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Abstract: Ultrasonic Vibration assisted Single Point Incremental Forming 
(UVaSPIF) process is an attractive and adaptive method in which a sheet metal is 
gradually and locally formed by a vibrating hemispherical-head tool. The 
ultrasonic excitation of forming tool reduces the average of vertical component of 
forming force and spring-back rate of the formed sample. The spring-back 
phenomenon is one of the most important geometrical errors in SPIF process, 
which appear in the formed sample after the process execution. In the present 
article, a statistical analysis and optimization of effective factors on this 
phenomenon is performed in the UVaSPIF process based on DOE (Design of 
Experiments) principles. For this purpose, RSM (Response Surface Methodology) 
is selected as the experiment design technique. The controllable factors such as 
vertical step size, sheet thickness, tool diameter, wall inclination angle, and feed 
rate is specified as input variables of the process. The obtained results from 
ANOVA (Analysis of Variance) and regression analysis of experimental data, 
confirm the accuracy of mathematical model. Furthermore, it is shown that the 
linear, quadratic, and interactional terms of the variables are effective on the 
spring-back phenomenon. To optimize the spring-back phenomenon, the finest 
conditions of the experiment are determined using desirability method, and 
statistical optimization is subsequently verified by conducting the confirmation 
test. 
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1 INTRODUCTION 

Nowadays, production industries need to use 

economical and flexible processes to enable them to 

meet the market demands in a competitive environment 

with a minimum cost and time. Thus, researchers have 

considered the investigation of operational methods in 

order to produce the primary sample and develop new 

products. Single Point Incremental Forming (SPIF) 

process has been introduced as an attractive and 

adaptive method among the rapid prototyping processes 

with a high potential to be produced in a small volume. 

This process was patented by Leszak in 1967 and its 

feasibility was confirmed by Kitazawa et al., in 

manufacturing of rotational symmetric parts [1], [2]. In 

this process, simple forming tool with hemispherical-

head travels on a sheet metal in a predefined path and 

apply local and controllable plastic deformation to 

create the final geometry [3-6]. On the other hand, the 

geometrical and dimensional accuracy of the SPIF 

products is incomplete. In fact, the sheet metal is 

clamped simply and can be bended freely during the 

process. Thus, when the tool pressure is removed from 

the sheet, three different types of error will be detected 

on the final geometry (Fig. 1). 

 

 
Fig. 1 Different types of error on the final geometry in 

SPIF process 

 

(1) Sheet bending: This error occurs near the major 

base of the part and usually can be removed by 

employing backing plate, which lead to the increase of 

sheet rigidity. 

(2) Lift up: In this state, the formed sheet leaps upward 

and the final depth of the part is less than the applied 

depth. This geometrical error is recognized as spring-

back. 

(3) Pillow effect: This error occurs in the minor base of 

the part and appears in the form of the concaved curve, 

which result from the undeformed material. 

Micari et al., presented some strategies for reduction of 

geometrical and dimensional errors involved in the 

SPIF process [7]. They discussed on the new trends in 

this direction and showed that between different 

suggested approaches, the ones based on the use of 

optimized tool trajectories seem to be the most 

promising. Ambrogio et al., focused on the evaluation 

and compensation of elastic spring-back [8]. In this 

way, an integrated numerical/experimental procedure 

was proposed in order to minimize the shape defects 

between the obtained geometry and the desired one. 

They have shown that the dimensional accuracy of the 

formed sample depends on the tool diameter and 

vertical step size. In addition, design of optimized 

trajectories was introduced as one of the most 

promising way in order to assess the profiles that are 

more precise.  

Allwood et al., have reported that the sheet metal 

forming processes meet typically the geometrical 

tolerances in 0.2mm  limit, whereas the tolerance 

performance of incremental forming processes, are ten 

times worse than this situation [9]. The weakness of 

geometrical accuracy in incremental forming process in 

comparison with CNC machining process is due to the 

fact that the sheet metal deformation is not defined 

solely by the tool path. Hence, a significant 

deformation is created at the outer limits of the contact 

zone. Ambrogio et al., performed several tests based on 

DOE techniques to fully understand the spring-back 

phenomenon with respect to other geometrical 

parameters such as wall inclination angle, final depth of 

the product and sheet thickness [10]. Subsequently, 

they extracted an analytical model to estimate the 

“over-deformation” to be applied in order to reduce the 

geometrical error.  

Meier et al., have shown that the use of Robot in 

incremental forming process (Roboforming) has a high 

capability to enhance the geometrical accuracy [11]. 

They suggested two approaches (a model-based and a 

sensor-based approach) to determine the geometrical 

deviations. For both approaches, one universal 

compensation strategy can be used to reduce the 

determined deviations in Roboforming. Allwood et al., 

proposed the employment of partially cut-out blanks in 

incremental forming [12]. The use of this type of blank 

creates a localized deformation earlier, and as a result 

reduces the difference between a part made by a 

“contour tool path” and the target product geometry. 

The influence of these partial cut-outs was evaluated by 

forming a simple and a complex part, with and without 

cut-outs and with and without backing plates.  

The results indicated that partially cut-out blanks lead 

to slightly more accurate forming than conventional 

blanks when unsupported, but that the accuracy 

improvement is less than that which is achieved by use 

of a stiff cut-out supporting plate. Therefore, it seems 

that the use of partially cut-out blanks does not give a 

useful benefit in incremental forming. Review of the 

previous researches shows that different approaches 
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have been made by scientists to increase the 

geometrical and dimensional accuracy of the formed 

sample. Tool path optimization, process parameters 

optimization and development of new methods are 

some of these strategies. On the other hand, the 

application of ultrasonic vibration in metal forming has 

been discussed for many years [13-15]. The 

experiments on superimposing the ultrasonic 

oscillations on the forming process indicated some 

benefits such as reduction of the forming forces, 

reduction of the flow stress, reduction of the friction 

between die and workpiece and production of the better 

surface qualities and higher precision.  

Vahdati et al. [16], [17] showed that the ultrasonic 

excitation of hemispherical-head tool in SPIF process 

(UVaSPIF), reduces the average of vertical component 

of forming force and spring-back rate of the formed 

sample. Thus, the sheet metal will be formed 

incrementally in the presence of ultrasonic vibration 

with given frequency and specified amplitude as 

compared to the previous researches. Hence, in the 

present article, the analysis and optimization of spring-

back phenomenon in UVaSPIF process is done based 

on DOE principles using RSM technique. The 

objectives of this research unfold on extraction of 

regression model and mathematical equation resulting 

from ANOVA for spring-back coefficient and access to 

optimal conditions of the experiment. 

2 METHODOLOGY OF STATISTICAL ANALYSIS 

A model presented in Fig. 2 can introduce the process 

under study. With the assumption of independency of 

controllable factors ( iX ) and response of the process 

( iY ), the goal is to obtain the mathematical relation 

between the output variable and the input variables 

with a minimum error. 

 
Fig. 2 General model of the process 

 

For this purpose, the methodology of statistical analysis 

in this research includes the following seven steps: 

(1): Selecting the response variable 

(2): Selecting the controllable factors 

(3): Selecting the experiment design 

(4): Experiment execution 

(5): Measuring the response variable 

(6): Data analysis 

(7): Optimization and confirmation 
 

2.1. Selecting the response variable 

For evaluation of the spring-back rate, a criterion 

namely spring-back coefficient ( K ) is used which can 

be calculated from the following relation [18]: 
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In this relation, 1h  is the applied depth on the sample 

geometry; 0t  is the initial thickness of the sheet, and 

.aveh  is the average of the measured depth after 

unclamping the formed sample. With regard to the 

above relation, to the extent that the K  parameter 

becomes closer to the number one ( 1K  ), to the 

same extent, it denotes the reduction of spring-back 

rate. Hence, in this research, the spring-back coefficient 

is considered as the response variable. 

 

2.2. Selecting the controllable factors 
The ultrasonic generator and transducer are the 

components of production and transmission of 

vibration in this process, respectively [16], [17]. With 

regard to the fact that during the process execution, the 

applied force on the forming tool will cause a change in 

the vibration conditions of the tool, so that the vibration 

parameters of the process such as generator power, 

frequency, and amplitude of vibration are considered as 

the uncontrollable input factors. Thus, five controllable 

factors of vertical step size ( ), sheet thickness ( t ), 

tool diameter ( d ), wall inclination angle ( ) and feed 

rate ( f ) were selected as the input variables of the 

experiment and each of them were studied at three 

levels of low (-1), central (0) and high (+1). The high 

and low levels of each parameter are coded by +1 and -

1. In addition, the coded value of each desirable middle 

level is calculated through the following relation [19]: 
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In this relation, X  is the coded value of concerned 

parameter with the actual value of x  (between minx  

and maxx ). minx  and maxx  have the actual low and high 

values of the parameter accordingly. Table 1 shows the 

input variables and experimental design levels used 

with coded and actual values. The variation range of 

these factors was determined based on the primary 



16                                            Int  J   Advanced Design and Manufacturing Technology, Vol. 8/ No. 1/ March– 2015 
  

© 2015 IAU, Majlesi Branch 

 

experiments, which lead to safe production of the final 

geometry. 
 

Table 1   Input variables with design levels 

Variable Notation Unit -1 0 +1 

Vertical 

step size 
  mm 0.25 0.5 0.75 

Sheet 

thickness 
t  mm 0.4 0.7 1 

Tool 

diameter 
d  mm 10 15 20 

Wall 

inclination 

angle 

    40 50 60 

Feed rate f  mm/min 1500 2000 2500 

 

2.3. Selecting the experiment design 

In the present research, RSM is used as the experiment 

design technique. In this method, there is a set of 

mathematical and statistical techniques, which are 

useful for modeling, and analysis of the problems [20], 

[21]. In such problems, the relation between response 

and input variables is unknown. Thus, the first step in 

this method is to find a suitable approximation of the 

real relation existing between the response variable 

( y ) and the set of input variables ( x ). The 

approximating functions are in the form of the linear 

and quadratic models and are written in the form of the 

following relations: 
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In the above functions, 0  is the constant value, i  is 

the first-order (linear) coefficient, ii  is the second-

order (quadratic) coefficient, 
ij  is the interaction 

coefficient, k  is the number of independent variables, 

and   is the rate of error. In this research, the second-

order model and Box-Behnken Design (BBD) are used. 

The software used for experiment design and statistical 

analysis is Minitab [22]. Table 2 shows the design 

matrix with 46 tests in the form of coded runs. Five 

tests are repeated at the central levels of parameters 

(zero level). 
 

Table 2   Design matrix with measured and calculated results 
Test 

no. 
  t  d    f  .( )aveh mm  K  

1 0 0 -1 +1 0 29.629 1.01238 

2 0 0 +1 -1 0 29.602 1.01329 

3 0 0 -1 0 +1 29.635 1.01217 

4 0 +1 -1 0 0 29.869 1.00431 

5 0 0 0 0 0 29.612 1.01295 

6 0 0 0 0 0 29.612 1.01295 

7 -1 0 -1 0 0 29.871 1.00427 

8 0 0 0 +1 -1 29.609 1.01305 

9 0 +1 0 -1 0 29.824 1.0058 

10 -1 0 0 0 -1 29.827 1.00573 

11 0 0 0 0 0 29.612 1.01295 

12 0 +1 0 0 -1 29.821 1.0059 

13 -1 -1 0 0 0 29.767 1.00778 

14 0 -1 0 -1 0 29.584 1.01397 

15 0 0 -1 -1 0 29.818 1.00603 

16 +1 0 0 0 -1 29.557 1.01481 

17 0 0 0 -1 -1 29.615 1.01285 

18 0 0 0 +1 +1 29.606 1.01315 

19 0 0 -1 0 -1 29.815 1.00613 

20 0 -1 0 +1 0 29.566 1.01458 

21 0 -1 -1 0 0 29.623 1.01264 

22 +1 0 +1 0 0 29.55 1.01505 

23 0 0 +1 +1 0 29.59 1.01369 

24 0 0 0 0 0 29.612 1.01295 

25 0 -1 +1 0 0 29.563 1.01468 

26 0 +1 0 0 +1 29.687 1.01037 

27 +1 0 0 0 +1 29.555 1.01488 

28 +1 0 -1 0 0 29.617 1.01278 

29 +1 0 0 +1 0 29.553 1.01495 

30 -1 0 0 -1 0 29.83 1.00563 

31 0 0 0 0 0 29.612 1.01295 

32 0 +1 0 +1 0 29.682 1.01054 

33 +1 0 0 -1 0 29.559 1.01474 

34 0 0 0 -1 +1 29.614 1.01288 

35 +1 +1 0 0 0 29.672 1.01087 

36 -1 +1 0 0 0 29.873 1.00418 

37 0 +1 +1 0 0 29.677 1.0107 

38 0 -1 0 0 +1 29.572 1.01438 

39 0 0 +1 0 +1 29.594 1.01356 

40 -1 0 +1 0 0 29.771 1.0076 

41 +1 -1 0 0 0 29.545 1.0153 

42 -1 0 0 +1 0 29.775 1.00747 

43 0 -1 0 0 -1 29.578 1.01417 

44 0 0 +1 0 -1 29.598 1.01342 

45 -1 0 0 0 +1 29.779 1.00734 

46 0 0 0 0 0 29.612 1.01295 
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2.4. Experiment execution 

The sheet metal is Al 1050-O, which is used in 

annealed form (350°c for 2 hours). The hydraulic oil 

(HLP68) was used as lubricator [23]. The 

hemispherical-head tools were designed and 

manufactured in three diameters of 10, 15, and 20mm 

(Fig. 3) in accordance with the instruction of design, 

manufacturing, and test of vibrating forming tools [16]. 

For imposing the ultrasonic vibration on the forming 

tools, an ultrasonic generator with power of 1000 watt 
and operational frequency of 20 kHz were used. The 

amplitude of vibration of forming tools was measured 

to be 7.5 microns. The circular speed of forming tools 

was adjusted in 125rpm. Figure 4 shows the fixture 

components in SPIF process. The sheet metal is placed 

between clamping plate and backing plate. The sample 

geometry was considered in the form of pyramid 

frustum with the base dimension of 80×80mm and 

depth of 30mm (Fig. 5). 

 

 

Fig. 3 Forming tools 

 

 
Fig. 4 Components of the fixture in SPIF process 

 

Fig. 5 Dimensional characteristics of the formed sample 

 

Tool path strategy is in the form of the gradual 

imposing of wall inclination angle (based on successive 

horizontal-vertical steps in one face of sample 

geometry) and then the linear motion in the working 

plane (Fig. 6). Figure 7 shows the simulation of tool 

path strategy in Cimco software for the wall inclination 

angle of 60    [24]. The tests were performed in 

accordance with the 46 runs included in the Table 2. 

The samples were formed in accordance with the 

concerned geometry and strategy. Figure 8 shows the 

two formed samples in experimental tests. 

 

 

Fig. 6 Tool path strategy 

 

 

Fig. 7 Simulation of tool path strategy 
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(a) Test no. = 43 

 
(b) Test no. = 9 

Fig. 8 Two formed samples in the experimental tests 

 

2.5. Measuring the response variable 

The depth of formed samples was measured in the 

position of spring-back creation by the Contourgraph 

system and its average was registered as the .aveh  (Fig. 

9). Table 2 shows the results of measuring ( .aveh ) and 

calculation of the spring-back coefficient ( K ) of the 

formed samples. 

 

2.6. Data analysis 

Analysis of experimental data is performed by 

ANOVA, which is a powerful tool to study the 

importance of a parameter and identify the significance 

of its effect. In addition, in order to create the 

mathematical functions between the response variable 

and the effective parameters, the regression analysis is 

employed [19]. Confidence level ( ) is considered as 

equal to 0.05 and statistically, it means that the final 

model can predict the data with an error less than 5%. 

The effectiveness of a term is specified through 

“ P value ”, related to the corresponding term. Thus, 

the terms are identified with the “ P value   ”, as 

significant and with the “ P value   ”, as 

insignificant. To the extent that the “ P value ” related 

to a term is smaller, to the same extent the significance 

of that term in the model is greater. Thus, with the 

assumption of 0.05   and based on the primary 

obtained results from ANOVA, the first-order 

parameters: vertical step size ( ), sheet thickness ( t ), 

tool diameter ( d ), wall inclination angle ( ) and feed 

rate ( f ), the second-order terms: 
2 , 

2t , 
2d  and 

interactional terms: td , t , tf , d  and df  were 

determined as the effective terms on the spring-back 

coefficient and the other terms as the ineffective terms.  

 

 
(a) Plunger motion on the sample surface 

 

 
(b) Difference between the imposed and measured depth 

Fig. 9 Measuring the depth of formed sample 

 

In the final step of data analysis, the terms with inactive 

effects should be removed from the model and just the 

terms with active effects to be analyzed. Thus, all 

ineffective terms with the “ 0.05P value  ” are 

deleted from the analysis and all terms with the 

“ 0.05P value  ” in the final step of ANOVA will be 

present. Table 3 shows the regression table, which is 

the result from the final ANOVA, based on the 

effective terms. 

As it is observed, all terms existing in Table 3 have 

appeared with the “ 0.05P value  ”, and as effective 

terms on the response variable. The emergence of 

positive sign (+) for regression coefficients, states the 

presence of a direct relation between the terms and 

response variable. Whereas, the emergence of negative 

sign (-) for regression coefficients shows the presence 

of a reverse relation between the terms and response 

variable. In the continuation, the role of the effective 

parameters for achieving an ideal situation of the 

response variable will be studied. Thus, the reduction 

of spring-back coefficient ( K ) is determined as the 

ideal situation.  
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Table 3   Regression table based on the effective terms 

Term Regression coefficient T-value 
P-

value 

Constant 1.01273 4588.851 0 

  0.00396 19.188 0 

t  -0.0028 -13.572 0 

d  0.00195 9.47 0 

  0.00091 4.426 0 

f  0.00079 3.836 0.001 

   -0.0019 -7.244 0 

t t  -0.00134 -5.09 0 

d d  -0.00113 -4.288 0 

t d  0.00109 2.634 0.013 

t   0.00103 2.501 0.018 

t f  0.00106 2.579 0.015 

d   -0.00149 -3.603 0.001 

d f  -0.00148 -3.572 0.001 

2 96.13 %R   
2 94.56 %adjustedR   

  

 

The following relation expresses the regression 

equation of spring-back coefficient as a function of the 

coded effective values: 

 

(5) 
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The investigation of the T-value belonging to the 

effective terms shows that: 

(1): Vertical step size ( ) as the linear effect has the 

greatest effect and the product of sheet thickness and 

wall inclination angle ( t ) as the interactional effect, 

has the least effect on the spring-back coefficient. In 

other words, the effect of   is 7.6 times of the t  

effect. 

(2): Vertical step size ( ) among the linear effects has 

the greatest effect on the spring-back coefficient. 

(3): Vertical step size ( ) among the quadratic effects 

(
2 ) has the greatest effect on the spring-back 

coefficient. 

(4): The product of tool diameter and wall inclination 

angle ( d ) and the product of tool diameter and feed 

rate (df ) among the interactional effects have the 

greatest effect on the spring-back coefficient. 

As it is observed in Table 3, the correlation coefficients 

of 2R  and 
2

.adjR  show the peak values of 96% and 94% 

respectively. As a result, a high correlation is 

established between the observed data in the 

experimental tests and the predicted responses resulting 

from the regression equation. Hence, the ability of the 

fitted model and accuracy of the regression equation in 

describing and predicting the changes of the response 

variable are confirmed. Table 4 shows the obtained 

results from the ANOVA. 

 

Table 4   ANOVA results for the final model 

Source of variation Degree of freedom F-value 
P-

value 

Regression 13 61.21 0 

Linear 5 135.28 0 

  1 368.19 0 

t  1 184.21 0 

d  1 89.68 0 

  1 19.59 0 

f  1 14.71 0.001 

Square 3 24.58 0 

   1 52.48 0 

t t  1 25.91 0 

d d  1 18.38 0 

Interaction 5 9.12 0 

t d  1 6.94 0.013 

t   1 6.25 0.018 

t f  1 6.65 0.015 

d   1 12.98 0.001 

d f  1 12.76 0.001 

Residual Error 32 - - 

Lack of Fit 27 1.432 0.093 

Pure Error 5 - - 

Total 45 - - 

 

In order to investigate the accuracy of the regression 

model, in addition to 2R  evaluation, the Lack of Fit 

(LOF) test is also used. The significance of this test 

( 0.05LOFP value  ) indicates that the data are not 

well placed around the model and it is not possible to 

use the model to predict the response variable. Thus, 

with the confirmation of the insignificance of the LOF 

test ( 0.05LOFP value  ), it is possible to find out that 

the model can be well fitted on the data. As it is 

observed in the Table 4, LOF test for the response 

variable is not significant and consequently, the 

presented model shows the data trends well. On the 
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other hand, the best analysis is performed when the 

regression is effective and the LOF is ineffective 

concurrently [19]. Thus, with regard to the P value , 

it is observed that the regression term, is effective and 

the LOF term is ineffective. 

The plot of normal probability is a useful means to 

check the accuracy of normal distribution of the 

residuals. The residual is defined in the form of the 

difference between the measured response in the 

experimental test and the predicted response by the 

final model. The obtained results from this research 

show that the residuals in this plot generally follow a 

straight line and there is no evidence on abnormality, 

asymmetry, and divergence (Fig. 10). Also, it is 

possible to investigate the model competency by 

studying the behavior of the residuals. If the regression 

model is appropriate, subsequently the residuals have 

no structure. As it is shown in Fig. 11, the residuals 

have been distributed randomly around the zero axis 

and the diagram does not include any specific pattern, 

hence the final model is reliable and suitable. 

 

 

Fig. 10 Normal probability plot 

 

Fig. 11 Residual plot 

 

The response behavior can be shown in terms of input 

variables in the form of 3D diagrams (surface plot) and 

2D diagrams (contour plot). In these diagrams, the 

interactional effects of the two input variables on the 

response variable are observable and the values of other 

input variables are considered fixed at the central levels 

(zero level). The relationship of the spring-back 

coefficient with vertical step size ( ) and tool diameter 

(d ) has been shown in Fig. 12. As it is observed, the 

reduction of tool diameter ( d ) causes the reduction of 

spring-back coefficient and this effect is intensified 

with the reduction of vertical step size ( ). 

 

 
(a) Surface plot 

 

 
(b) Contour plot 

Fig. 12 Relationship of the spring-back coefficient ( K ) 

with vertical step size ( ) and tool diameter ( d ) 

 

On the other hand, the increase of sheet thickness ( t ) 

along with the reduction of wall inclination angle ( ), 

causes the reduction of spring-back coefficient (Fig. 

13). 

 

2.7. Optimization and confirmation 

In this research, desirability method was used as the 

optimization technique with regard to the simplicity, 

flexibility, and accessibility in the software. Drringer 

and Suich introduced this method in 1980 [25]. In this 

technique, first the output response of iy  is converted 

into dimensionless desirability of id  ( 0 1id  ), such 

that the higher value of id  signifies the greater 

desirability of iy  and if the response is outside the 

acceptable limit,  0id  .  
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(a) Surface plot 

 

 
(b) Contour plot 

Fig. 13 Relationship of the spring-back coefficient ( K ) 

with sheet thickness ( t ) and wall inclination angle ( ) 

 

Thus, for the output response, a separate desirability 

function with a range of 0 to 1 is obtained. In this 

research, the goal of the desirability function is the 

minimization of the response variable (reduction of 

spring-back coefficient), where the desirability is 

defined in the following form: 

 

(6) 

1

0

r

y L

U y
d L y U

U L

y U




 
   

 
 


 

 

In the above relation, L and U are the low and high 

limits of y , respectively. The shape of desirability 

function depends on the weight field (r) which is used 

to express the degree of significance of the target value. 

Here, the weight value is assumed equal to one ( 1r  ) 

and consequently, the desirability function is defined in 

a linear mode. Table 5 shows the specifications of the 

desirability function for the output response. 

 
Table 5   Specifications of the desirability function 

Output 

response 

Desirability 

function 

Function 

target 

Weight 

value (r) 

y K  ( )d y  1K   1 

 
Figure 14 shows the diagrams of the spring-back 

coefficient model which is the resultant of the 

optimization process at the optimal point. As it is 

observed, the vertical line in red color shows the 

optimal values of input variables and the horizontal line 

in blue color shows the optimal value of output 

response. Thus, the effect of the input variables to 

achieve the target of function is identifiable and 

interpretable from diagram simply. 

 

 

Fig. 14 Behavior of the spring-back coefficient ( K ) at the 

optimal points of input parameters 

 
Table 6   Optimal values of the input variables 

Input 

variable 

Coded optimal 

value 

Actual optimal 

value 

  -1 0.25 mm 

t  0.7071 0.91 mm 

d  -1 10 mm 

  0.8384 58.38⁰ 

f  -1 1500 mm/min 

 

Table 6 shows the optimal values of the input variables 

to achieve the desirability function target. Therefore, 

the reduction of vertical step size ( ), tool diameter 

(d ) and feed rate ( f ) along with the increase of sheet 

thickness ( t ) and wall inclination angle ( ) leads to 

the reduction of spring-back coefficient. As it is 

observed, the optimal angle of wall inclination ( ) was 

determined to be 58.38°. Also, the optimal value of 

output response, which results from the regression 

equation is equal to one (1) and the value of the 

corresponding desirability function with it, is equal to 

0.9971. Hence, with regard to the high value of 

separate desirability function, it can be realized that the 

procedure of process optimization has well fulfilled a 

pre-determined target successfully. 

In order to confirm the optimized response and to 

measure the accuracy of the presented model, the 

experimental test was conducted by the finest 
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conditions of input variables. Table 7 shows the input 

variables of the test and Fig. 15 shows the formed 

sample after performing the confirmation test. Table 8 

presents the obtained results from the confirmation test 

and its comparison with the optimized result. 

 
Table 7   Input variables of the confirmation test 

variable value 
  0.25 mm 

t  0.9 mm 

d  10 mm 

  58⁰ 

f  1500 mm/min 

 

 

 
(a) 3D view 

 
(b) Front view 

Fig. 15 Formed sample in the confirmation test 

 
Table 8   Comparison between the obtained results from confirmation 

test and optimization process 

K  
(confirmation test) 

K  
(optimization process) 

Difference percent 

1.00512 1 0.51 % 

 

This comparison shows that the error of regression 

model to predict the spring-back coefficient is less than 

1%. Thus, the accuracy of regression model to predict 

the response variable is confirmed. 

3 CONCLUSION 

In this article, analysis and optimization of the spring-

back phenomenon in the UVaSPIF process was 

conducted based on DOE principles using RSM 

technique. The major accomplishments of this research 

are summarized as follows: 

 The primary achieved results from ANOVA with 

the assumption of 0.05   showed that the linear 

terms: vertical step size ( ), sheet thickness ( t ), 

tool diameter ( d ), wall inclination angle ( ) and 

feed rate ( f ), the quadratic terms: 2 , 2t , 2d  

and the interactional terms: td , t , tf , d  and 

df , can have effect on the spring-back 

phenomenon. 

 The regression equation, which results from 

ANOVA, was extracted to predict the spring-back 

coefficient in UVaSPIF process. The competency 

of the final model was investigated by the 

correlation coefficients, Lack of Fit (LOF) test, 

normal probability plot, and diagram of residuals. 

Consequently, the ability of the fitted model and 

accuracy of the regression equation in describing 

and predicting the behavior of spring-back 

coefficient was confirmed. 

 In this research, with regard to the 

comprehensiveness of the presented mathematical 

model, a broad range of effective factors on the 

spring-back phenomenon is covered. Thus, the 

presented model can be utilized in SPIF and TPIF 

processes in addition to prediction and control of 

spring-back parameters in UVaSPIF process.  

 The optimal values of input variables were 

extracted to access the least spring-back 

coefficient. The optimization results indicated that 

the reduction of vertical step size, tool diameter, 

and feed rate along with the enhancement of sheet 

thickness and wall inclination angle, lead to the 

reduction of spring-back coefficient. Also, the 

optimal angle of wall inclination was determined 

to be 58.38°. 

 The high value of the desirability function 

corresponding to the spring-back coefficient 

( 0.9971d  ), exhibited that the optimization 

procedure of the process has successfully fulfilled 

a pre-determined target. 

 A comparison between the achieved results from 

the confirmation test and the optimization process 

showed that the error of regression model for 

prediction of spring-back coefficient is less than 

1%. This proves the accuracy of proposed 

regression model. 
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