trapezoidal channel, 

developed a mechanical model. Reference [10] used the 

other channels’ mechanical models in order to develop a 

mechanical model for quadratic parabolic channels. 

Reference [11] discussed the optimal design of circular 

channels with fixed and variable roughness scenarios 

using machine learning models. They used two machine 

learning (ML) models named artificial neural networks 

(ANN) and genetic programming (GP) to determine 

optimum channel geometries for trapezoidal-family 

cross sections. Reference [12] investigated the optimal 

hydraulic cross-section in two-section parabolic 

channels. They tried to find the optimal hydraulic cross-

section of a two-stage channel with a parabolic cross-

section and a flat-width parabola. Therefore, by 

considering the constant value of the area and the wetted 

perimeter as the objective function, they obtained the 

optimal hydraulic geometric parameters for two types of 

channels and achieved the Equations of the best 

hydraulic section of each type. 

As previously stated, it is of great importance to explore 

channels in order to achieve high efficiency and low 

cost. A great deal of research has been done in this field 

and valuable results have been produced by applying 

mathematical methods and old algorithms. However, 

this article examines the parabolic channel using the 

novel HHO algorithm. This algorithm is utilized in many 

cases, including weld cross-section optimization, gear 

design, etc. Nevertheless, this article marks the first time 

that this algorithm is applied for optimum design of 

channel cross-section. The results of this algorithm are 
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highly consistent with and even more optimal than those 

of previous research. 

It can be seen that the calculation methods related to 

optimal hydraulic sections have matured. However, 

optimal hydraulic design is often not suitable due to 

hydraulic and economic considerations for the 

construction of long channels. This study investigated a 

channel with a parabolic cross-section, trying to 

optimize its parameters using the meta-heuristic HHO 

algorithm. Among the various meta-heuristic algorithms 

proposed so far, the HHO algorithm was chosen due to 

its higher power and speed in convergence. The rest of 

the article is organized as follows: The second section 

deals with the optimal design of the channel with a 

parabolic cross-section and its governing fundamental 

and mathematical Equations. The third section discusses 

the optimization algorithm. The fourth and fifth sections 

present the results and the conclusion, respectively. 

2 OPTIMUM DESIGN OF CHANNELS WITH 

PARABOLIC CROSS-SECTION 

Another cross-section that can be used as a high-

efficiency cross-section, especially in high-efficiency 

flows, is a parabolic cross-section. The figure below 

shows a schematic of a parabolic cross-section. In 

parabolic channels, the design variables are more than 

the circular cross-section, and the length and width of 

the cross-section are also added to them. All the 

considered specifications can be seen in the “Fig. 1”. In 

the present work, the most generalized form was adopted 

for the cost function in [13]. This cost function assumes 

that the channel section’s upper surface is the surface of 

the ground [14]. The excavation cost is assumed to be 

simply the digging cost. 

Fig. 1 A schematic of a parabolic channel section. 
 

According to this cost function, there are two main costs 

included in the total construction cost per unit length of 

channel: (1) the lining cost, and (2) the earthwork cost. 

The earthwork cost includes two components: (1) the 

earthwork operation cost per unit area (𝛽𝐸) and (2) the 

increment in the earthwork cost with depth under the 

ground surface (𝛽𝐴). The additional earthwork vost 

accounts for the supporting costs in deep excavations 

and overload pressure on deeper soil strata [15]. As a 

result of this cost, different costs of earthwork occur that 

are different at varying depth levels. Lastly, it is possible 

to formulate the channel sum as below: 

 

𝐶 = 𝛽𝐿𝑃 + 𝛽𝐸𝐴 + 𝛽𝐴 ∫ 𝑎𝑑𝑛
𝑦𝑛

0
              (1) 

 

Where C is the total construction cost per length of a 

lined channel section, L is the cost of lining per length, 

P is the wetted perimeter, A is the cross-sectional area of 

the channel, yn is the normal water depth, a is the flow 

area at height η, and dη is the unit length of earthwork 

at height η, where η represents the vertical axis of the 

channel geometry (“Fig. 1”). To make a relationship 

between the channel geometry and hydraulic 

parameters, a resistance Equation, like Manning’s 

Equation, can be used. This resistance Equation, which 

is commonly used in open-channel flows, guarantees 

that the final optimization results can be applied from a 

hydraulic perspective. It is possible to write Manning’s 

Equation in SI units as in the following: 

 

𝑄 −
1

𝑛
𝐴𝑅

2

3√𝑆                 (2) 

 

Where Q is the flow rate of the channel, n is Manning’s 

roughness coefficient, R is the hydraulic radius and S is 

the bottom slope of the channel. We used dimensionless 

variables to extend the applicability of the solution to a 

wide range of possible values for the involved 

parameters. The dimensional parameters were converted 

to dimensionless using a new parameter, the length scale 

(λ), is presented in the following Equation: 

λ = (
𝑄𝑛

√𝑆
)

3

8                (3) 

 

All dimensional hydraulic variables can be converted to 

dimensionless ones using (λ). These parameters include: 

(1) total cost (C), (2) excavation cost per unit (𝛽𝐸), (3) 

additional soil cost (𝛽𝐴), (4) cost of lining per length 

(𝛽𝐿), (5). The area of the excavated channel, i.e. 𝐴 =
0.5𝑟2(𝜃 − sin(𝜃). 

Where θ is the water depth angle, (6) wetted perimeter 

(p=θr), (7) water depth (yn) and (8) channel radius (r). 

These parameters can be converted into their 

dimensionless forms using λ and 𝛽𝐸. The new 

dimensionless variables, marked with an asterisk, are 

presented in the following Equations: 

 

C*= 
𝑐

𝛽𝐸𝜆2                 (4) 

 

𝛽𝐴∗ =
𝛽𝐴𝜆

𝛽𝐸
                (5) 
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𝛽𝐿∗ =
𝛽𝐿

𝛽𝐸𝜆
                (6) 

 

𝐴∗ =
𝐴

𝜆2                 (7) 

 

𝑃∗ =
𝑃

𝜆
                  (8) 

 

𝑦𝑛∗ =
𝑦𝑛

𝜆
                 (9) 

 

𝑟∗ =
𝑟

𝜆
                (10) 

 

“Table 1” lists the objective function and constraints of 

the optimization problem above. The following relation 

is mainly aimed at minimizing the value of C*. 

 
Table 1 Objective function and constraint of the problem 

Objective Function: 𝐶∗ = 𝛽𝐿∗𝑃∗ + 𝐴∗ +
𝛽𝐴∗ ∫ 𝑎𝑑𝑛

𝑦𝑛

0

𝜆3  

Constraint of the 

Problem: 1 − 𝐴∗

5
3𝑃∗

2
3 = 0 

 

2.1. Algorithm and the Optimization Method 
In 1997, Louis Lefebvre proposed an approach to 

measure the "intelligence quotient" of birds. According 

to his studies, hawks can be classified among the most 

intelligent birds in nature. Harris hawks are well-known 

prey-hunting birds found in relatively stable flocks in the 

southern half of Arizona, United States. The HHO 

algorithm is a population-based and gradient-free 

optimization method. Hence, it can be applied to any 

optimization problem with a suitable formulation. The 

figure below shows all the steps of the algorithm, which 

will be described in detail in the next sections [16]. 

In the HHO algorithm, according to the nature of Harris 

hawks, it can be said that these birds can track and 

recognize the prey with their powerful eyes, but 

sometimes the prey is not easily seen. Hence, hawks wait 

and observe and monitor the area to detect the prey after 

a few hours.  

In the HHO algorithm, Harris hawks are candidate 

solutions, and the best candidate solution at each step is 

considered the optimal or near-optimal prey. Harris 

hawks randomly sit and wait in places. If we consider 

the chance q for each sitting strategy, the prey is detected 

based on two strategies: 

* Hawks sit and wait based on the location of other 

hawks and rabbits (q < 0.5).   

* They sit and wait on high trees randomly (a random 

place near the group house) (q >= 0.5). 

 
X(t + 1) =

{
Xrand(t) − r1|Xrand(t) − 2r2X(t)|                               q ≥ 0.5

Xrabbit(t) − Xm(t)) − r3(LB + r4(UB − LB))           q < 0.5

                                                                                                  (13) 

 

Where X(t+1) is the location vector of the hawks at 

iteration t, Xrabbit(t) is the location of the rabbit, X(t) is 

the current location vector of the hawks, r1, r2, r3, r4 and 

q are random numbers in the (0,1) range, which are 

updated in each iteration, LB and UB represent the upper 

and lower bounds of the variables, Xrand(t) is the 

location of a random hawk from the current population, 

and Xm is the average location from the current 

population of hawks. The pseudocode of the HHO 

algorithm is given in “Fig. 2”. 

 

Inputs: The population size N and maximum number of 

iterations T 

Outputs: The location of rabbit and its fitness value 

Initialize the random population Xi(i = 1, 2, . . . ,N) 

while (stopping condition is not met) do 

Calculate the fitness values of hawks 

Set Xrabbit as the location of rabbit (best location) 

for (each hawk (Xi)) do 

Update the initial energy E0 and jump strength J ▷ 
E0=2rand()-1, J=2(1-rand()) 

Update the E using  

if (|E| >= 1) then ▷ Exploration phase 

Update the location vector using  

if (|E| < 1) then ▷ Exploitation phase 

if (r >= 0.5 and |E| >= 0.5 ) then ▷ Soft besiege 

Update the location vector using  

else if (r >= 0.5 and |E| < 0.5 ) then ▷ Hard besiege 

Update the location vector using  

else if (r <0.5 and |E| >= 0.5 ) then ▷ Soft besiege with 

progressive rapid dives 

Update the location vector using  

else if (r <0.5 and |E| < 0.5 ) then ▷ Hard besiege with 

progressive rapid dives 

Update the location vector using 

Return Xrabbit 
Fig. 2 Flowchart of the HHO algorithm. 

 

“Table 2” presents the specifications considered for the 

optimization in the parabolic channel. 

 

 

 
Table 2 Important parameters of channels in simulation 

Parabolic Channel 

Manning’s roughness 

coefficients 
0.015 

Bottom longitudinal slope 0.001 

Volume flow rate 50-300 

 

2.2. Optimization Results 
The results were obtained for the parabolic channel with 

flow rates of 50, 100, 150, 200 and 300 m3/s, with a fixed 

Manning’s roughness coefficient of 0.015 and the 
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bottom longitudinal slope of 0.001. The results related 

to the construction cost using the meta-heuristic HHO 

algorithm are given below. 

As can be seen in “Fig. 3”, the execution of 100 

iterations for the HHO algorithm led to the channel cost 

of 12.76, which was constant in the 78th iteration, after 

which there was no improvement in the results. In a 

simple comparison, we can see a relatively large 

difference between the initial and optimized values, 

indicating that optimization can significantly reduce the 

cost of channel construction. 

 

 
Fig. 3 Optimization of the construction cost of a parabolic 

channel with a flow rate of 50 m3/s. 
 

The curve in “Fig. 4” shows the amount of cost 

calculated for a parabolic channel with a flow rate of 100 

m3/s, a fixed Manning’s roughness coefficient of 0.015, 

and a bottom longitudinal slope of 0.001. The 

construction cost initially started from 56 in the first 

iteration, but it changed to 15.62 after several iterations. 

A comparison between two flow rates of 50 and 100 

indicates that the cost of channel construction increases 

following an increase at the flow rate when other 

parameters are the same, and that the flow rate is an 

effective parameter in optimization. The same is the case 

about the flow rate of 150; an increase at the flow rate 

also leads to an increase in the channel construction cost. 

The noteworthy point is that the value shown for the cost 

is a number to compare the flow rate changes and 

construction cost in a channel, and its real value can be 

determined with appropriate coefficients. 

 

 

Fig. 4 Optimization of the construction cost of a parabolic 

channel with a flow rate of 100 m3/s. 

 

The construction cost of the channel was 18.27 at a flow 

rate of 150 m3/s, which indicates an increase in the 

construction cost by 1.17 times compared to the channel 

with a flow rate of 100 m3/s, (See Fig. 5). 

 

 
Fig. 5 Optimization of the construction cost of a parabolic 

channel with a flow rate of 150 m3/s. 
 

In addition, the optimized value was improved during 

several stages and successive iterations so that the value 

obtained in the first iteration was about 32 (note that 

these values are dimensionless) but it was reduced to 

18.27 in the next iterations. Therefore, it can be 

concluded that the construction cost before optimization 

is about 1.75 times that after optimization, which 

indicates the need for optimization before the channel 

construction. The channel construction cost reached 

19.39 at the flow rate of 200 m3/s, which has increased 

by 1.06 compared to the flow rate of 150, (See Fig. 6) 
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Fig. 6 Optimization of the construction cost of a parabolic 

channel with a flow rate of 200 m3/s. 
 

 

 
Fig. 7 Optimization of the construction cost of a parabolic 

channel with a flow rate of 300 m3/s. 

 

Figure 7 shows the optimization function of the cost 

function for a volume flow rate of 300 m3/s in 100 

iterations. As can be seen, the convergence curve in this 

volume flow rate was obtained as 21.41, which is the 

same as the channel optimal construction cost. This time, 

all the settings are the same as in the previous cases, with 

a fixed roughness coefficient of 0.015. In the first 

iteration, the displayed cost value is about 55, but the 

HHO algorithm gradually improved the results and 

reduced the construction cost value to 21.41 in the next 

iterations.  “Table 3” summarizes the optimized results 

for 5 different flow rates, whose convergence curves 

were given before. These results indicate the upward 

trend of the construction cost, which was naturally 

expected. 

 
Table 3 Results of the construction cost of a parabolic 

channel under different flow rate conditions 

Row /s)3Flow rate (m 
Construction cost 

(dimensionless) 

1 50 12.76 

2 100 15.62 

3 150 18.27 

4 200 19.39 

5 300 21.41 

 

Figure 8 shows the changes between the construction 

cost and the flow rate for a channel with a parabolic 

cross-section. As can be seen, the construction cost 

increases following an increase at the flow rate, which 

indicates the need to optimize the flow rate and 

construction cost. The figure below shows that there is a 

linear relationship between the increased volume flow 

rate and the construction cost. In other words, a linear 

relationship can be observed between the volume flow 

rate of the parabolic channel and the construction cost. 

 

 
Fig. 8 Changes in the construction cost of the channel 

with changes in the volume flow rate. 
 

The following “Figs. 9, 10, and 11” illustrate the 

dimensionless radius and depth values for the parabolic 

channel. As you can see, the horizontal axis (x-axis) is 

the dimensionless unit cost, which is known by the 

parameter 𝛽𝑙
∗ and includes values less than 1 to those 

greater than 1. The vertical axis (y-axis) also shows the 

values related to the radius and depth of the channel. For 

each curve, a value was first considered for 𝛽𝐴
∗, and then 

the 𝛽𝑙
∗ parameter increased from 0 to 5, thus the radius 

and depth values were obtained. We considered the three 

values of 0, 0.5 and 1 for the 𝛽𝐴
∗ parameter to be able to 

examine the radius and depth changes following a 

change in the 𝛽𝐴
∗ parameter. In addition, the roughness 

parameter for the parabolic channel was considered 

constant in all cases. 
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Fig. 9 Dimensionless radius and depth for different βl
∗ 

values and βA
∗ =0. 

 

 

 
Fig. 10 Dimensionless radius and depth for different βl

∗ 

values and βA
∗ = 0.5. 

 
Fig. 11 Dimensionless radius and depth for different βl

∗ 

values and βA
∗ = 1. 

 

The results for the parabolic section with the cost 

objective function and the constraint function of the 

Manning’s Equation are presented in the “Table 4”. l is 

the length scale for dimensionless direction, whose unit 

is meter. In this case, the flow rate is equal to 100 m3/s, 

the bottom longitudinal slope of the channel is equal to 

0.0002, and Manning’s roughness coefficient is 0.015. 

 
Table 4 Optimal results for the parabolic channel 

Parabolic Cross-section 

y Cost 

6.25 15.62 

3 CONCLUSIONS 

This study investigated the optimization of hydraulic 

channel with parabolic cross-section. It used the meta-

heuristic HHO algorithm to optimize the parameters. 

The settings of the research were based on a fixed 

roughness coefficient, and the results of changes in 

radius and depth of the optimized channel due to 

changes in 𝛽𝑙
∗ and 𝛽𝐴

∗ were presented. The overall result 

shows that the HHO algorithm has a very high speed and 

accuracy in optimization. 

The investigations indicated that the flow rate has a 

direct effect on the cost of the constructed channel in 

addition to the dimensional parameters of the channel. 

The construction cost increases with increasing flow 
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rate. It was also determined that a flow rate of 100 m3/s 

is suitable for constructing a channel and meeting the 

need for water supply assuming a fixed roughness 

coefficient and longitudinal slope. “Table 4” lists the 

optimized cost to construct the channel along with its 

dimensions. 

It was also found that the HHO algorithm is highly 

accurate; therefore, it is expected to be applied also in 

other sectors in order to optimize other problems. 
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