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other prominent algorithms in the literature including Sigma method, Modified 
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minimum tracking errors.  
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1 INTRODUCTION 

Due to the presence of unpredicted challenges in the 

dynamics of real problems in industry, the control of 

chaotic problems providing a comprehensive 

evaluation of the designed controller is of great interest 

to researchers [1-4]. In this regard, the Lorenz problem 

which benefits from a chaotic nature provides a real 

challenge to assess the performance of the designed 

controller [5-8]. Lately, to cite just a few, the Lorenz 

problem was controlled by using an optimal controller 

in both finite and infinite time with ensuring the 

asymptotic stability of desired states in both cases [9], 

via employing three strategies of dislocated feedback 

control to enhance the capability of the feedback 

control and its speed [10], and by benefiting from the 

robust method of fractional-order derivative to control 

the unstable equilibrium points of the fractional-order 

Lorenz chaotic system [11].  

One approach to make control of a complicated 

nonlinear system straightforward is to eliminate the 

nonlinearity of a dynamic system. Hence, the 

nonlinearity of the Lorenz systems was cancelled in 

[12] by utilizing the time delay estimation. Since the 

time delay estimation enabled a very effective and 

efficient cancellation of nonlinearity and disturbances, 

the technique turned out to be simple and robust. 

Moreover, an adaptive controller of linear time 

invariant systems via a wavelet network was utilized to 

control the Lorenz chaos and to explore the mechanism 

of a wavelet controller through integrating the 

controller with linear time invariant systems [13].  

Sliding-mode control is a robust nonlinear controller 

employed by a number of researchers in a variety of 

field of research, mainly in steering of vehicles [14-17], 

robots [18-21], and actuators [22]. Although the 

heuristic parameters of sliding-mode control are 

frequently identified by trial-and-error processes, it is 

scientifically crucial to gain them by means an 

optimization approach in order to enhance the 

efficiency of the control approach. One proper 

methodology to choose these factors is using smart 

optimization algorithms, such as particle swarm 

optimization, genetic algorithm, etc. [24].  

In elaboration, it has been illustrated that particle 

swarm optimization presents a robust performance in 

the design of the challenging control problems [25]. To 

this end, multi-objective particle swarm optimization is 

utilized in the present study to eliminate the boring and 

repetitive trial-and-error process and find the 

parameters of sliding-mode control. Particle Swarm 

Optimization (PSO), which is one of the advanced 

robust heuristic algorithms in solving both single-

objective optimization problems and multi-objective 

optimization problems [26], was presented first by 

Kennedy and Eberhart [27] and was progressed through 

the simulation of basic social systems. As an effectual 

optimization algorithm, researchers have reported 

successful applications of PSO in the following fields: 

industrial engineering [28-31], robotics [32-36], vehicle 

design [37-39] and gas industry [40-41]. This algorithm 

can generate a high quality solution with short 

calculating time and a more stable convergence 

characteristic in comparison with other evolutionary 

methods [42].  

In the recent years, several approaches have been 

proposed to develop the PSO algorithm for dealing 

with multi-objective optimization problems. For 

instance, dynamic neighborhood PSO [43], dominated 

tree [44], Sigma method [45], dynamic multiple 

swarms [46], periodic CDPSO [47], [48] and others 

[49-55] have been proposed to address the multi-

objective optimization problems. As elucidation of the 

applications of PSO over sliding mode control, some 

notable studies are as [56-58].  

The present investigation develops significantly 

authors' previous work [59] as follows. In the present 

research, multi-objective periodic CDPSO [47-48] is 

utilized to design the parameters of sliding-mode 

control in order to control one of the challenging 

uncertain chaotic problems, the Lorenz problem, which 

resulted in the evaluation of several aspects of the 

proposed optimal control methodology. However, in 

the previous work [59], a controller with a different 

structure based on PID and sliding mode control 

optimized via multi-objective genetic algorithm was 

used for a biped robot walking in the lateral plane.  

In elaboration of the present study, multi-objective 

periodic CDPSO [47-48] is involving the following 

steps. At the first step, PSO is combined with two 

convergence and divergence operators. At the second 

step, two mechanisms are utilized to produce the set of 

Pareto optimal solutions benefiting from good 

convergence, diversity, and distribution. At the first 

mechanism, a leader selection approach utilizing the 

periodic iteration and the concept of the number of the 

particle’s neighbors is defined.  

At the second mechanism, an adaptive elimination 

approach is employed to confine the number of non-

dominated solutions in the archive. In fact, the adaptive 

elimination approach influences the computational 

time, convergence and diversity of solutions. Lastly, 

multi-objective periodic CDPSO algorithm is employed 

to gain the parameters of the designed sliding mode 

control methodology for the Lorenz chaotic problem 

and the obtained result is compared to the results 

obtained by three robust multi-objective optimization 

algorithms including Sigma method, Modified 

NSGAII, and MOGA.  
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2 THE SLIDING-MODE CONTROL FOR THE 

LORENZ CHAOTIC PROBLEM 

Sliding-mode control is a variable structure control 

approach having a unique characteristic of robustness 

making it not be sensitive to parameter variations 

[60,61]. It is based on maintaining an appropriately 

chosen constraint with regard to the high-frequency 

control switching [62]. As applications of sliding mode 

control on chaotic systems, to cite just a few, a radial 

basis function sliding-mode controller was employed 

for the chaotic Lorenz system [63]. The sliding-mode 

control was used for chaotic systems based on LMI as 

well as establishing a feedback controller to guarantee 

the asymptotical stability of the chaotic systems based 

on the sliding-mode control theory [64]. A chatter free 

sliding-mode controller was designed for the chaos 

control and synchronization with the nonlinear 

uncertain chaotic systems by proposing a new sort of 

dynamical sliding-mode surfaces [65]. The dynamic 

equation of the Lorenz chaotic system with 

disturbances is regarded, as follows [66]: 
 

 ̇                                                                 (1) 

 

 ̇                                                   (2) 

 

 ̇                                                                   (3) 

 

in which        is an additive and scalar control input. 

Furthermore,   is the bounded disturbance by 

considering that       as   is the constant parameter. 

By regarding the target points, the control input   seeks 

to steer the trajectory to the equilibrium point               

   (√ (   )  √ (   )     ) which equals 

(√   (    )  √   (    )      ). To obtain 

the sliding surface, scalars   ,   , and    are defined as 

follows [66]. 

 

     (        )                                            (4) 

 

     (      )                                                   (5) 

 

     (      )                                                   (6) 

 

In which,        and    are the coefficients of the 

sliding surface variables   ,   , and   , respectively. 

The control objective of   is changed from      to        

         according to Eq. (4). In this respect, the 

amount of    is bounded due to designing the controller 

 . Moreover,   and        is regarded as follows [66]: 

 

                                                           (7) 

In which,          represents the upper bound of    .   

      (  )         ,            in which, 

SOFL stands for Soft Limit Function. 

 

    (  )      (  )  
  
 

(    
 )
       (  )      (8) 

 

and    is defined as: 

 

   {
 
  

  
                           

  

  
                             

                     ..        (9) 

 

In which,    represents the limitation of   . Moreover, 

both    and   , which transfer both    and    to the 

appropriate span of   ,are boundary layers of    and    

to make    smooth. The soft limit function Eq. (8) is 

employed to approximate the      function. In 

addition, by regarding the fact that the range of        

is less than one,   will be a decaying oscillation signal. 

 

Remark 1. (Lyapunov’s second method for an 

asymptotically stable system) The Lyapunov’s second 

method, which is a solid approach, employs a 

Lyapunov function  ( )  
 

 
   that presents an analogy 

to the potential function of classical dynamics. Hence, 

it is introduced for a system having a point of 

equilibrium at    , as follows [67]: 

Consider a function  ( )      such that 

  ( )    with equality if and only if     

(positive definite) 

  ̇( )  
 

  
 ( )    with equality if and only if  

    (negative definite) 

Then,  ( ) is called a Lyapunov function candidate 

and the system is asymptotically stable in the sense of 

Lyapunov if Eq. (10) is satisfied: 

 

 ̇( )     ̇                                                         (10) 

 

 ̇( )  [   (        )]  [   ( ̇   ̇)] 
 [   (        )]

 [  
 (                 ̇)] 

    
  [        

                  ̇   
                                        
      ̇                          ̇]      (11) 

 

Lyapunov function  ( ) and its derivative  ̇( ) are 

shown in Fig. 1. Moreover, the sliding surface of the 

sliding mode controller and its derivative are illustrated 

in Figs. 2 and 3. 
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By  ̇   , the sliding mode equation will be obtained. 

To analyze the sliding mode equation, the equivalent 

control effort, i.e. Eq. (13) obtained by the sliding 

mode equation is shown in Fig. 4. 

 

 ̇     ( ̇   ̇)     (              
   ̇)                                                                   (12) 

Then, the equivalent control effort will be resulted, as 

follows: 

 

                   ̇                               (13) 

 

 
Fig. 1 Lyapunov function and its derivative to show the 

asymptotical stability of the system. 

 

 
Fig. 2 The sliding surface of the sliding mode controller 

for the Lorenz chaotic problem. 

 

Remark 2. (The state errors in finite time) Because 

sliding mode control laws are not continuous, it has the 

ability to drive trajectories to the sliding mode in finite 

time (i.e., the stability of the sliding surface is better 

than asymptotic). To ensure that the sliding mode is 

moving into finite time [67], Eq. (15) must be satisfied:  

 

 ̇( )    (√ )                                                      (14) 

 

 ̇( )   (√ )                                                    (15) 

Where     and       are constants. The 

subspace for this system and the sliding surface 

{      ( )   } is given by {       ( ) ̇( )   }. 
That is, when initial conditions come entirely from this 

space, the Lyapunov function candidate  ( ) is a 

Lyapunov function and   trajectories approach the 

sliding mode surface where  ( )   . Moreover, if the 

reachability conditions are satisfied, the sliding mode 

will move into the region where  ̇( ) is bounded and 

away from zero in finite time. Hence, the sliding mode 

 ( )    will be attained in finite time. 
 

  
Fig. 3 The derivative of the sliding mode controller for the 

Lorenz chaotic problem. 

 

 
Fig. 4 The equivalent control effort of the sliding mode 

equation. 

 

Fig. 5 is obtained for Eq. (15) by regarding       and 

     . The control effort of sliding-mode control is 

computed by the following formula. 
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           (  )                                                (16) 

 

In Eq. (16),     is the equivalent control effort that is 

obtained by  ̇   ,   is the design parameter of the 

sliding mode control, and     is the saturation function. 

The choice of eight control coefficients 

                         and    has major effects on 

the behavior in the transient state of the system. An 

appropriate choice of the sliding factors is necessary for 

achieving favorable transient response. In the present 

study, the particle swarm optimization is used to find 

these coefficients, properly. 

 

 
Fig. 5  ̇( )   (√ )  is always negative and the state 

errors will be attained in finite time. 

3 THE OPTIMIZATION ALGORITHM 

The proper selection of parameters is one of the most 

important issues in the aspect of the optimal 

performance of controllers. Hence, multi-objective 

particle swarm optimization is applied in this paper to 

overcome this problem. Previous researchers illustrated 

that this optimization method could be used 

successfully to obtain the Pareto frontiers of non-

commensurable objective functions in the design of 

linear state feedback controllers [48] and suspension 

systems for a vehicle vibration model [47]. This 

method is a combination of the particle swarm 

optimization, convergence, and divergence operators as 

well as implementing a periodic leader selection 

method and adaptive elimination technique to prune the 

archive in this algorithm. The algorithm has been 

named multi-objective periodic CDPSO. In the 

following, PSO, convergence divergence operator, 

periodic leader selection method, and adaptive 

elimination technique are described, briefly. 

Particle swarm optimization: PSO is a population-

based evolutionary algorithm which is inspired by the 

simulation of social behavior [68]. Even though PSO 

had been initially employed for balancing weights in 

neural networks [69], it turned out to be a popular 

global optimization algorithm, mostly for the problems 

with decision variables which are real numbers [70-71]. 

In PSO, each candidate solution is associated with a 

velocity [68], [72] and it is expected that the particles 

will approach superior solution areas. Mathematically, 

the particles are manipulated according to the following 

equations. 

 ⃗ (   )   ⃗ ( )   ⃗ (   )                                      (17) 

 

 ⃗ (   )  

  ⃗ ( )      ( ⃗        ⃗ ( ))      ( ⃗       ⃗ ( )) (18) 
 

Where )t(xi



 and )t(vi



 denote the position and velocity 

of particle i at the time step (iteration) t. ],[r,r 1021 

are random values.    is the cognitive learning factor 

and represents the attraction that a particle has toward 

its own success.    is the social learning factor and 

represents the attraction that a particle has toward the 

success of the whole swarm. It was elucidated that the 

best solutions were determined when    is linearly 

decreased and    is linearly increased over the 

iterations [72]. W is the inertia weight which influences 

the previous history of velocities with regard to the 

current velocity of particle  . Experimental results 

indicated that decreasing the inertia weight linearly 

over iterations enhances the PSO performance [68]. 

 ⃗       represents the personal best position of the 

particle i.  ⃗      stands for the position of the best 

particle of the whole swarm. 

Convergence operator: A novel convergence formula 

that involves four parent particles was proposed in [47-

48], and also is used in this paper. Let   [   ] be a 

random number. If                 (             is 

convergence probability), then one of the following 

operators should be performed to generate the new 

particle position  ⃗ (   ) from the old particle 

position  ⃗ ( ): 

If fitness  ⃗ ( ) is smaller than fitness  ⃗ ( )  and fitness 

 ⃗ ( ) then: 
 

 ⃗ (   )   ⃗        (
 ⃗     

 ⃗ ( )
)(  ⃗ ( )   ⃗ ( )   ⃗ ( ))(19) 

 

If fitness  ⃗ ( ) is smaller than fitness  ⃗ ( ) and fitness 

 ⃗ ( ) then: 

 ⃗ (   )   ⃗        (
 ⃗     

 ⃗ ( )
)(  ⃗ ( )   ⃗ ( )   ⃗ ( ))(20) 
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If fitness  ⃗ ( ) is smaller than fitness  ⃗ ( ) and fitness 

 ⃗ ( ) then: 

 ⃗ (   )   ⃗        (
 ⃗     

 ⃗ ( )
)(  ⃗ ( )   ⃗ ( )   ⃗ ( ))(21) 

 

In which, particles  ⃗ ( ) and  ⃗ ( ) are chosen from 

swarm by a uniformly selection approach.   ,   , and 

   are random numbers chosen from [   ] and  ⃗     is 

the position of the best particle of the whole swarm. 

After computing Eqs. (19), (20), or (21), superior 

between  ⃗ ( ) and  ⃗ (   ) should be selected. If                         

              , then no convergence operation is 

performed for  ⃗ ( ). 

Divergence operator: The divergence operator 

presents a feasible leap on some particles selected. 

Let   [   ] be a random number. If              , 

(            is divergence probability) and particle 

 ⃗ ( ) was not enhanced by a convergence operator, 

then the following divergence operator is implemented 

to produce a new particle. 

 ⃗ (   )           ( ⃗ ( )   )                        (22) 

 

         ( ⃗ ( )   ) generates random numbers 

from the normal distribution with a mean parameter 

 ⃗ ( ) and standard deviation parameter    (   is a 

positive constant). If particle  ⃗ ( ) was enhanced by a 

convergence operator or              , then no 

divergence operation will be performed. More details 

of this operator are mentioned in [47], [48]. 

Periodic leader selection method: This technique is 

based on the density measures, and a neighborhood 

radius               is defined for leaders. Indeed, two 

leaders are regarded as neighbors if their Euclidean 

distance (measured in the objective domain) is less than 

             . Using this definition, the number of 

neighbors of each leader is computed in the objective 

function domain. The particle which has fewer 

neighbors is preferred as the leader. However, the 

leader position and its density will change after a 

number of iterations. Hence, the leader selection 

operation should be repeated and a new leader must be 

identified. To this end, the maximum iteration is 

divided into several equal periods and each period has 

the same iteration  . 

In each period, the leader selection operation could be 

implemented and the non-dominated solution which 

has fewer neighbors is preferred as the leader. 

Moreover, if a particle dominates the leader in the 

beginning of the iteration in a period, then this particle 

will be considered as a new leader.  

Adaptive elimination technique: This technique is 

utilized to prune the archive; and in this approach, the 

archive’s members have an elimination radius which 

equals              . If the Euclidean distance (in the 

objective function space) between two particles is less 

than              , then one of them will be omitted. The 

following equation is introduced to determine the value 

of               that is named adaptive              : 
 

              
 

                   
                            (23) 

 

In which   is a positive constant,   is the current 

iteration number, and                   is the 

maximum number of allowable iterations [47-48]. 

4 THE OPTIMAL PARETO OF THE SLIDING-MODE 

CONTROL FOR THE LORENZ CHAOTIC PROBLEM 

Sliding-mode control is an approach to define 

asymptotically stable surfaces such that all system 

trajectories converge to these surfaces and slide along 

them until achieving the origin at their intersection 

[73]. Nevertheless, the heuristic sliding parameters 

require to be chosen, properly. Therefore, multi-

objective periodic CDPSO is used to determine the 

proper parameters and to eliminate the tedious and 

repetitive trial-and-error process. Moreover, the 

performance of a controlled closed loop system is 

evaluated by a variety of goals [74-75]. Here, 

normalized summation of states errors and normalized 

control effort are regarded as the objective functions. 

These objective functions have to be minimized, 

simultaneously.  

The vector [                          ] is the vector 

of selective parameters of sliding-mode control.   is the 

design parameter.        is the upper bound of         

is the threshold value of         and    are boundary 

layers of    and    to smooth   .        and    are the 

coefficients of the sliding surface variables. The 

normalized summation of states errors and the 

normalized control effort are functions of this vector’s 

components. This means that changes will occur in the 

normalized summation of states errors and normalized 

control effort by the selection of various values for the 

selective parameters. Thus, this is an optimization 

problem with two objective functions (normalized 

summation of states errors and normalized control 

effort) and eight decision variables 

(                          ). The block diagram to 

find the Pareto front of the sliding-mode control for the 

Lorenz chaotic problem based on the multi-objective 

periodic CDPSO algorithm is illustrated in Fig. 6. 
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Based on extensive experiments, the regions of the 

selective parameters are chosen, as follows:  

            ,           ,            

   ,              , 

           ,           ,            , 

          . 

 

Fig. 6 The block diagram to find the Pareto front of the 

sliding-mode control for the Lorenz chaotic problem based on 

the multi-objective periodic CDPSO algorithm. 

 

The parameters of multi-objective algorithm are chosen 

as follow. In each period, the inertia weight W is 

linearly decreased from        to       ,    is 

linearly reduced from         to        , and    is 

linearly increased from         to        , over 

the time. The related variables used in the convergence 

and divergence operators are:                 , 

               , and     
         

 
. The term  ⃗ ( ) 

is limited to the range [           ] in which        

     
         

 
. While the velocity violates this 

range, it will be multiplied by a random number 

between [   ]. Furthermore, the positive constant for 

              is         , and the neighborhood radius 

for the leader selection is                   .  

The number of iterations in a period is    , the 

swarm size equals 150 and the maximum iteration is 

300. Furthermore, three well-known versions of multi-

objective optimization algorithms Sigma method [45], 

Modified NSGAII [76], MATLAB Toolbox MOGA 

are used to compare the performance of the periodic 

multi-objective CDPSO. The population size 150 and 

function evaluation 4500 are regarded for all 

algorithms and other details are illustrated in Table 1. 

The Pareto fronts of this multi-objective problem are 

shown in Fig. 7. Indeed, this figure illustrates the 

feasibility and efficiency of proposed multi-objective 

algorithm in comparison with other algorithms.  

Fig. 7 shows that the periodic CDPSO algorithm has 

more uniform and diverse feasible solutions. In Fig. 7, 

points A and C stand for the best normalized 

summation of state errors and normalized control 

effort, respectively. 

Table 1  Used multi-objective optimization algorithms for 

comparison and their parameter configurations. 

Algorithm Pruning of archive 
Crossover 

rate 

Mutation 

rate 

Sigma 

MOPSO 

Archive size is 

fixed 
- 0.1 

Modified 

NSGAII 

           
      

0.8 0.1 

MATLAB 

MOGA 

Distance 

crowding 
Scattered 

Constraint 

dependent 

default 

 

It can be observed from Fig. 7 that all the optimal 

points in the Pareto front are non-dominated and can be 

chosen by the designer as an optimal sliding-mode 

controller. In addition, choosing a better value for any 

objective function in the Pareto front causes a worse 

value for another objective. The corresponding decision 

variables (vector of sliding-mode controllers) of the 

Pareto front shown in Fig. 7 are the best possible 

optimal points.  

 

 
Fig. 7. The obtained Pareto fronts by using Sigma method 

[45], Modified NSGAII [76], MOGA (MATLAB Toolbox), 

and the proposed algorithm for the optimal control of the 

Lorenz chaotic problem. 

As a matter of fact, if any other set of decision 

variables is chosen, the corresponding values of the 

pair of those objective functions locate an inferior point 

in the Pareto front. Such inferior area in the space of 

the two objectives is top/right side of Fig. 7.  In Fig. 7, 

point B can be a trade-off optimum choice when 

minimum values of both the normalized summation of 

states errors and normalized control effort are 

considered. Design variables and objective functions 

corresponding to the optimal points A, B, and C are 

illustrated in Table 2. The block diagram of the 

optimum sliding-mode control system for the Lorenz 

chaotic problem is shown in Fig. 8. The time responses 

and control effort of the optimal points A, B, and C are 

shown in Figs. 9 through 12. 
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Fig. 8. The block diagram of the optimum sliding-mode 

control system for the Lorenz chaotic problem. 

 

Table 2.  The objective functions and their associated design 

variables for the optimum points of Fig. 7. 
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Fig. 9. State    of the optimum points A, B, and C shown in 

the Pareto front. 

 

 

Fig. 10. State    of the optimum points A, B, and C shown in 

the Pareto front. 

 

Fig. 11. State    of the optimum points A, B, and C shown in 

the Pareto front. 

 

 

Fig. 12. Control effort of the optimum design points A, B, 

and C shown in the Pareto front. 
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5 CONCLUSION 

This paper presented a novel optimal robust sliding 

mode controller evaluated via an uncertain chaotic 

problem. When designing the control methodology, 

multi-objective periodic CDPSO benefiting from a 

number of crucial factors providing effective 

performance of the method was employed. Those 

factors involved are divergence and convergence 

operators, the periodic leader selection method, and the 

adaptive elimination technique. To design the sliding 

mode control, two conflicting objective functions, the 

normalized summation of states errors and normalized 

control effort, were regarded to optimize by multi-

objective periodic CDPSO. Afterward, the obtained 

Pareto front was compared with the Pareto front of 

three prominent algorithms: Sigma method, Modified 

NSGAII, and MOGA. The Pareto front obtained via 

multi-objective periodic CDPSO provided superior 

optimal non-dominant points than that of the other 

three algorithms. Hence, it is presenting ample 

opportunities for the designers to come up with the best 

control methodology to control the chaotic uncertain 

problems. Finally, the presented methodology resulted 

in a better control performance in terms of providing 

optimal control effort and minimum states errors for 

challenging chaotic problems. 
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