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1 INTRODUCTION 

Cylindrical shells are of the most common features in 

almost all aspects of nuclear reactor design. The 

popularity of using such structures as portions of 

containment vessels, support skirts, coolant and flow 

inlet and outlet nozzles, fuel sleeves, and even as 

moderators makes the cylindrical shell structures’ 

phenomena a favourable study for recent investigations 

In many of these applications such cylinders are 

subjected to displacement and thermal gradient in both 

axial and radial directions. Consequently, it is 

important to analysis them to promote their reliability 

and to justify the structural capability of the design. 

Some investigations are conducted on the elastic 

analysis of cylinders [1-6]. For instance, an analytical 

solution for elastic analysis of functionally graded (FG) 

cylinder based on classic method (Lamé’s solution) is 

presented by Hongjun et al., [1]. They assumed that 

material properties vary linearly and exponentially. For 

FG cylinder with power law distribution of material 

properties is conducted by Zhifei et al., [2]. In [1-2] 

effects of materials non-homogeneity on mechanical 

characteristics of cylinder are studied and their results 

show that multi-layer method discontinuity predicts the 

circumferential stress. Ghannad and Zamani Nejad [3] 

presented a closed-form solution for thick walled 

cylindrical shells under pressure. The analytical 

solution is obtained based on the classical shell theory 

(CST) for plane strain and plane stress states. 

Considering transverse shear deformation, a stress 

analysis of cylinders based on FSDT formulation is 

presented by Ghannad and Zamani Nejad [4]. Elastic 

response of thick cylindrical shells with variable 

thickness are studied by Eipakchi et al., [5] and 

Ghannad et al., [6] for homogenous and FG material, 

consequently. 

The thermo-mechanical analysis of cylinders is 

presented in [7-13] based on CST. Obata and Noda [7] 

studied one-dimensional steady thermal stresses in a 

circular hollow cylinder and a hollow sphere, utilizing 

the perturbation method. Their work indicates the 

influence of inside radius size on stresses and the 

available temperature regions. Zimmerman and Lutz 

[8] presented solutions for the problem of uniform 

heating of a circular cylinder based on Frobenius series 

method and determined the effective thermal expansion 

coefficient. Jabbari et al., [9] obtained axisymmetric 

mechanical and thermal stresses for a thick hollow 

cylinder subjected to the temperature and pressure at 

inner and outer surfaces. Eslami et al., [10] and Bayat 

et al., [11] presented the study for thick sphere. An 

analytical solution for the coupled thermoelasticity of 

thick cylinders under radial temperature or mechanical 

shock load is obtained based on the Fourier expansion 

and Eigen function methods by Jabbari et al., [12]. The 

thermo-mechanical behavior of cylinder is carried out 

in [13-19], considering shear stress effect in cylinder. 

Kim and Noda [13-14] studied the two-dimensional 

unsteady thermoelastic problem of an infinite hollow 

cylinder and plate using the Green’s function approach. 

In a later study, a non-axisymmetric case of the 

previous problem was solved by Jabbari et al., [15] 

using non-axisymmetric temperature distribution by 

expanding displacements and temperature distribution 

in the Fourier series.  

It is noteworthy to state that the aforementioned 

researches [13-15] studied the thermo-mechanical 

behavior of cylinder in radial and circumferential 

directions. Shao [16] studied the thermo-mechanical 

stresses of hollow cylinders with the finite length. 

Results of the study prove that the proposed method is 

only suitable for the simply supported boundary 

conditions and where the temperature is constant at 

both ends. Jabbari et al., [17-18] introduced analytical 

solutions for two dimensional and three-dimensional 

steady-state thermoelastic problems of the circular 

hollow cylinder, using the generalized Bessel function 

and Fourier series. Arefi and Rahimi [19] presented an 

analytical solution for thermo elastic behavior of 

clamped-clamped cylinder under thermal and 

mechanical loads based on FSDT. In this case, 1D heat 

conduction in finite length of the cylinder through 

radial direction is considered. Results indicate that 

there are considerable differences between radial 

displacements from classic method (1D) and FSDT 

(2D) analysis. Further investigation on the elasticity, 

stability, buckling, and vibration responses of 

cylindrical shell have also been reported in literatures 

[20-23]. 

Stress analysts frequently derive the solutions of 

specific thermoelasticity problems; however, most of 

the published solutions are for specific problems and 

require additional analytical work when extended to 

more general situations. Although the heat conduction 

in finite length of the cylinder is often investigated in 

radial direction, but in real situations the heat 

conduction can be two dimensional in a finite length of 

the cylinder. It is of great concern for this paper to 

provide a general analysis to be applicable to almost 

any axisymmetrically, thermo-mechanically loaded 

cylindrical shell. The temperature may vary in the axial 

direction and linearly through the thickness. The 

generalized thermo-mechanical boundary conditions, 

giving the conditions on the two ends of cylinder, are 

given. These formulae can be easily applied to analyse 

the cylinders or to analyse the cylinders joined to other 

shells or structures. 

The results are obtained for two cases in which the first 

case is mechanically clamped-clamped having constant 

temperature at two ends and the second case is 

mechanically clamped-free and thermally insulated-
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constant temperature at two ends. The effects of 

different boundary conditions on the temperature, 

displacements, and components of stresses as well as 

two-dimensional distributions of temperature and 

displacement fields through the cylinder are brought 

out through number of parametric studies. The 

analytical solution with the proposed arbitrary thermal 

and mechanical boundary conditions at the two ends of 

cylinder is used to analyse the thermal and mechanical 

behaviors. Using the energy method, the derivation and 

implementation of an analytical method with its 

boundary conditions are discussed to solve the 

problems. The advantage of this method is shown in 

evaluation of the temperature, displacement, and stress 

fields. The results are in good agreement with finite 

element method (FEM). 

2 ANALYSIS 

A thick-walled axisymmetric cylindrical shell with an 

inner radius ri, outer radius ro and length L subjected to 

internal pressure P and heat flux H is considered 

(Figure 1). 
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Fig. 1 Cross section of the thick-walled cylinder under 

thermo-mechanical loading 

 

In figure 1, the location of typical point m, (r) within 

the thickness of cylindrical shell element can be 

determined by R and z, as r=R+z in which R is the 

distance of middle surface from the axial direction, and 

z is the distance of typical point from the middle 

surface. Obviously, z and x must be within the ranges –

h/2⩽z⩽h/2 & 0⩽x⩽L where h is the thickness of 

cylinder. 

Displacement field (Uz, Ux) and the temperature change 

from reference temperature (Θ=T-T*) must be function 

of z or r and x, which are expressed as follow in the 

FSDT [4]-[24]. 
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Where Uz
0
 (x) and Ux

0
 (x) are the displacement 

components and Θz
0
 (x) is the component of temperature 

change at middle surface. The Uz
1
 (x) and Ux

1
 (x) 

functions are used to determine the displacement and 

temperature change field. 

The strain-displacement relations (kinematic equations) 

are [4]: 
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The thermal field-temperature change relations are 

[25]: 
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In addition, the stress tensor and heat flux vector 

components which are based on constitutive equations 

for isotropic materials are as follow [4-25]: 
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Where ζi, εi, hi, and ei are the stresses, strains, heat 

fluxes, and thermal fields in the axial (x), 

circumferential (θ) and radial (z) direction. In Eqs. (3) 
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E, υ, α, and k are modulus of elasticity, Poisson’s ratio, 

coefficient of thermal expansion, and thermal 

conduction coefficient. In addition, the value of 

effective stress based on von Mises failure theory is: 

0.5
2 2 2 21
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Where equations (6)-(8) define mechanical resultants 

and equations (9) and (10) define thermal resultants. 

On the basis of the principle of virtual work, the 

variations of thermo-mechanical energy are equal to the 

variation of the external thermo-mechanical work δU = 

δW; where U is the total thermo-mechanical energy and 

W is the total external work due to internal pressure and 

heat flux. The thermo-mechanical energy is [26]: 
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and the external work is [26]: 
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The variation of the thermo-mechanical energy and 

external work are: 
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Substituting Eqs. (2)-(4) into Eqs. (13), and drawing 

upon calculus of variation and the virtual work 

principle, by simplifications we will have: 

d
0

d

d
0

d

d
(R )

d 2

d
(R )

d 2 2

d
(R )

d 2

d
(R )

d 2 2





  

  
 

  
    
  


 
     

 


 

  

    
 

m

x

m
m x
x

m m

x

m m
m zx
z

t

x

t
t x
z

N
R

x

M
R Q

x

N Q h
R P

R x

M M h h
R N P

R x

N h
R H

x

M h h
R N H

x





                   (14) 

 

and the boundary conditions are: 
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Eq. (15) states the boundary conditions, which must 

exist at the two ends of the cylinder. The number of 

thermal and mechanical resultants aren’t equal to 

number of equations in relation (14), thus for solving 

the set of differential Eq. (14) thermal and mechanical 

resultants need to be expressed in terms of the 

components of temperature and displacement field. 

Substituting Eqs. (2)-(10) into Eq. (14), set of 

differential Eq. (14) are rewritten as follow: 
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Where [A]6×6, [B]6×6, [C]6×6 are the coefficients’ 

matrices, and {F} is force vector. The nonzero 

elements of [A]6×6, [B]6×6, [C]6×6 and {F} are calculated 

by the relations given in Appendix A. 

3 ANALYTICAL SOLUTION 

To solve the set of differential equations (16), the {y} is 

changed to {y
*
}, and integrating the first and fifth 

equation in the set of Eq. (14). 
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where [A
*
]6×6, [B

*
]6×6, [C

*
]6×6 are the coefficients, 

therefore the new arrangement of [A]6×6, [B]6×6, [C]6×6 

are as below: 
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The force vector {F*} is as follow: 

 

1

*

2

2 3

0

( )
2

( )
2 2

( )
2 2

( )
2 2

 
 
 
 

 
 
 

   
 
 

   
 
 

 
 

K

h
P R

h h
F P R

h x
H R K x K

h h
H R

                          (21) 

Where K1, K2, and K3 are constant, the results of 

integrating. The Eq. (21) is a set of linear non-

homogenous differential equations with constant 

coefficients. Defining the differential operator P (D), 

Eq. (21) is written as: 

* 2 * *

2

2

( )

d d
,

d d

             


 


P D A D B D C

D D
x x

                         (22) 

Thus: 

   * *( ) P D y F                                                     (23) 

 

 

The differential Eq. (23) has the general solution 

including general solution for homogeneous case {y
*
}g 

and particular solution {y
*
}P, as follow: 
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Eq. (25) is eigenvalue problem for non-trivial solution 

e
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≠0, the determinant of the coefficient must be 

considered zero. 
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The result of the Eq. (26) is an eight-order polynomial 

which is a function of m, the solution of which having 

an 8 eigenvalues mi. The eigenvalues are 4 pairs of 

conjugated roots. By calculating eigenvectors {ξ}i 

corresponding to eigenvalues, the general solution for 

Eq. (23) is obtained: 
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The constants Ci are obtained by applying boundary 

conditions. In Eq. (23), {F
*
} is quadratic polynomial, 

thus particular solution {y
*
}P ={y

*
}P2 x

2
 +{y

*
}P1 x 

+{y
*
}P0 having {y

*
}P2, {y

*
}P1 & {y

*
}P0 unknown 

coefficients vectors are obtained by substituting 

particular solution in Eq. (23). Therefore, general 

solution is: 

 

         
8

* * 2 * *

2 1 0
1

    im x

i i p p p
i

y C e y x y x y    (28) 

 

There are 11 constants in {y
*
}, having 8 constants for 

general solution and 3 constants for particular solution. 

Due to an integration in {y
*
} another constant K4 

appears in the general problem {y}. Now there are 12 

constants in {y} that are obtained by applying thermo-

mechanical boundary conditions at two ends of the 

cylinder. 

Boundary conditions can be express as displacement 

field and temperature or mechanical resultants and 

thermal resultants and or combination of them at both 

ends of the cylinder as follow: 
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  (29) 

As previously mentioned, by applying boundary 

conditions at both ends of the cylinder, the analytical 

solution is obtained. Mathematical operations that are 

expressed for solving the set of differential equations 

are programmed in MAPLE 13. 

4 RESULTS AND DISCUSSION 

In this section, the aforementioned analytical solution is 

carried out for two cases with different boundary 

conditions. Cylinders have inner radius ri=40 mm, 

outer radius ro=60 mm and length L=800 mm. The 

Young’s modulus of elasticity, coefficient of thermal 

expansion and thermal conduction coefficient of 

cylinders are E=200 Gpa, α=12×10
-6

/˚C & k=45 

w/(m˚C), respectively. The Poisson’s ratio is 0.3. Both 

cylinders are subjected to pressure P=80 MPa and 

external heat flux H=500 (w/m
2
) in inner surface. The 

reference temperature is assumed to be T
*
=25˚C for 

two cases. The non-dimensional parameters are defined 

as follow: 

4 4

*

2
, ,

U 10 , U 10

T ,

,

     
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       
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        


   

    
   

i

xz
z x

i i

effzx
zx eff

z x r
z x r

h L r

UU

r r

T

T P

P P








 

                              (30) 

 

4.1. Clamped-Clamped & Temperature-

Temperature 

At first case, two ends of the cylinder are considered to 

have T=50˚C and they are mechanically clamped. 

Mechanical and thermal behaviors of the cylinder for 

this case are shown in Figure 2. Behaviors of the 

cylinder are discussed in radial and axial directions, 

Non-dimensional radial and axial displacements are 

shown in Figure 2a and 2b depicting the effects of the 

boundary conditions on displacement. Temperature 

distribution is shown in Figure 2c. The maximum 

temperature is occurred in the middle length of the 

cylinder, corresponds to the thermal loading. 
 

(a)

x
z

z
U

 
 

xz

x
U

(b)

 

(c)

T

z x

 
Fig. 2 Distribution of non-dimensional radial (a) and axial 

(b) displacement and temperature (c) in cylinder 

 

The temperature variation versus cylinder layers and 

the radial and axial displacements variation versus 

cylinder heights are plotted in Figures 3-5. A good 

agreement between FEM and analytical results is 

observed. Figure 3 shows that the temperature increases 

from both ends to the middle length of the cylinder and 

the maximum temperature happens at the middle length 

of the cylinder. Also from Figure 3 it is concluded that 
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temperature profile changes along the axial axis and it 

is independent of radial axis and temperature change. 

Figure 4 shows that radial displacement has the same 

behavior as temperature having the maximum value in 

the middle length of cylinder. But radial displacement 

against the temperature profile varies in axial and radial 

axis. Figure 5 shows that the maximum of axial 

displacement occurs in regions near boundaries and is 

zero at the middle length. Figure 5 demonstrates the 

independency of axial displacement from radial axis in 

regions far away from boundaries and varies along 

axial direction. 

 

 
Fig. 3 Distribution of temperature through the thickness in 

the different heights of cylinder 

 

 

Fig. 4 Distribution of radial displacement along the 

cylinder surfaces 

 

Fig. 5 Distribution of axial displacement along the 

cylinder surfaces 

 

 

Fig. 6 Distribution of circumferential stress along the 

surfaces. 

Circumferential, shear, and effective stresses for 

different layers of cylinder are shown in Figures 6-8. 

From Figures 6-8, it is concluded that at the regions far 

away from boundaries stresses leads to constant values. 

But the critical values of stresses occurred in 

boundaries in the outer surfaces; hence for precise 

engineering design, designers should use this presented 

methodology. Figures 6-8 show that the stresses in far 

regions of the boundaries are independent of axial axis 

and changes along radial direction. Figure 7 illustrates 

that shear stress is significant at boundaries leading to 

negligible values at far regions from boundaries.  
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A comparison between Figures 6-8 demonstrates that 

the circumferential stress has dominant values between 

stresses at far region from boundaries, so the behavior 

of von Misses stress is the same as circumferential 

stress at far regions from boundaries. But due to the 

shear stress effect at the boundaries the behavior of von 

Misses stress is different from circumferential stress. 

 

 

Fig. 7 Distribution of shear stress along the surfaces 

 

 

Fig. 8 Distribution of von misses stress along the surfaces 

 

4.2. Clamped-Free & Temperature-Insulated 

At second case, one end of the cylinder is considered 

mechanically clamped at T=50˚C, and another end is 

considered mechanically free and is insulated 

thermally. Effects of boundary conditions on 

mechanical and thermal behaviors are depicted in 

figure 9. Maximum values of displacements and 

temperature occur in the free and insulated end of the 

cylinder, respectively. 

(a)

z
U

z x
 

(b)

x
U

z x

 
(c)

T

z x

 

Fig. 9 Distribution of non-dimensional radial (a) and axial 

(b) displacement and temperature (c) in cylinder 

Temperature distribution, radial and axial 

displacements for different heights and surfaces of 

cylinder are shown in Figures 10-12. Changes in the 

boundary conditions have made great effects on 

mechanical and thermal behaviors of the cylinder. In 

general, the maximum values of temperature and 

displacements are much greater than the first case and 

occur at the insulated and free ends of the cylinder, 

respectively. In the second case study, the maximum 
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values of temperature and radial displacement are 

approximately two times greater than the values for the 

first case and the maximum of axial displacement is 60 

times greater than the value for the first case. Also 

Figure 12 shows that changing the boundary conditions 

have made the axial displacement profile to be 

independent of the radial direction and changes along 

the axial direction.  

 
Fig. 10 Distribution of temperature through the thickness in 

the different heights of cylinder 

 

 

Fig. 11 Distribution of radial displacement along the 

cylinder surfaces 

 
Fig. 12 Distribution of axial displacement along the 

cylinder surfaces 

 
Fig. 13 Distribution of circumferential stress along the 

surfaces 

 

Fig. 14 Distribution of shear stress along the surfaces 

Circumferential, shear and von Misses stresses are 

shown in Figure 13-15, respectively. The effects of 

boundary conditions on stresses are obvious, spatially 

at free end of the cylinder. 

 

 
Fig. 15 Distribution of von misses stress along the surfaces 

Table 1 shows the results of T, Ur, Ux, ζeff and ζθ in 

middle and inner surface. The obtained results from 

two methods were compared and good agreements are 

found. 
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Table 1 Numerical data from Analytical and FEM calculations for in x=L/2. 

clamped-clamped & temperature-temperature ends 

Surface Method T (°C) Ur (mm) Ux (mm) σeff (Mpa) σθ (Mpa) 

Middle Analytical 85.56 0.08353 0 216.22 155.62 

FEM 85.55 0.08369 0 216.73 156.18 

Inner Analytical 85.61 0.07874 0 261.39 235.23 

FEM 85.63 0.08042 0 289.20 207.53 

clamped-free & temperature-insulated ends 

Surface Method T (°C) Ur (mm) Ux (mm) σeff (Mpa) σθ (Mpa) 

Middle Analytical 156.67 0.11999 0.33539 171.19 155.62 

FEM 156.66 0.12016 0.33505 172.02 156.18 

Inner Analytical 156.72 0.10791 0.33647 216.85 235.23 

FEM 156.74 0.10960 0.33601 257.22 207.53 

5 CONCLUSION 

This paper presents analytical solution for obtained 

axisymmetric cylinder which is subjected to an internal 

pressure and external heat flux with arbitrary boundary 

conditions. Using energy method, first-order shear 

deformation and first-order temperature theory, the 

equilibrium equations are derived. The ordinary system 

of differential equations having constant coefficients is 

solved analytically. Results show that boundary 

conditions can change the mechanical and thermal 

behavior significantly. At the free-end case, the 

displacement and stress increase and when it is 

insulated, the temperature increase. For two cases the 

shear stress is important at boundary points and it is 

negligible at far regions from clamped boundaries. In 

general, the extracted conclusions are classified as 

follow: 

(1) Comparison between the present results (two-

dimensional thermal analysis) with the literature (one 

dimensional thermal analysis) indicates that the 

displacement and temperature field are strongly 

depended on axial direction of the cylinder, even in far 

regions from both ends. This difference implies that a 

two dimensional analysis is inevitable for analysis of 

the cylinders with finite length. 

(2) The advantage of this method is its mathematical 

power to which it can handle arbitrary boundary 

conditions at the two ends of the cylinder for the 

axisymmetric thermo-mechanical analysis of thick 

cylinder with finite length. The proposed method can 

be extended to other kinds of mechanical and thermo-

mechanical problems. It is necessary to check the 

solution convergence in analytical series solutions 

reported in literature, but in this method no check is 

needed. 

(3) This method is suitable for modelling and studying 

the effect of various end condition of the cylinder; 

especially the effect of shear deformations at two ends  

of the cylinder. These shear deformations tend to 

significant displacement gradient and consequently 

significant shear stresses. Both deformations and 

stresses can be useful in analysis and design of the 

cylindrical pressure vessels. 

(4) Results show that with the same loading conditions, 

changes in boundary conditions can cause superior 

effects on thermal and mechanical behavior like 

temperature distribution, displacements profile and 

stress distribution in the cylinder. So the designer 

should take severe attention to the different boundary 

conditions and apply appropriate safety factor in their 

design. 

6 APPENDIX 

The nonzero elements of [A] are calculated as follows: 
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where K is the shear correction factor that is embedded 

in the shear stress term. It is assumed that in the static 

state, for cylindrical shells K=5/6 [4]. Also the nonzero 

elements of [B] are calculated as follow: 
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and the nonzero elements of [C] are calculated as 

follows: 
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The force vector {F} is calculated, using heat flux and 

pressure at inner surface: 
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