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Abstract: In this study, the problem of determining an optimal trajectory of a nonlinear 

injection into orbit problem with minimum time was investigated. The method was based 

on orthogonal polynomial approximation. This method consisted of reducing the optimal 

control problem to a system of algebraic equations by expanding the state and control 

vector as Chebyshev or Legendre polynomials with undetermined coefficients. The main 

characteristic of this technique was that it converted the differential expressions arising 

from the system dynamics and the performance index into some nonlinear algebraic 

equations, thereby greatly simplifying the problem solution. Our research effort focused on 

applying a Chebyshev series expansion to optimize the trajectory profile of a point-mass 

Satellite Launch Vehicle (SLV). This paper is divided as follows: first, the Chebyshev and 

Legender series expansion to optimization are introduced. Then, the flight mechanics 

model of the point-mass SLV is given. Next, our optimization problem is described and 

optimization results are presented and discussed. 
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1 INTRODUCTION 

Trajectory Optimization is a complex and important 

problem in all space missions and it has received a 

considerable amount of attention in the past few decades. 

Because of the complexity of most applications, trajectory 

optimization is most often solved numerically. Numerical 

methods for solving this problem and optimal control 

problems date back to nearly five decades ago during the 

1950s, starting with the work of Bellman [1]. Methods for 

the trajectories have been broadly of two categories: indirect 

and direct techniques or their combinations. In an indirect 

method, first-order optimality conditions of the original 

optimal control problem are derived. The indirect approach 

leads to a Hamiltonian Boundary Value Problem (HBVP). 

Moreover, the most common indirect methods are the 

shooting method, the multiple-shooting method, and 

Collocation methods. In a direct method, the states and/or 

controls of the optimal control problem are discredited in 

some manner and the continuous-time optimal control 

problem is converted to a nonlinear optimization problem or 

a nonlinear programming problem (NLP). The most 

common direct methods are the direct shooting method, the 

direct multiple-shooting method, and the direct Collocation 

methods. In recent years, orthogonal functions and 

polynomial series have received considerable attention in 

dealing with various problems of dynamic systems such as 

identification, analysis and optimal control.  

The main characteristic of this technique is that it reduces 

the differential equation involved in the problem to an 

algebraic equation, thereby greatly simplifying the problem 

solution. Moreover, pseudo spectral methods have enjoyed 

much popularity. In a pseudospectral method, the states are 

approximated using a global polynomial and collocation is 

performed at the chosen points. Beforehand, a Chebyshev 

pseudospectral method for optimal control problems was 

presented and successfully applied on several problems [2]. 

This method employs Nth-degree Lagrange polynomial 

approximations for the state and control variables with the 

values of these variables at the Chebyshev–Gauss–Lobatto 

(CGL) points as the expansion coefficients [2]. 

Brusch [3] addressed the trajectory optimization for 

Atlas/Centaur launch vehicle by employing a classical 

augmented Lagrangian method, in which the solution was 

sought by alternately minimizing the augmented function 

with respect to independent variables and adjusting the 

Lagrange multipliers to satisfy constraints. Brauer et al. [4] 

employed an accelerated projected gradient method. These 

approaches involved considerable computer time for 

convergence. Well and Tandon [5] effectively used the 

recursive quadratic programming approach to three 

dimensional trajectory optimization.  

Adimurthy [6] solved the 3D trajectory optimization 

problem through a diagonalized multiplier method in which 

multiplier update formula of Tapiaand Hanis was employed 

over a BFGS Hessian update.  

Vathsal and Swaminathan [7] utilized a minimax technique 

by which an optimum pitch steering program could be 

designed for a SLV in the presence of large uncertainties in 

thrust, weight, aerodynamic coefficients, atmospheric 

density, and wind velocity experienced by the vehicle. 

Beltracchi [8] described a new approach to solve the all-up 

(ground to mission) trajectory optimization problem. The 

algorithm proposed in this paper does not require any all-up 

trajectories to be explicitly optimized, but separately 

simulates the booster and upper stage. The algorithm is 

based on solving the maximum transferable throw weight to 

a park orbit (for the booster), maximum transferable 
payload from the park orbit to the mission orbit (for the 

upper stage), and a coordination problem that adjusts the 

park orbit parameters to find the all-up optimum 

(maximum) payload to the mission orbit.  

Weigel and Well [9] investigated an optimal ascent 

trajectory for a multistage SLV for dual payload problems. 

The optimization problems were formulated as multiphase 

problems with boundary and path constraints. Solutions 

were obtained using a direct multiple shooting method. Ping 

[10] proposed an inverse dynamics approach for trajectory 

optimization which could be useful in many difficult 

trajectory optimization and control problems. About using 

orthogonal functions and polynomial series, typical 

examples are the Walsh functions [11,12], the block-pulse 

functions [13,14], the Laguerre polynomials [15,16], the 

Legendre polynomials [17,18], the Chebyshev series [19 

,20], the Chebyshev wavelets [21], the Taylor series [22 

,23], and the Fourier series [24,25,26]. 

Our research effort focused on applying a numerical 

Chebyshev approach to optimize the trajectory profile of a 

point-mass SLV. A numerical algorithm based on a 

Chebyshev series expansion of control and state converts 

differential and integral expressions from the system 

dynamics and the performance index, the boundary 

conditions and other general constraints into systems of 

(non-linear) algebraic equations with unknown coefficients. 

The main characteristic of this technique was that it 

converted the differential expressions arising from the 

system dynamics and the performance index into some 

nonlinear algebraic equations, thereby greatly simplifying 

the problem solution. This paper is divided as follows: first, 

the Chebyshev and Legender series expansion to 

optimization are introduced. Then, the flight mechanics 

model of the point-mass SLV is given. Next, our 

optimization problem is described; optimization results are 

presented and discussed too. Finally, conclusions are drawn. 

2 CHEBYSHEV AND LEGENDRE SERIES EXPANSION 

TO OPTIMIZATION  

Recently, orthogonal functions and polynomial series have 

received considerable attention in dealing with various 

problems of dynamic systems. In order to provide proper 
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background, Chebyshev and Legendre polynomials are 

explained in this section.  

Chebyshev and Legendre polynomials 

To facilitate the presentation of the Chebyshev and 

Legendre algorithms, here we present some background on 

the Chebyshev and Legendre polynomials [19]. The 

Chebyshev polynomials of the first type are defined on the 

time interval ]1,1[ as follows [27]: 

  11,cosArc),r(CosTr   (1) 

Which are orthogonal with respect to the weight 

function 21/1)(w  on the interval  1,1 and [19] 

[28]: 
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Therefore, the first few Chebyshev polynomials are [27]: 
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Hence, the Legendre polynomials are defined on the time 

interval  1,1 as follows [29]: 
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 is Kronecker delta [29]: 
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Which are orthogonal with respect to the weight 

function 1)(w   on the interval  1,1 . Therefore, the 

Legendre polynomials are [29]: 
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With this recursive formula [29]: 
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A function )(f   can be approximated by Chebyshev or 

Legendre polynomials of length m as follows [27]: 
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Where the coefficients m,...,2,1,0n,a
n

  are unknown. 

Moreover, the following property of polynomials will also 

be used [29]: 
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Mathematical formulation 

The behavior of a dynamic system can be represented by the 

following set of ordinary differential equations [9]: 
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And the state variable inequality constraints (SVIC) [1]: 

f
T0,0)),(X(S   (12) 

Where X  and U are the vector functions of  , 

 
n21

X,...,X,X  are the state variables, and  
r21

U,...,U,U are 

the control variables. 

The problem of optimal control is then to find the control 

r,..,2,1i,U
i
  transferring the system Eq. (11) from the 

position  
0ii

XX   to the position  
fii

XX   within the 

time  
0f


 
while satisfying Eq. (12) and yielding the 

optimum of the performance index I, as given by [30]: 

  d]),(U),(X[G]T),T(X[HI
fT

0
ff

 (13) 

The vector function S,F  and the scalar functions H and 

G are generally nonlinear, and are assumed to be 

continuously differentiable with respect to their arguments. 

In order to use the Chebyshev polynomials of the first order 

(or Legender), which are defined on  1,1t  ,  
f

T,0  is 

transformed into  1,1t   by using the below 

transformation [10] [21]: 

 t1
2

T
f   (14) 

It follows that those Eq. (11) and Eq. (13) are replaced by 

[10]: 
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The approximate solution of this optimal control problem is 

represented by Chebyshev (or Legender, Hereinafter, for 

simplification, “or Legender” can be ignored) series of order 

m for both the state and control [28]: 
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Where )a,...,a,a(
n10

 , )b,...,b,b(
m10

 are the unknown 

coefficients. By substituting the Chebyshev approximations 

for the state and control from the Eq. (18) into Eq. (15) to 

Eq. (17), considering ),,( fn TB   and ),( fn TC  to be 

the Chebyshev coefficients of t](t),u(t),[xg
mm

 and 

]1),1([xh m  
respectively, and using the property of Eq. 

(10), the following approximation for I  is obtained [28]: 
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For computational reasons, the infinite series is truncated at 

order m and we can calculate  nB  and  
n

C by means of 

the following equations [28]: 
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Where 
ii Cost  refers to the roots of the Chebyshev 

polynomial of order K. 

Approximation of the system dynamics 

If the Eq. (18) is substituted into the Eq. (15) and if the 

Chebyshev series expansion of the right-hand side of       

Eq. (15) is truncated after the term of order M, the following 

is obtained [28]: 
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The left-hand side of the Eq. (21) is of degree, 1m while 

on the right-hand side, the polynomial is of degree M . If f  

is non-linear, M  is set to be equal to 1m , but if f  is linear, 

M  is set to be equal to [28]. If  na represents the 

Chebyshev coefficients of dt/dx
m

,
 

then equating the 

coefficients of same-order Chebyshev polynomials yields 

[28]: 
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These equations are the approximations for the system 

dynamics. 

Approximation of the initial and final conditions 

Another property of Chebyshev polynomials is: 

,...2,1n,1)1(Tand)1()1(T
n

n

n
  

Therefore, the initial and final conditions of the Eq. (15) are 
replaced by [28]: 
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Equality and inequality constraints 

Equality and inequality constraints of the form [21]: 
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can be handled like the system dynamics: 
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m  are substituted, (.)C  and/or (.)S  are expanded in the 

Chebyshev series, and the Chebyshev balance principle is 

applied. In order to use Chebyshev polynomials, by using 

Eq. (14) [21]: 
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We define an auxiliary function )t(y by [21]: 
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 refers to the unknown coefficients. 

By substituting Eq. (31) and Eq. (18) into Eq. (30) and 

applying the Chebyshev balance, the principle is applied.  
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Approximation of the performance index 

The optimal control problem has been reduced to a 

parameter optimization problem which can be stated as 

follows. Find  ,  and 
f

T  (if free) so that )T,,(J
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is 

minimal, or maximal, according to the constraints Eq. (26) 

and Eq. (27). Many mathematical programming techniques 

can be used to solve this constrained problem. The solution 

proposed by Lagrange is to form an unconstrained problem 

by appending the constraints to the performance index, by 

means of Lagrange multipliers. If we define [27]: 
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Where  
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represents the Lagrange multipliers and the 

necessary conditions for the stationary are given by: 
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statesofnumberj1M,...,1,0v0F

m,...,1,00
r

L

m,...,1,00
b

L

m,...,1,00
a

L

2v,k

j,v

 

(35) 

 

Hence, the determining equations for the unknowns are 

[21]: 
 







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
























































sConstraint ofnumberkm,...,1,0v,0D

stateofnumberj1M,...,1,0v,0F

m,...,1,00
r

F

r

J

m,...,1,00
b

F

b

J

m,...,1,00
a

F

a

J

2v,k

j,v

v

v

v

v

v

v

v

v

v

 

(36) 

If the final time 
f

T  is free, then an additional equation is 

given by: 

0
T

L

f




  (37) 
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Fig. 1    The state variable for the Example 1 is illustrated. 

 
 

Fig. 2    The control variable for the Example 1 is illustrated. 

Example 1 

Find  U  that minimizes: 

 

1)0(X

10UX
d

dX

dUX
2

1
I

1

0

22






 

 (38) 

The exact solution of this example can be found by 

Pontryagin's maximum principle method as follows: 

 

   






















)2sinh()2cosh(2

)12sinh()12cosh(2
)(X

)2sinh()2cosh(2

)12sinh(
)(U

 
(39) 

It can be seen that the Chebyshev and Legendre expansion 

with m = 5 can already offer a very precise result. A 

comparison between the results for the fifth-order 

Chebyshev, Legender approximation and the exact solution 

showed (Fig. 1 and Fig. 2) that the error in the Chebyshev 

series expansion was smaller than the Legender series 

expansion, because the Chebyshev series expansion was 

coincided to the exact solution. Therefore, the Chebyshev 

series expansion was used to solve the main Injection into 

Orbit Problem, as presented in the next section. 

3 INJECTION IN TO ORBIT PROBLEM MODEL  

Point-mass SLV definition 

Consider an idealized point-mass SLV at the origin of 

inertial frame  y,x  at 0t  , moving under the action of a 

constant propulsive force making a control angle  t with 

the horizon. Obviously, the position and velocity vector of 

the vehicle will change due to the action of forces acting on 

it. The problem is to determine the optimal thrust-direction 

control to place the SLV at a given altitude with zero 

vertical velocity and the maximum horizontal velocity [31] 

[32]. 

 

Fig. 3    Nomenclature for Injection into Orbit problem [5] 
 

Dynamic model 

The governing state-space equations for injection into the 

orbit problem are (see Figure 3): 


























gSina
dt

dv

Cosa
dt

du

v
dt

dy

u
dt

dx

 (40) 

Where g is the gravitational constant, h is the height of the 

target orbit, u is the horizontal component of velocity, v is 

the vertical component of velocity, x is satellite downrange, 

and y is satellite altitude. 
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3.3. Initial and terminal conditions 

With its appropriate boundary conditions [31]: 

0)0t(x,0)0t(y

0)0t(v,0)0t(u




 (41) 

D)tt(x,h)tt(y

0)tt(v,U)tt(u

ff

fff





 
(42) 

Non-dimensionalzing 

Now, for a better physical understanding, the governing 

equations and the associated boundary conditions are non-

dimensionalzed using a set of assumed reference 

parameters  *** t,y,u  [31]: 






d

d

t

1

dt

d
,

t

t

y

x
X,

y

y
Y,

u

v
V,

u

u
U

**

****

 (43) 

For optimal control problems where 
f

T is free, one usually 

utilizes the final time as a referencing condition for 

determining non-dimensional parameters. In addition, the 

reference parameters are [31]: 

f

**

f

*

U

h
t,hy,Uu   (44) 

Now, by eliminating the first equation provided in the Eq. 

(40) and using the above non-dimensional state variable 

equations, the transformed equations become [31]: 
























V
d

Yd

Sin
d

Vd

Cos
d

Ud

3

21

1

 (45) 

Where: 

*

**

32*

*

1
y

tu
,

a

g
,

u

at
  (46) 

With non-dimensional boundary conditions [31]: 

1)(y,0)(v,1)(u

0)0(y,0)0(v,0)0(u

fff



 (47) 

For a set of the assumed values of the parameters, 

 g,a,D,h  the geometrical parameters  
321

,,   can be 

determined. For example, if 1aDh  , and 33.0g  , 

the geometrical parameters are 1
31
  33.0

2
 . 

4 TRAJECTORY OPTIMIZATION PROBLEM 

DESCRIPTION 

Cost function 

Different cost functions can be formulated for SLV 

trajectory profile optimization problem. One of the most 

common is the maximization of the final payload for a fixed 

SLV gross launch weight, minimization of fuel to be 

expended in flight and maximization of injection velocity 

for a given altitude or any of the significant orbital 

parameters. The payload optimization problem of directly 

maximizing the final mass has been dealt in the literature 

extensively [7]. However, for the present research effort, the 

problem was determining the control action of  t  

required for transferring the point-mass SLV to the 

specified orbit with minimum time, so that the performance 

measure could be defined as: 

 

1

0

dI  (48) 

Computational procedures 

The task is now to use the equations presented in order to 

find the control history  t  which will propagate the initial 

state values, using the state differential equations and 

meeting specified point conditions while reaching the 

minimum amount of time. This formulation results in a 

problem of open loop optimal control. Transforming   to 

the interval  1,1 : 






1

1

f dt
2

T
I  (49) 

)

v
2

T

dt

dy

33.0Sin(
2

T

dt

dv

Cos
2

T

dt

du

f

f

f





















 
(50) 

1)1t(y,0)1t(v,1)1t(u

0)1t(y,0)1t(v,0)1t(u
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

 

(51) 

We first write analytically the Chebyshev series expansion 

of the third order 3m  . Choosing 21mM  for the 

first and second equations of Eq. (50) and 3mM   for 

the third equation of Eq. (50), we come to 


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
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
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)t(

 (52) 
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The following expressions present the Taylor series for 

Sin and Cos about the base point t=0: 

 

 
!2

)t(
1)t(Cos

!3

)t(
)t()t(Sin

2

3







 (53) 

The unknown’s  
m210

a,...,a,a,a ,  
m210

b,...,b,b,b , 

 
m210

c,...,c,c,c and  m210 e,...,e,e,e  
must satisfy the 

constraints: 
















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With its appropriate boundary conditions: 

 
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(59) 

With 0h  and
f

T5.0g  , the approximate performance 

index to be minimized is: 

)T,,,(F

T)T,,,,(L

fv

6m3

0v

v

ff










 (60) 

Computational results 

Eq. (35) or Eq. (36) and Eq. (54) to Eq. (59) give (7m+12) 

the determining equations for (7m+12) the unknowns 

  6m3,..,2,1,0j,m,..,2,1i,,,,,T jiiiif  .             

These nonlinear equations are solved with the iterative 

Newton method. It should be emphasized that the following 

solution (Table 1) is readily obtained for m=9 and m=11. 

For m = 9 and K = 20, the final results were obtained after 

10.4 s computer time, whereas for m = 11 and K = 25, 

running time was 14.5 s. Hence, for m = 9, the parameter K 

was increased from 20 to 25, and it had no effect on the first 

five decimals of the results while the computer time was 

increased from 10.4 s to 12.6 s. It can be seen that with 

these coefficients, boundary conditions have been satisfied 

(Table 2). 

Table 1 Chebyshev coefficients for m=9 and m=11 

Ninth-order Chebyshev approximation (m=9, K=20) 

f
T  2.21145 sec 

)t(  

02838.0a,01023.0a

,02725.0a,07004.0a

,02218.0a,18288.0a,17378.0a
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76
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




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)t(v  

00091.0b,00745.0b
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,01189.0e,02822.0e,01296.0e
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210
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


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Eleventh-order Chebyshev approximation (m=11, K=25) 

f
T  2.21131 sec 

)t(  

02895.0a,01371.0a,01068.0a

,01969.0a,04071.0a,06193.0a

,01151.0a,18885.0a,16386.0a

,37478.0a,48189.1a,67372.0a
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,35337.0b,07914.0b,66447.0b
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,04475.0c,56422.0c,93104.0c
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543

210









 



Int  J   Advanced Design and Manufacturing Technology, Vol. 9/ No. 3/ September – 2016                                                 73 

  

© 2016 IAU, Majlesi Branch 

 

Table 2 shows that the errors on the boundary conditions are 

negligible and our solutions for point-mass SLV problem 

are sufficiently accurate. Hence, it can be concluded that 

Eleventh-order Chebyshev series expansion gives better 

results. Therefore, we find that we can get more accurate 

results by increasing m. 

Table 2 The errors in the boundary conditions for m=9 and m=11 

m Ini or fina  value |Error| 
 

 

 

9 

v (-1) -0.0052075 5.207500e-003 

v (1) -0.0321069 3.210690e-002 

u (-1) -0.0130064 1.300640e-002 

u (1) 1.0282297 2.822970e-002 

y (-1) 0.0088051 8.805100e-003 

y (1) 0.9766552 2.334480e-002 

 

 

 

11 

v (-1) -0.0046831 4.683100e-003 

v (1) 0.0212223 2.122200e-002 

u (-1) -0.0065543 6.554300e-003 

u (1) 1.0281744 2.817439e-002 

y (-1) -0.0083327 8.332700e-003 

y (1) 0.9862312 1.376880e-002 

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  

X
 ( 

) 
 

State variable X vrs time

 

 
m=9

m=11

 
(a) 

0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

  

U
 (
)

  

State variable U vrs time

 

 
m=9

m=11

 
(b) 

0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

  

Y
 (
)

  

State variable Y vrs time

 

 
m=9

m=11

 
(c) 

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  

X
 ( 

) 
 

State variable X vrs time

 

 
m=9

m=11

 
(d) 

Fig. 4      State variables for the point-mass SLV problem are illustrated. 
The comparisons between ninth-order and eleven-order Chebyshev series 

expansion are illustrated. 
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Fig. 5 Control variable for the point-mass SLV problem. The 
comparison between the ninth-order and eleven-order Chebyshev 

series expansion is illustrated. 
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Also, there was an excellent agreement between our results 

and Ref31 solutions in the magnitude of the final time. In the 

Ref31, the final time or cost function was found to be 2.2347 

second and in this research, it was 2.21131 second for m=11 

and 2.21145 second for m=9. Also, by using figures in 

[31]’s work, it could be seen that there was excellent 

agreement between our time histories (for state and control 

variables) and [31]’s work. 

5 CONCLUSION 

In this research, single objective trajectory optimization of a 

point-mass SLV was conducted using Chebyshev series 

expansion approach. It was a minimum flight time problem. 

The main feature of using Chebyshev (or Legender) series 

expansion was that it converted the differential expressions 

arising from the system dynamics and the performance 

index into algebraic equations. Thus, the trajectory 
optimization of a point-mass SLV was reduced to a problem 

of solving a system of algebraic equations. Hence, 

Example1 denoted that we could get more accurate results 

by increasing the order of series expansion. Moreover, the 

effectiveness of the Chebyshev approximation with respect 

to Legender approximation was proved. Also, the suggested 

strategy is not complicated and can be implemented without 

too much fuss. 
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