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Abstract: In this paper, a fault diagnosis system based on discrete wavelet 
transform (DWT) and artificial neural networks (ANNs) was designed to diagnose 
different types of faults in gears. DWT is an advanced signal-processing technique 
for fault detection and identification. Five features of wavelet transform RMS, 
crest factor, kurtosis, standard deviation and skewness of discrete wavelet 
coefficients of normalized vibration signals have been selected. These features are 
considered as the feature vector for training purpose of the ANN. A wavelet 
selection criteria, namely Maximum Energy to Shannon Entropy ratio, was used to 
select an appropriate mother wavelet and discrete level, for feature extraction. To 
ameliorate the algorithm, various ANNs were exploited to optimize the algorithm 
so as to determine the best values for “number of neurons in hidden layer” resulted 
in a high-speed, meticulous three-layer ANN with a small-sized structure. The 
diagnosis success rate of this ANN was 100% for experimental data set. An 
experimental set of data has been used to verify the effectiveness and accuracy of 
the proposed method. To develop this method in general fault diagnosis 
application, an example was investigated in cement industry. At first, a MLP 
network with well-formed and optimized structure (20:12:3) and remarkable 
accuracy was presented providing the capability to identify different faults of 
gears. Then this neural network with optimized structure was presented to 
diagnose different faults of gears. The performance of the neural networks in 
learning, classifying and general fault diagnosis were found encouraging and can 
be concluded that neural networks have high potentiality in condition monitoring 
of the gears with various faults. 
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1 INTRODUCTION 

Condition monitoring of machines is gaining 

importance in industry because of the need to increase 

reliability and to decrease possible loss of production 

due to machine breakdown. The use of vibration and 

acoustic emission (AE) signals is quite common in the 

field of condition monitoring of rotating machinery. 

The vibration monitoring of bearings and gearboxes 

due to their importance in industry and their vibration 

signal characteristics has been an interesting topic for 

researchers in this field. Therefore, fault diagnostics 

and monitoring techniques for bearing and gearboxes 

have been improved in a short time frame. 

Interests in automating the fault detection and diagnosis 

of machinery and reducing human errors have 

encouraged researchers to use soft computing methods. 

Artificial neural networks (ANNs) and fuzzy logic are 

used for identifying the machinery condition, while the 

genetic algorithm is used to optimize the monitoring 

system parameters. Fuzzy logic-based condition 

monitoring systems require expert‟s information of 

machinery faults and their symptoms. Wu and Hsu 

designed a fuzzy logic-based fault diagnosis system for 

a gearbox system [1]. However, these systems are fast 

and close to human inference rules and qualitative 

measurement techniques. On the other hand, 

monitoring systems based on ANNs do not require any 

background on the machinery characteristics and can 

be trained using a data set of machinery vibrations in 

different fault conditions. 

Rafiee et al., used a multiple-layer perceptron ANN to 

classify three different fault conditions and one no-fault 

condition of a gearbox [2]. Also the genetic algorithm 

has been used as an effective tool for evolving 

monitoring systems and boosting their accuracy and 

speed of fault diagnosis process. One of the most 

significant issues in intelligent monitoring is related to 

feature extraction. For this purpose different techniques 

of vibration analysis such as time, frequency and time–

frequency domain are extensively used. Samantha and 

Balushi [3] have presented a procedure for fault 

diagnosis of rolling element bearings through artificial 

neural network (ANN). The characteristic features of 

time-domain vibration signals of the rotating machinery 

with normal and defective bearings have used as inputs 

to the ANN. Yang et al., have proposed a method of 

fault feature extraction for roller bearings based on 

intrinsic mode function (IMF) envelope spectrum [4]. 

Fault diagnosis of turbo-pump rotor based on support 

vector machines with parameter optimization by 

artificial immunization algorithm has been done by 

Yuan and Chu [5]. Traditional techniques like Fast 

Fourier Transform (FFT) which is used for analysis of 

the vibration signals are not appropriate to analyze 

signals that have transitory characteristics. Moreover, 

the analysis is greatly dependent on the machine load, 

and correct identification of much closed fault 

frequency components requires a very high resolution 

data [6]. Wavelet transform (WT), a very powerful 

signal-processing tool can be used to analyze transients 

signal as well as eliminating load dependency, and is 

capable of processing stationary and non-stationary 

signals in time and frequency domains simultaneously 

and can be used for feature extraction 

(Daubechies,1991).  

WT can be mainly divided into discrete (DWT) and 

continuous (CWT) forms. The discrete forms are faster 

with lower CPU time, but continuous forms generate an 

awful lot of data, so CWT has not been widely applied 

in the field of condition monitoring. Lei et al., have 

proposed a method for intelligent fault diagnosis of 

rotating machinery based on wavelet packet transform 

(WPT), empirical mode decomposition (EMD), 

dimensionless parameters, a distance evaluation 

technique and radial basis function (RBF) network [7]. 

The effectiveness of wavelet based features for fault 

diagnosis of gears using support vector machines 

(SVM) and proximal support vector machines (PSVM) 
has been revealed by Saravanan et al., [8]. Various 

artificial intelligence techniques have been used with 

wavelet transforms for fault detection in rotating 

machines [9-15]. In the present study general fault 

diagnosis of gears has been investigated, therefore a 

multiple layer perceptron ANN was designed to 

classify three different conditions of gears. The 

vibration signals acquired from a test-rig were first 

preprocessed using discrete wavelet transform and then 

ANNs were designed to classify different faults. Then 

the designed ANN was developed for general fault 

diagnosis of gears. The performance of designed ANNs 

in general fault diagnosis was found encouraging.  

2 THEORY OF ARTIFICAL NEURAL NETWORKS  

An artificial neural network is a nonlinear mapping tool 

that relates a set of inputs to a set of outputs. It can 

learn this mapping using a set of training data and then 

generalize the obtained knowledge to a new set of data 

[16]. Today, ANNs have a variety of applications. As a 

classifier, one of the most commonly used ANNs is the 

Multi-Layer Perceptron (MLP) network. There are 

three types of layers in any MLP: the output layer, the 

input layer and the hidden layer. Each layer is 

comprised of   nodes (   ) and each node in any 

layer is connected to all the nodes in the neighboring 

layers. Each node can also be connected to a constant 

number which is called bias.  

These connections have their individual weights which 

are called synaptic weights and are multiplied to the 
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node values of the previous layer. Input and output data 

dimensions of the ANN determine the number of nodes 

in the input and output layers respectively, but the 

number of hidden layers and their nodes is determined 

heuristically. The number of hidden layers and nodes in 

an MLP is proportional to its classification power. 

However, there is an optimum number of hidden layers 

and nodes for each case and considering more than 

those amounts leads to over fitting of the classifier and 

increases the computations substantially. The value of 

any node can be computed through Eq. (1). 

 

         (           )                                     (1) 

 

Where   ,   and   are output vector, bias vector and 

layer number, respectively. W is the synaptic weights 

matrix of the MLP.    is the activation function of the 

 th layer and can be used to create nonlinear boundaries 

for the classifier. For example “sigmoid” is an 

activation function which can be used to bound the 

node values between 0 and 1. After setting the structure 

of the MLP ANN, it should be trained. Training an 

ANN means adjusting the synaptic weights in such a 

way that any particular input leads to the desired 

output, where it may be conducted by different 

algorithms. One of the most commonly used learning 

algorithms is resilient back propagation, which is used 

in this paper. For any learning algorithm, a limit should 

be defined to stop the learning process, which is called 

Stopping Criterion and usually consists of the 

following rules or all of them simultaneously: 

(a) The error root mean square in an epoch becomes 

less than a predefined value. 

(b) Error gradient becomes less than a predefined 

value. 

(c) The number of epochs reaches a predefined number. 

 

 

Fig. 1 Fault simulator setup 
 

The error vector for an MLP is defined as the 

difference between the network output vector and the 

desired output vector. Selecting an appropriate 

structure, initial weights, training algorithm for an MLP 

and supplying it with enough training data sets enables 

the MLP to operate as a powerful classifier. In this 

study, it classifies the gears and bearings conditions 

into five faulty (two types of fault will be created on a 

gear and three types of that will be created on a 

bearing) and two healthy conditions, according to the 

symptoms extracted from the measured vibration 

signals. 

3 DATA ACQUISTION EXPERIMENTS 

The experimental setup to collect dataset consists of a 

one-stage gearbox with spur gears, a flywheel and an 

electrical motor with a constant nominal rotation speed 

of 1400 RPM. Electrical motor, gearbox and flywheel 

are attached together through flexible couplings as 

shown in Fig. 1. Table 1 depicts gears specifications. 

Vibration signals were obtained in radial direction by 

mounting the accelerometer on the top of the gearbox. 

"Easy viber" data collector and its software, 

"SpectraPro", were used for data acquisition. Table 2 

shows accelerometer probe specifications. The signals 

were sampled at 16000 Hz lasting 2 s. In the present 

study, three pinion wheels whose details are as 

mentioned in Table 1 were used. One wheel was new 

and assumed to be free from defects. In the other two 

pinion wheels, defects were created. The raw vibration 

signals acquired from the gearbox when it is loaded 

with various pinion wheels discussed above. The 

vibration signal from the piezoelectric transducer 

(accelerometer) is captured for the following 

conditions: Good Spur Gear, Spur Gear with tooth 

breakage, and Spur Gear with face wear of the teeth. 

 
Table 1 Gear wheel and pinion details 

Parameters 
Pinion 

wheel 

Gear 

wheel 

Outer diameter 63 93 

No. of teeth 40 60 

Module 1.5 1.5 

Normal pressure angle         

Top clearance 0.3mm 0.3mm 

Material C.K.45 C.K.45 

 
Table 2 Accelerometer probe characteristics 

Description 

Multi-Purpose Accelerometer, 

Top Exit Connector / Cable, 

100 mV/g 

Sensitivity 100 mV/g 

Frequency Response 

(±3dB) 
30-900,000 CPM 

Dynamic Range ± 50 g, peak 

Max Temp 121°C 
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4 FEATURE SELECTION 

The process of computing some measures which 

represent a signal is called feature extraction. Wavelet 

based analysis is an exciting new problem solving tool 

for the mathematicians, scientists and engineers. It fits 

naturally with the digital computer with its bias 

functions defined by summations not integrals or 

derivatives. Unlike most traditional expansion systems, 

the basis functions of the wavelet analysis are not 

solutions of differential equations. In some areas, it is 

the first truly new tool we have had in many years. 

Indeed, use of wavelet transforms requires a new point 

of view and a new method of interpreting 

representations that we are still learning how to exploit. 

In the early studies, Fourier analysis has been the 

dominating signal analysis tool for fault detection. But, 

there are some crucial restrictions of the Fourier 

transform (Peng & Chu, 2004).  

The signal to be analyzed must be strictly periodic or 

stationary; otherwise, the resulting Fourier spectrum 

will make little physical sense [17]. Unfortunately, 

gears and bearings vibration signals are often non-

stationary and represent non-linear processes, and their 

frequency components will change with time. 

Therefore, the Fourier transform often cannot fulfill the 

gears and bearings fault diagnosis task pretty well. On 

the other hand, the time–frequency analysis methods 

can generate both time and frequency information of a 

signal simultaneously through mapping one-

dimensional signal to a two-dimensional time–

frequency plane. Among all available time–frequency 

analysis methods, the wavelet transforms may be the 

best one and have been widely used for gears and 

bearings fault detection [18]. 

 

4.1. Theoretical background of wavelet transform 

The wavelet transform (WT) is a time-frequency 

decomposition of a signal into a set of “wavelet” basis 

functions. In this section, we review the continuous 

wavelet transform (CWT) and the discrete wavelet 

transform (DWT). Figure 2 shows the sample signals in 

time domain for various gears conditions. 

 
4.1.1. Continuos wavelet transform (CWT) 

The continuous wavelet transform of a time function 

 ( ) is given by the equation: 

 

 (   )  ∫  ( ) (   )
   

  
( )                                    (2) 

 

Where * denotes complex conjugation, while Eq. (3) is 

a member of the wavelet basis, derived from the basic 

analysis wavelet  ( ) through translation and dilation. 

 

 (   )( )  
 

√ 
 (

   

 
) (            )                   (3) 

As seen in Eq. (3), the transformed signal T(a,b) is 

defined on the a–b plane, where a and b are used to 

adjust the frequency and the time location of the 

wavelet in Eq. (3). A small a produces a high-

frequency (contracted) wavelet when high-frequency 

resolution is needed. The WT‟s superior time-

localization properties stem from the finite support of 

the analysis wavelet: as b increases, the analysis 

wavelet transverses the length of the input signal, and a 

increases or decreases in response to changes in the 

signal‟s local time and frequency content. Finite 

support implies that the effect of each term in the 

wavelet representation is purely localized. This sets the 

WT apart from the Fourier Transform, where the 

effects of adding higher frequency sine waves are 

spread throughout the frequency axis. 
 

 

Fig. 2 Sample signals in time domain for various gears 

conditions. (a) Good Spur Gear, (b) Spur Gear with tooth 

breakage, (c) Spur Gear with face wear of the teeth 

 
4.1.2. Discrete wavelet transform (DWT) 

Discrete methods are required for computerized 

implementation of the WT. The DWT is derived from 

the CWT through discretization of the wavelet 

 (   )( ). The most common discretization of the 

wavelet is the dyadic discretization, given by: 

 (   )( )  
 

√  
 (

     

  
)                                            (4) 

Where a has been replaced by    and b by     [19], 

[20]. Under suitable conditions Eq. (4) is an 
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orthonormal basis of L
2
R, and the original time 

function can be expressed as: 

 

 ( )  ∑ ∑      (   )( )   
 
    

 
                              (5) 

 

     ∫  ( ) (   )
   

  
( )                                           (6) 

 

Where      are referred to as wavelet coefficients. A 

second set of basis function  ( ) called scaling 

function is then obtained by applying multi-resolution 

approximations to obtain the orthonormal basis of 

 ( )  
 

 (   )( )  
 

√  
 (

     

  
)                                            (7) 

 

The original time function can now be written as: 

 

     ∫  ( ) (   )
   

  
( )                                           (8) 

 

Here, the     , which are called the scaling coefficients, 

      is the sampled version of  ( ), represent a  th 

order resolution discretization of  ( ). The scaling 

coefficients and the wavelet coefficients for resolutions 

of order greater than    can be obtained iteratively by: 

 

       ∑  (    ) 
                                            (9) 

 

       ∑  (    ) 
                                          (10) 

 

The sequences h and g are low-pass and high-pass 

filters derived from the original analyzing wavelet 

 ( ). The scaling coefficients      represent the lower 

frequency approximations of the original signal, and 

the wavelet coefficients      represent the distribution 

of successively higher frequencies. The inverse DWT 

yields a difference series representation for the input 

signal      in terms of the filters h and g and the 

wavelet coefficients     : 

 

     ∑  (    ) 
           ∑  (   

    

  )                                                                           (11) 

 

The wavelet filters adopted determine the quality of the 

wavelet analysis. For example for the Daubechies 

wavelets of length 2: 
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√  
  ( )  

 

√  
   ( )   ( )  ( )   ( )   

                                                                                  (12) 

 

Since the input signal  ( ) is discretized into N 

samples, Eqs. (9) and (10) can be written in the form of 

matrix: 
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           (13) 

The scaling coefficients       (         ⁄ ) and 

the wavelet coefficients        of the )   (th order 

resolution can be obtained by applying the    ⁄  
   ⁄  matrix     ⁄  to the scaling coefficients of the  th 

order     (       ⁄ ). When the number of data 

points is     , all of the wavelet coefficients are 

obtained after (   ) iterations of Eq. (13).  

The inverse DWT is performed in a similar manner by 

straight forward inversion of the orthogonal matrix   . 

The wavelet analysis has the advantage of better 

performance for non-stationary signals, representing a 

time signal in terms of a set of wavelets. They are 

constituted for a family of functions which are derived 

from a single generating function called mother 

wavelet, from dilation and translation processes. 

Dilation is related with size, and it is also known as 

scale parameter while translation is the position 

variation of the selected wavelet along the time axis 

where this process is illustrated in Fig. 3.  
 

 

 

Fig. 3 Wavelet transform execution 
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For gears fault detection, the frequency ranges of the 

vibration signals that are to be analyzed are often rather 

wide; and according to Shannon sampling theorem, a 

high sampling speed is needed, and sequentially, large 

size samples are needed for the gears fault detection. 

Therefore, it is expected that the desired method should 

have good computing efficiency. Unfortunately, the 

computing of continuous wavelet transform (CWT) is 

somewhat time consuming and is not suitable for large 

size data analysis and on-line fault diagnosis.  

The discrete wavelet transform (DWT), which is based 

on sub-band coding, is found to yield a fast 

computation of Wavelet Transforms. It is easy to 

implement, and reduce the computation time and 

resources required. Hence, it is taken up for this study. 

 

4.2. Mother wavelet selection 

One of the most significant issues in wavelet transform 

is related to mother wavelet selection. For this purpose 

researchers have used various methods such as the 

genetic algorithm [21], decision tree [22], etc. Entropy 

is a common concept in many fields, mainly in signal 

processing [23]. In the present study, the “Shannon 

entropy” will be used in various fault conditions after 

data preprocessing of wavelet transform, and a wavelet 

selection criteria are used to select an appropriate 

mother wavelet for feature extraction. 

 
4.2.1. Maximum energy to Shannon entropy ratio 

critertion  

An appropriate wavelet is selected as the base wavelet, 

which can extract the maximum amount of Energy 

while minimizing the Shannon Entropy of the 

corresponding wavelet coefficients. A combination of 

the Energy and Shannon entropy content of a signal‟s 

wavelet coefficients is denoted by Energy to Shannon 

Entropy ratio [24-25] and is given as: 

 

 ( )  
 ( )

        ( )
                                                     (14) 

 

Where the energy at each resolution level n is given by: 

 

 ( )  ∑ |    |
 
   

                                                    (15) 

 

The total energy can be obtained by: 

 

        ∑ ∑ |    |
 
   ∑  ( )                         (16) 

 

Where „m‟ is the number of wavelet coefficients and 

     is the i
th

 wavelet coefficient of n
th

 scale. Entropy of 

signal wavelet coefficients is given by: 

 

        ( )   ∑         
 
                                   (17) 

 

Where    is the energy probability distribution of the 

wavelet coefficients, defined as: 

 

   
|    |

 

 ( )
                                                                  (18) 

 

With ∑     
 
   , and in the case of      for some i, 

the value of          is taken as zero. The following 

steps explain the methodology for selecting a base 

wavelet for the vibration signals under study: 

1. In this study, Good Spur Gear, Spur Gear with tooth 

breakage and Spur Gear with face wear of the teeth 

were considered. Total of 42 vibration signals in time 

domain were obtained in vertical directions for 

different gear conditions. For healthy and faulty gears, 

discrete wavelet coefficients (DWT) of vibration 

signals were calculated using 36 different mother 

wavelets: Haar, Daubechies (db2~db10), Symlet 

(sym2~sym11), Coiflet (coif 1~coif 5), Bi-orthogonal 

(bior1.1, bior1.2, bior3.3, bior3.1, bior2.8, bior2.6, 

bior2.4, bior2.2, bior1.5, bior1.3, bior3.5), where 

discrete approximation of Meyer was selected.  

2. Wavelet selection criterion was used to select an 

appropriate mother wavelet using Energy to Shannon 

Entropy ratio as: 

The Total Energy and Total Shannon Entropy of DWT 

in third and fourth decomposition levels were 

calculated for vibration signals at different conditions 

using healthy and faulty gears and bearings. The Total 

Energy to Total Shannon Entropy ratio for each 

wavelet was calculated as shown in Fig. 4. 

 

 
Fig. 4 Total Energy to Total Shannon Entropy ratio for 36 

mother wavelet 
 

Comparing Total Energy with Total Shannon Entropy 

ratio for different mother wavelets revealed little 

change from third to fourth levels as shown in Fig. 5 

for Daubechies mother wavelets. Therefore, third 
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decomposition level was determined to be the most 

appropriate level for this case study.  

3. The wavelet having Maximum Energy to Shannon 

Entropy ratio was considered for fault diagnosis of 

gears. 

 

Fig. 5 Total Energy to Total Shannon Entropy ratio for 

1~4 decomposition levels of Daubechies mother wavelets 

5 FEATURE EXTRACTION AND FAULTS 

CLASSIFICATION 

Based on wavelet selection criteria, Bi-orthogonal 

(bior3.1) wavelet was selected as the best base wavelet 

among the other wavelets considered. The vibration 

signals associated with various conditions of gears 

explained in Section 3 have been decomposed using 

„„bior3.1” wavelet. The approximated and detailed 

coefficients for various conditions of gears with various 

fault gears are shown in Fig. 6.  

 
 

(a) 

 
(b) 

 
(c) 

 

From Fig. 6a–c, the signal „s‟ represents the actual 

vibration signal whereas „a3‟ represents the 

approximation at level 3 of bior3.1 wavelet and „d1‟ to 

„d3‟ represents the coefficients details at level 1~3, 

respectively. The wavelet tree representation of the 

vibration signals gives a clear idea about how the 

original signal is reconstructed using the 

approximations and details at various levels. The 

wavelet tree representation of the good pinion wheel is 

shown in Fig. 6d.  
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(d) 

Fig. 6  Actual vibration signal (S), approximation (A3) 

and details coefficients (D1~D3) of wavelet decomposition 

(level 3 of bior3.1 wavelet). (a) Good Spur Gear, (b) Spur 

Gear with tooth breakage, (c) Spur Gear with face wear of the 

teeth (d) Wavelet tree. 

 

The coefficients obtained using this wavelet transforms 

were further subjected to statistical analysis, and the 

statistical features were extracted for all the 

approximation and details coefficients of DWT. Root 

mean square (RMS) value, crest factor, kurtosis, 

skewness, standard deviation, mean, shape factor, etc., 

are most commonly used statistical measures for fault 

diagnosis of gears [22], [25], [26]. Statistical moments 

like kurtosis, skewness and standard deviation are 

descriptors of the shape of the amplitude distribution of 

vibration data collected from a gear. Therefore, in the 

present paper, RMS, crest factor and statistical 

moments like kurtosis, skewness and standard 

deviation are used, as features effectively indicated 

early faults occurring in gears. These features are 

briefly described as follows: 

RMS: is a statistical measure of the magnitude of a 

varying quantity. 

 

    √
 

 
∑   

  
                                                       (19) 

 

Crest Factor: The crest factor or peak-to-average ratio 

(PAR) is a measurement of a waveform, calculated 

from the peak amplitude of the waveform divided by 

the RMS value of the waveform. 

 

               
          

   
                                         (20) 

 

Standard deviation: Standard deviation is measure of 

energy content in the vibration signal. 

   √
 ∑   

  (∑   )
 
   

  
   

 (   )
                                            (21) 

Kurtosis: A statistical measure used to describe the 

distribution of observed data around the mean. Kurtosis 

is defined as the degree to which a statistical frequency 

curve is peaked. 

 

          {
 (   )

(   )(   )(   )
∑ (

    

 
)
 

 
    

 (   ) 

(   )(   )
}                                                                  (22) 

 

Skewness: Skewness characterizes the degree of a 

symmetry of distribution around its mean. Skewness 

can be negative or positive. 

 

         
 

(   )(   )
∑ (

    

 
)
 

 
                           (23) 

 

In the above equations                                is 

mean of vibration signal data and    is the number of 

vibration signal data. These statistical features were fed 

as input to ANN, for faults classification.  

 

 

Fig. 7 "Fault Detector" program 

6 RESULTS AND DISCUSSION 

To develop this method in the general diagnosis of 

gears a computer program called "fault detector" was 

provided. An image of this program depicted in Fig. 7. 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Magnitude_%28mathematics%29
http://en.wikipedia.org/wiki/Waveform
http://en.wikipedia.org/wiki/Peak_amplitude
http://en.wikipedia.org/wiki/Root_mean_square
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Some of the program menus are briefly described as 

follow: 

"Identify new machine" and "Select existent machine" 

menus are used to define a machine and train its 

corresponding network. 

"Load signal" menu is used to upload a signal in time 

domain. 

"DWT" menu is used to apply discrete wavelet 

transform on the signal and extract feature vector. 

"Analyze" menu depicts result of fault diagnosis by 

applying feature vector to ANN. 

6.1. Fault diagnosis of test-rig set  

In the first step the fault diagnosis of test rig set is 

considered that was used for data acquisition and ANN 

training. 

6.1.1. Application of ANN for problem at hand  

For each faults namely, Good Spur Gear, Spur Gear 

with tooth breakage, Spur Gear with face wear of the 

teeth, 10 feature vectors consisting of 20 feature values 

as mentioned before were calculated from the 

experimental vibration signals (Sec. 3). Five samples in 

each class were used for training and five reserved for 

testing ANN. Training was done by selecting a neural 

network of three layers, including input, hidden, and 

output layers. 

6.1.2. Results of ANN  

The architecture of the artificial neural network is as 

follows: 

Network type: Forward neural network trained 

with feedback propagation 

No. of neurons in 

input layer: 

20 

No. of neurons in 

hidden layer: 

Varied from 6 to 21 

No. of neurons in  3 

output layer: 

Transfer 

function: 

Tangent-sigmoid transfer 

function in hidden layer and 

sigmoid in output layer 

Training rule: Back propagation 

 

For hidden layer the necessary and sufficient number of 

neurons must be selected. One of the problems that 

occur during neural network training is over fitting. 

The error on the training set is driven to a very small 

value, however, it is large when the new data is 

presented to the network. The network has memorized 

the training examples, but it has not learned to 

generalize those to new situations.  

One method for improving network generalization is to 

use a network that is just large enough to provide an 

adequate fit. In this study the numbers of neurons in the 

hidden layer were selected by trial and error. A total of 

six networks with different hidden layers with 

characteristics mentioned above were created for 

classifying the faults. The training was done with 15 

data set attributes and the cross validation was done 

using 15 data sets. The efficiency of classification of 

gears faults using above networks has been reported in 

tables 3-4.  

At first, as shown in these tables, increase of neurons in 

the hidden layer improves the efficiency of 

classification. The number of neurons in the hidden 

layer is optimized in 12 neurons and greater number of 

hidden layer neurons (15, 18 or 21) will not affect 

efficiency. Therefore, an artificial neural network with 

20:12:3 layers was utilized for fault diagnosis. The 

overall average efficiency of entire classification using 

ANN was found to be 100%. 

 

Table 3  Results of ANN classifiers with different number of hidden-layer neurons for various gears conditions 

No. of hidden-layer neurons N
o

. o
f S

am
p

les 

fo
r 

testin
g
 

N
o

. o
f S

am
p

les 

fo
r 

train
in

g
 

Machine 

condition 

21 18 15 12 9 6 

M
isd

iag
n

o
si

s 

C
o

rrect 

d
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0 5 0 5 0 5 0 5 0 5 0 5 5 5 
Good 

Gear 

0 5 0 5 0 5 0 5 0 5 0 5 5 5 

Gear 

with 

tooth 

breakage 

0 5 0 5 0 5 0 5 1 4 1 4 5 5 

Gear 

with 

wear of 

the teeth 

0 15 0 15 0 15 0 15 1 14 1 14 15 15 Total 
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Table 4 Total performance of ANN classifiers with different 

number of hidden-layer neurons 

No. of hidden-layer neurons  

21 18 15 12 9 6 

100% 100% 100% 100% 93% 93% 

Results of 

correct 

fault 

diagnosis% 

 

6.2. Fault diagnosis on girth gear  

In this example vibration signal of a girth gear is 

checked. This girth gear is used to rotate a ball mill in 

cement industry. Table 5 shows characteristics of this 

large gear. A vibration signal was collected on journal 

bearing of its pinion. The designed neural network was 

used for this girth gear trouble shooting. For this 

purpose the feature vector was extracted from vibration 

signal and applied to the neural network. Diagnostic 

results indicated breakage and wear of the teeth. The 

accuracy of the result was confirmed after girth gear 

inspection. 

 
Table 5 Girth gear and pinion characteristics 

Outer 

diameter 

Module Teeth 

no. 

Speed(RPM)  

7200mm 30 238 15 Girth 

gear 

990mm 30 31 115 Pinion 

7 CONCLUSION 

This paper has outlined the definition of the discrete 

wavelets transform and then demonstrated how it can 

be applied to the analysis of the vibration signals 

produced by gears in various conditions and faults. A 

wavelet selection criterion "Maximum Energy to 

Shannon Entropy ratio" was used to select an 

appropriate wavelet and Bi-orthogonal wavelet 

(bior3.1) was selected for feature extraction. Five 

statistical features (Root mean square (RMS) value, 

crest factor, kurtosis, skewness, standard deviation) 

were extracted for all the approximation and details 

coefficients of DWT.  

These features were fed as input to neural network for 

classification of various faults of the gears. A MLP 

network with well-formed and optimized structure 

(20:12:3) and remarkable accuracy was presented 

providing the capability to identify different gears 

faults. The performance of the neural network in 

learning, classifying and general fault diagnosis were 

found encouraging and can be concluded that neural 

networks and wavelet transform have high potentiality 

in condition monitoring of the gears with various faults. 
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