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Abstract: In this study, thermo-mechanical nonlinear vibration of a polyethylene 
(PE) cylindrical shell embedded in an elastic foundation was investigated. The 
shell is reinforced by armchair Carbon nanotubes (CNTs) where characteristics of 
the equivalent composite being determined using Mori-Tanaka model. The elastic 
medium is simulated using the spring constant of the Winkler-type. The governing 
equations were obtained by employing nonlinear terms of strains-displacements 
based on Donell's theory, stress-strain relation, first order shear deformation theory 
and Hamilton's principal. Differential quadrature method (DQM) is used to 
calculate the nonlinear frequency of the shell. The influences of geometrical 
parameters, orientation angle of CNTs and elastic foundation constants on the 
nonlinear vibration of the shell were investigated. Results showed that the 
nonlinear effect represented by nonlinear frequency ratio is considerable at lower

wK .  
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1 INTRODUCTION 

The use of composite materials is rapidly increasing 
because of their advantageous properties such as high 
specific strength/modulus, corrosion resistance and 
fatigue life. For example, the Boeing 787 uses 
composite materials accounting for about 50% of 
structural weight which leads to significantly increased 
fuel efficiency and reduced part count compared to the 
similar sized airplanes. Composite materials are also 
being used in other industries such as automotive and 
various sporting goods. Composite materials result 
from the integration of two or more distinct 
components (fiber and matrix) such that superior 
physical and mechanical properties are realized. In 
addition, some composite materials have other 
advantages, like electrical conductivity and thermal 
properties, which make them suitable as 
multifunctional materials.  
The development of multifunctional composite 
materials/structures is aimed at providing innovative 
functionality to structures in addition to their load 
carrying capability [1]. NASA’s Marshall Space Flight 
Center has established fabrication techniques for the 
manufacture of composite material pipes/shells and 
storage vessels of conventional and unique shapes 
which possess characteristics like lightweight, 
corrosion resistance, capable of handling diverse fluids, 
large diameter pipes for high pressure applications, 
capable of withstanding high temperatures [1]. 
There is available abundant literature on isotropic 
shells dealing with the thermal buckling subjected to 
constant temperature, temperature varying in 
circumferential direction and temperature varying 
along the generator of the shell. As pointed by Earl 
Thornton in his recent review paper on thermal 
buckling of plates and shells, the availability of studies 
on thermal buckling in composite shells is scarce. 
Thangaratnam et al. have performed linear thermal 
buckling analysis of laminated composite cylindrical 
and conical shells using finite element method and 
examined the nature of buckling under thermal load 
and mechanical load with respect to different fiber 
orientation [2], [3]. Radhamohan and Venkataramana 
have made a complete study of thermal buckling of 
composite cylindrical shell made of fiberglass 
reinforced plastics [4].  
A uniform temperature rise throughout the shell was 
considered for buckling studies. Very recently the 
authors have also contributed to the research literature 
on the thermal buckling studies and the influence of 
axi-symmetric temperature variation on the natural 
frequencies of the composite cylindrical shells [5]. 
Birman and Bert considered studies on the buckling 
and post buckling response of composite shells 

subjected to high temperature using the equilibrium 
equations for shells under the simultaneous action of 
thermal and axial load [6]. 
Similar to thermal buckling studies of isotropic shells, 
studies on pipes/shells conveying fluids are abundant in 
literature. Paidoussis and Li have reviewed and 
compiled the exhaustive literature available on the 
studies related with the dynamics of pipes conveying 
fluids [7]. Contributions by Paidoussis in the area of 
dynamics of pipes conveying fluid is enormous and one 
can find a host of problems and solutions associated 
with fluid flowing through slender structures in the 
book written by Professor M.P. Paidoussis [8]. 
This paper makes the first attempt to study thermo 
mechanical nonlinear vibration in Nano-composites 
cylindrical shell reinforced by CNT's for embedded gas 
pipes using Hamilton’s principle and DQM. The effects 
of geometrical parameters, orientation angle of CNTs 
and elastic foundation constants on the nonlinear 
vibration of the shell were investigated. 

2 MORI-TANAKA MODEL 

In this section, the effective modulus of the composite 
shell reinforced by CNTs is developed. Different 
methods are available to estimate the overall properties 
of a composite [9]. Due to its simplicity and accuracy 
even at high volume fractions of the inclusions, the 
Mori-Tanaka method is employed in this section [10]. 
To begin with, the CNTs are assumed to be aligned and 
straight with the dispersion of uniform in the polymer. 
The matrix is assumed to be elastic and isotropic, with 
the Young’s modulus and the Poisson’s ratio. The 
constitutive relations for a layer of the composite with 
the principal axes parallel to the r,θ and z directions are 
as follows [11]: 
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Where , , , , , , ,ij ij ij k m n l pσ ε γ  are the stress 
components, the strain components and the stiffness 
coefficients respectively? According to the Mori-
Tanaka method the stiffness coefficients are given by 
the following relations [10]: 
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 (2) 

 
Where Cm and Cγ are the volume fractions of the matrix 
and the CNTs respectively and kr, lr, nr, pr, mr are the 
Hills elastic modulus for the CNTs.  

3 STRAIN-DISPLACEMENT RELATIONSHIPS 

In order to calculate the middle-surface strain and 
curvatures, using Kirchhoff-Law assumptions, the 
displacement components of an arbitrary point may be 
written as  follows [12]: 
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Using Donnell's theory, strains may be obtained by a 
combination of linear, nonlinear and curvature change 
terms as 
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where x and θ  denote axial and circumferential 
direction of coordinate system, respectively, z  is the 
distance from an arbitrary point to the middle surface 
and R  is the radius of the shell. 
 

4 ENERGY FORMULATION 

The total energy, U, consists of the potential energy K, 
the virtual kinetic energy W as well as  the virtual work 
due to external forces including, elastic medium is 
modeled using spring Winkler and shear Pasternak 
constants. Considering the governing Eq. (3) and strain 
displacement Eq. (4), U, K and W may be expressed as 
follows [13]: 
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Where dA  is the surface element. Dimensionless 
parameter are then defined as: 
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Applying Hamilton principle 
 

0
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t
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and rearranging the governing equation in mechanical 
displacement directions(U, V and W) yield the 
following coupled thermo-mechanical equations. 
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(10) 

 
As can be seen, these are nonlinear equations which 
could not be solved analytically. Hence, DQM is 
employed which in essence approximates the partial 
derivative of a function, with respect to a spatial 
variable at a given discrete point, as a weighted linear 

sum of the function values at all discrete points chosen 
in the solution domain of the spatial variable [14]. Let 
F  be a function representing u , v and w  with 

respect to variables ξ  and θ in the following domain 
of ( L<< ξ0 , πθ 20 << ) having θξ NN × grid 
points along these variables. The nth-order partial 
derivative of ),( θξF with respect to ξ , the mth-order 

partial derivative of ),( θξF  with respect to θ  and 

the (n + m)th-order partial derivative of ),( θξF  with 

respect to both ξ  and θ  may be expressed discretely 
[13] at the point ),( ii θξ as : 
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where )(n

ikA  and )(m
jlB are the weighting coefficients 

associated with nth-order partial derivative of ),( θξF  

with respect to ξ  at the discrete point iξ  and mth-

order derivative with respect to θ  at iθ , respectively, 
whose recursive formulae can be found in reference 
[15]. A more superior choice for the positions of the 
grid points is Chebyshev polynomials as expressed in 
reference [15]. According to HDQM, mechanical 
clamped and free electrical boundary conditions at both 
ends of the shell may be written as : 
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Applying these boundary conditions into the governing 
Eqs. (8-10) yields the following coupled assembled 
matrix equations. 
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frequency is increased substantially when wK  is 
increased. Such that nonlinear frequency tends to be 
linear (i.e. NFR tends to unity). This suggests that at 
higher wK ’s, the nonlinear effect is considerable, while 
this might be neglected for lower wK ’s. 
 

 
Fig. 4 Effect of Winkler constant WK  on the nonlinear 

frequency ratio 
 
To illustrate the effect of damper constant on 

/NL LΩ Ω , Fig. 5 shows that nonlinear frequency ratio 
is reduced when damper constant is increased. 
 

 
Fig. 5 Effect of damper constant C on the nonlinear 

frequency ratio 
 
Fig. 6 shows the dimensionless frequency ratio 

/NL LΩ Ω  versus maximum transverse amplitude 

( )maxw  at various orientation angle θ of CNTs in the 
polymer. This is a periodic function with a period of π, 
indicating that /NL LΩ Ω  is same when θ values are 

zero and π. For orientation angle between two above 
values, /NL LΩ Ω  is lower. 

 
Fig. 6 Effect of orientation angel θ on the nonlinear 

frequency ratio 

6 CONCLUSION 

Thermo-mechanical nonlinear vibration of a poly 
ethylene (PE) cylindrical shell on the elastic foundation 
was investigated. Using DQM the derived governing 
equations were discretized, and solved to obtain the 
nonlinear frequency with clamped boundary conditions. 
The results have indicated that /NL LΩ Ω  is increased 
substantially when aspect ratio of thickness to length is 
increased. This is perhaps because of increasing Lh /
ratio, increases the shell stiffness. Nonlinear frequency 
ratio is reduced substantially when RL /  is increased; 
such that nonlinear frequency tends to be linear (i.e. 

LNL ΩΩ /  tends to unity). This is perhaps because of 
increasing aspect ratio of length to radius, decreases the 
shell stiffness. 
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