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networks. A modified 4-5-6-7 interpolating polynomial is used to plan a trajectory 
for a spherical parallel manipulator. The polynomial function which is smooth and 
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Moreover, the simulation results prove the efficiency of the proposed algorithm.  

Keywords: Collision Avoidances, Neural Networks, Parallel Robots, Singularity  

Reference: Alibakhshi, R., Mohammadi Daniali, H. R., “Trajectory Optimization 
of Spherical Parallel Robots using Artificial Neural Network”, Int J of Advanced 
Design and Manufacturing Technology, Vol. 7/ No. 1, 2014, pp. 91-98. 

Biographical notes: R. Alibakhshi has MSc degree in Mechanical Engineering 
from Babol Noshirvani University of Technology. His field of research is on 
parallel manipulators. H. M. Daniali is currently an Associate Professor in the 
Department of Mechanical Engineering, at Babol University of Technology. Dr. 
Daniali graduated as a Mechanical Engineer from Ferdosi University in 1965. He 
received his MSc from Tehran University in 1968 and his PhD degree in 
Mechanical Engineering from McGill University, Canada, in 1995. His research 
interests focus on theoretical kinematics and parallel manipulators.  

 



92                                            Int  J   Advanced Design and Manufacturing Technology, Vol. 7/ No. 1/ March– 2014 
 

© 2014 IAU, Majlesi Branch 
 

1 INTRODUCTION 

A parallel manipulator is a closed-loop mechanism in 
which a moving platform is connected to the base by 
several legs. This manipulator is faster, stiffer and more 
accurate than its serial counterpart. However, the 
closed-loop nature of a parallel manipulator limits its 
workspace and creates complex kinematics singularities 
within the workspace. Because of limited workspace 
coupled with singularities and obstacles, it is essential to 
have an algorithm that can plan a path free of 
singularities and obstacles inside the workspace.  
Dasgupta and Mruthyunjaya have proposed an 
algorithm which finds safe via points and plans a 
continuous path (free-of-singularity) connecting two 
points [1]. Dash et al., presented a singularity-free path 
generation method upon finding out the reachable 
workspace of parallel manipulator [2]. Bazaz and Tondu 
studied minimum time on-line joint trajectory generator 
based on low order spline method for industrial 
manipulators [3]. Saramago and Junior optimized 
trajectory of a 3-DOF parallel manipulator in presence 
of moving obstacle [4-5]. They could minimize the 
distance between moving obstacle and gripper. 
An artificial neural network is a massively parallel-
distributed processor that has a natural propensity for 
storing experiential knowledge and making it available 
for use. Boudreau et al., studied Parallel manipulator 
kinematics learning using neural network models [6]. 
Kim et al., analyzed an efficient type of neural network 
namely, cascade-correlation feed-forward [7]. Seyyedi 
parsa et al., optimized trajectory of 3-RRR planar 
parallel manipulator planned by 3-4-5 polynomial [8]. 
They added a new term to the predefined polynomial in 
order to plan a continuous and smooth path avoiding 
singularities and obstacles, but they did not consider 
continuity of the jerk.  
This paper presents two algorithms, namely, solving 
forward kinematics problem (FKP) of parallel 
manipulators based on the data of its inverse kinematics 
(IK) and planning a smooth path to avoid singularities 
and obstacles.  It is noteworthy that FKP is generally 
more complicated than inverse kinematics problem 
(IKP) in case of parallel manipulators. A trajectory 
based on 4-5-6-7 interpolating polynomial is planned, 
where a new term is added which has continuity in 
displacement, velocity, acceleration and jerk to avoid 
the possible singularity or obstacle.  
Therefore, the motion undergone by desired trajectory is 
as smooth as possible; i.e., abrupt changes in position, 
velocity, acceleration and jerk are avoided. In order to 
estimate the distance between the gripper and any 
obstacle or singular point, a minimization algorithm is 
applied. It is possible to verify if collisions occur by 
solving forward kinematics (FK) for joint angles in 

every step of the trajectory and comparing the answer 
with singular points or obstacle positions.  

2 SPHERICAL PARALLEL ROBOTS 

As depicted in Fig. 1, spherical parallel manipulators 
(SPRs), which can provide three degree of freedom of 
rotation, have been applied for most applications such as 
camera-orienting. The Agile Eye is a 3-RRR spherical 
parallel robot in which the axes of all pairs of adjacent 
joints are orthogonal. This robot is also a high-
performance mechanism capable of orienting a camera 
within a workspace larger than that of a human eye [9]. 
Its mobile platform is a moving equilateral triangle 
linked to a fixed equilateral triangle. The axes of the 
first base joint, the second intermediate joint, and the 
third platform joint have a common point in the centre 
of a sphere. A base reference frame, 

321 uuuO , is selected 

in such a way that its 1u  axis is along the axis of the 
first base joint, its 2u  axis is along the axis of the 
second base joint, and its 3u  axis is along the axis of the 
third base joint, as shown in Fig. 1.  
 

 
Fig. 1 Spherical parallel robot in general configuration 

 
A mobile reference frame,

321 vvvO , is fixed at the mobile 
platform. The position of moving platform is defined by 

21 vv ,  and 3v  unit vectors. Gosselin and Gagne 
suggested three simple methods to solve forward 
kinematics of the spherical parallel manipulator and 
claimed that this manipulator admits at most eight 
solutions [10]. Bonev et al., derived the jacobian 
matrices of the Agile-Eye and studied its singularities 
[11]. The rotation matrix R describes the orientation of 
the mobile frame with respect to the base frame. The 
ZYX Euler-angle convention is used here because it 
simplifies the kinematics analysis. In the base frame, the 
axes of the platform joints are defined as:  
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frameMoving
i

frameFixed
i Rvv −− = (1) 

 
Where frameFixed

iv −  and frameMoving
iv −  are unit vectors at 

the fixed and mobile frames, respectively. The IK is to 
determine the actuator joint angles ),,( 321 θθθ  given the 
pose of the end-effector ( )ψθϕ ,,  in the base frame. 
Here, the notation used by Bonev et al. is adopted [11]. 
For a given orientation of the mobile platform, each leg 
admits maximum two solutions for iθ  in ],( ππ−  as: 
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3 ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANN) are composed of 
simple elements operating in parallel. They are most 
commonly used for prediction, pattern recognition, and 
nonlinear function fitting. Neural network can be trained 
to perform a specific function by adjusting the values of 
the weights between inputs and outputs. Commonly 
ANN can store the sample with distributed coding, thus 
forming a trainable nonlinear system. In this work, it is 
used the Cascade-feed forward algorithm for training 
process because of its advantages over Feed-forward 
back propagation algorithm [7]. Like Feed-forward 
networks, Cascade-forward networks uses back-
propagation algorithm for updating of weights and 
biases but the main symptoms of this network is that 
each layer neurons connected to all previous layer 
neurons. It is proved that the cascade-forward neural 
network with back-propagation learning provides the 
best performance in terms of convergence time, 
optimum network structure and recognition 
performance. The structure of this network is shown in 
Fig. 2. 
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Fig. 2 Cascade-forward network general structure 

 

4 FORWARD KINEMATICS SOLUTION VIA 
NEURAL NETWORKS 

In this part, FKP of Agile-Eye is solved by ANN. The 
FKP deals with motion of end-effector of the robot 
according to the world coordinate system. For parallel 
manipulators, in general, this is a system of nonlinear 
algebraic equations. Here, ANN is implemented to solve 
the FKP of the Agile-Eye. First, some known points of 
the Euler-Angels are taken. By solving IKP, joint angels 

),,( 321 θθθ  related to different ( )ψθϕ ,,  are computed. 
These values are recorded in a file to form the learning 
sets of neural network. With regard to the rule which 
claim that the IKP of the 3-RRR spherical manipulator 
admits eight sets of solutions, eight sets of training files 
are constructed [10]. Approximately 3,000 randomly 
selected positions of the gripper in Euler angles are 
used. About 75% of these data sets were used in training 
of the network, and the rest were used in testing. Eight 
multi-layer perceptron neural networks were designed 
separately and each one includes one hidden layer with 
7 neurons and Tansig functions as transfer function. The 
learning rate set was 0.4 and momentum constant was 
0.95 which are experimentally chosen.  
The number of neurons for input and output layer is 20 
and 3, respectively. The transfer function for input layer 
set Tansig and for output layer set Purelin. The back 
propagation algorithm was implemented, and the error 
at the end of learning process was bounded to 

51097717.9 −×  for the training sets. Every set of IK 
answers was applied as a training set individually. So, 
eight neural networks are available for solving the FKP. 
In order to solve FKP, first the input data (motors’ 
angles) must be labelled to a branch of IKP. Then, 
motors’ angles will be presented to the neural network 
which was trained with that set of IKP data.  
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Fig. 3 Comparison between exact and ANN solutions in 

3D ( )ψθϕ ,,  
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Fig. 4 Comparison between 2D exact and ANN solutions 
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Fig. 5 Comparison between 2D exact and ANN solutions 
( )ψϕ,  

 

 
Fig. 6 The trained neural network performance  

Finally, the trained networks may be tested by choosing 
some data which have not been used in the training 
process. After presenting the data to the completed 
neural network, the answers of the network are 
compared with those from the IKP as depicted in Fig. 3.  
Moreover, the projections of the data on the ( )θ−ϕ  and 
( )ψ−ϕ  planes as depicted in Figs. 4 and 5 show the 
accuracy of the trained network. Furthermore, the 
performance of the trained network is shown in Fig. 6 
which shows its fast convergences. 

5 SINGULARITY ANALYSIS 

Algebraically, singularity deals with the rank deficiency 
of the associated Jacobian matrices. While 
geometrically, it is observed that the manipulator gains 
at least one additional uncontrollable degree of freedom 
or loses one or a few degrees of freedom in singular 
points. By considering the angle 1ϑ  between iv  and 

iw , it is suggested to obtain the Jacobian by 
differentiating the enclosure equation: 
 

)cos(. 1ϑ=ii vw (3) 

 
Which leads to: 
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Where: 
 

ii vωv ×= , 

iiii vuθw ×⋅=  

(5) 

 
Substituting the Eq. (5) into Eq. (4) yields: 
 

0=+ θω KJ (6) 
 
Where, ω  and θ  are the angular velocity of the mobile 
platform and the active-joint rates respectively. 
Although very simple, the jacobian matrices are 
obtained by: 
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In which ii vu ,  and iw  are unit vectors in the fixed-
frame. The singularities encountered in closed loop 
kinematics chain can be divided into three main groups 
[12]. The first type of singularity occurs whenever K is 
singular which leads to fully extended or folded leg. 
Moreover, this type of singularity occurs at the 
boundary of workspace. Type 2 singularity is specified 
by studying matrix J and occurs whenever the three 
vectors ( )ii vw ×  for i=1, 2, 3, are coplanar or collinear. 
The third type of singularity occurs in the case that both 
types of the foregoing singularities occur 
simultaneously.  
For the Agile-Eye, these vectors can not be collinear. 
So, when these three vectors are coplanar, the moving 
platform can rotate about the axis passing through the 
centre O and normal to the plane of these vectors, even 
if all the actuators are locked. Moreover, kinematic 
conditioning index (KCI) is defined as the inverse of the 
condition number. KCI is bounded between zero and 
one. It may be inferred that a higher KCI makes a matrix 
closer to the isotropic condition and a lower KCI makes 
it closer to singularity. If it is possible to avoid 
singularity, an optimal path may be found with high 
value of kinematic conditioning index. For manipulator 
at hand, all of its singular points are found by this 
method as shown in Fig. 7. 
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Fig. 7 Type II of singular points 

6 TRAJECTORY OPTIMIZATION PROCEDURE 

In this study, a path is planed between two given points 
in Eulerian coordinate. A 4-5-6-7 polynomial 
interpolation based method is applied to plan a 
trajectory in the joint space. It can be three-times 
differentiated and thus, ensures the smoothness of the 
trajectory. A smooth motion is defined using eight 
conditions between the initial and the final poses. 
Therefore, a seventh-order polynomial ( )τS  has been 
chosen to study the trajectory planning as: 
 

Where t, is the time counted from the initial pose, i.e., 
corresponding to t=0 and T is the implementation time. 
A normal polynomial that represents each of the joint 
variables jθ  throughout its range of motion is defined 
by: 
 
{ } { } ( ) { } { }( )Initial

j
Final

j
Initial

jj θθθθ −+= τS  
 

(9) 

Where { }Initial
jθ  and { }Final

jθ  are the given initial and 
final values of the jth joint variable, respectively. It is 
thus possible to determine the evolution of each joint 
variable if both its end values and the time required to 
accomplish the motion are known. In the absence of 
singularities, then, the conditions of zero velocity, 
acceleration and jerk imply zero joint velocity, 
acceleration and jerk, respectively. With respect to the 
initial and final conditions, the normal polynomial found 
is: 
 
( ) 4567 35847020 τττττ +−+−=S  (10)

 
Equation (9) is used for trajectory planning without 
considering the singularities and obstacles. The 
polynomial trajectories discussed above only met the 
Eulerian trajectories prescribed at the initial and final 
instants. If collisions and singularities occur, the 
trajectory has to be changed so as to eliminate them, 
while keeping the trajectory as smooth as before. This 
proposed modification is done by adding the value of 
smooth and continuous displacement functions to the 
polynomial of Eq. (9). As mentioned earlier, Eq. (9) 
guarantees the continuity of displacement, velocity, 
acceleration and jerk. So, the new term should not 
disobey this rule.  This term is considered as: 
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Where, L is the amplitude of the displacement function, 

*T  is the total time for collision avoidance process, and 
*t  is the time step while obstacle avoidance is taking 

place. Moreover, L and *T  are constants depending on 
the sizes of the obstacles or singularities. The boundary 
conditions are also defined by: 
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Fig. 8 Smooth displacement and velocity 

 

 

 
Fig. 9 Smooth acceleration and jerk 

 
Figures 8 and 9 show the continuity of displacement, 
velocity, acceleration and jerk for the new proposed 
term. In order to avoid each obstacle, the goal here is to 

minimize the sum of the distances between the new 
trajectory and three steps as depicted in Fig. 10, i.e., 
 
Minimize 321 LLLF ++=                               (13)  

 
Where •  denotes 2-norm. 
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Fig. 10 Obstacle avoidance in planned trajectory 

7 MINIMIZATION ALGORITHM 

It is obvious that every minimization algorithm requires 
objective function and at least one constraint which may 
be linear or nonlinear equality or inequality. To specify 
this constraint, the definition of the plate is used in such 
away that its normal is along with the robot motion (i.e. 
tangent to the path) which consists the obstacle. In other 
words, the plate equations will be updated in each 
collision step and can be written as follows: 
 

( ) ( ) ( ) .cba:P obsnewobsnewobsnew 0331221111 =−+−+− θθθθθθ  (14) 
 
Where { }111 c,b,a  is the normal of the plate in obstacle 
coordinate and { }new3new2new1 ,, θθθ  is the optimal joint 
angel which is located in the plate that can be obtained 
by Eq. (14). First, a preliminary trajectory is planned 
from the initial to the final poses in the joint space, 
disregarding the obstacles and singularities. Then, it is 
verified if collisions or singularities occur. If this is the 
case, ( )**S τ  is added to ( )τS  as: 
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On the other hand, in general, it is possible to change 
every joint variable separately as the following: 
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Where βα,  and γ  are the parameters.  F and P are both 
considered, which are composed of three variables βα,  
and ,γ  defined as an objective function and constraint 
equation, respectively. Here, minimization procedure is 
used which implements various numerical optimization 
Routines, including sequential quadratic programming 
algorithm to solve for constrained optima. This 
algorithm attempts to find a constrained minimum of a 
scalar function of several variables starting at an initial 
estimate. If any singular point or obstacle lies on or near 
the path, this path is restructured by an algorithm as 
demonstrated in Fig. 11.  
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Fig. 11 Trajectory planning and machine learning procedure 

 
As mentioned earlier, the proposed algorithm may find a 
path with minimum passing length and the best average 
of the KCI. If the time step is assumed as ‘m’, the 
summation of path length passing through the obstacle 
or singular point is defined as: 
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8 SIMULATION RESULTS 

To demonstrate the efficiency of the proposed 
algorithm, here an example with the following data is 
included: 
 

,3461.1,1890.1,0337.0,3206.1 F
1

I
3

I
2

I
1 =θ−=θ−=θ=θ  

3439.0,1918.0 F
3

F
2 −=θ−=θ  all in radians,  

sec4T = ; sec1T* = ; L=0; 21 π=ϑ ;  

The angle between iv  and iw ,  21 π=ϑ   
The angle between iu  and iw ,  .22 π=ϑ  
 
This algorithm starts with L=0 and if collision occurs, 
the amplitude will be increased automatically. The 
gripper will be asked to find an optimal path between 
the initial and final poses in the presence of obstacles 
and singularity in the 3-D motion (Fig. 12). 
Subsequently, a path planning algorithm is used to 
determine an optimal path avoiding these obstacles with 
maximum average of KCI. The algorithm leads to 

2000L,0,05.0 ==γ=β−=α , average KCI=0.2986 
and 500L,001.0,05.0,0 ==γ=β=α , average 
KCI=0.3607 in order to avoid singular point No. 1 and 
No. 2 respectively. Then the optimal trajectories in the 
joint space yields: 
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Moreover, the algorithm yields to the followings in 
order to avoid singular point No. 3, obstacles No. 1 and 
No. 2 with ,0,05.0 =γ=β=α  500L = , KCI=0.3607; 
i.e.: 
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The proposed algorithm yields to 

210L,001.0,02.0,03.0 ==γ=β=α , KCI=0.4201 for 
obstacles No. 3 and No. 4 avoidances as below: 
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The optimal trajectories are also obtained in order to 
avoid singular point No. 4 and obstacle No. 5 with 

190L,002.0,0,04.0 ==γ=β=α , KCI=0.3921 and 
obstacle No. 6 with ,004.0,06.0,0 =γ=β=α  

300L = , KCI=0.4112 as: 
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The optimal trajectory is depicted in Fig. 12, which 
shows the efficiency of the algorithm. 
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Fig. 12 Optimal path planning based on ANN 

9 CONCLUDING REMARKS 

In this paper, a simple and novel method for singularity-
free path planning and obstacle avoidance of parallel 
manipulator based on neural networks was presented. A 
modified 4-5-6-7 interpolating polynomial was used to 
plan a trajectory between two poses. The polynomial 
was modified to plan a trajectory with the best 
kinematics conditioning index while avoiding 
singularities and obstacles. The simulation results for 
the Agile-Eye which leaded to a smooth trajectory 
avoiding singularities and obstacles demonstrated the 
efficiency of the algorithm. Moreover, an artificial 
neural network was implemented to solve forward 
kinematics of the manipulator to estimate the distance 
between the gripper and singularity or obstacle. The 
algorithm may be easily adopted to solve forward 
kinematics of any parallel manipulator and its trajectory 
planning. 
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