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Abstract: In this paper, the problem of optimal path following for a high speed 
planing boat is addressed. First, a nonlinear mathematical model of the boat’s 
dynamics is derived and then the Serret-Frenet frame is presented to facilitate the 
path following control design. To satisfy the constraints on the states and the input 
controls of the boat's nonlinear dynamics and minimize both the cross tracking and 
heading error, a nonlinear optimal controller is formed. To solve the resulted 
nonlinear constrained optimal control problem, the Gauss pseudospectral method 
(GPM) is used to transcribe the optimal control problem into a nonlinear 
programming problem (NLP) by discretization of states and controls. The resulted 
NLP is then solved by a well-developed algorithm known as SNOPT. The results 
illustrate the effectiveness of the proposed approach to tackle the boat path 
following problem. 
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1 INTRODUCTION 

The problem of path following for marine vehicles is a 
highly important issue. Considerable attention has been 
paid to the problem of path following of displacement 
vessels. There are some challenges in this area. The 
first is that the vessels are often underactuated, i.e. have 
fewer actuators than degrees of freedom. Advanced 
techniques in the field of control of under-actuated 
systems [1] to [4] have been suggested to path control 
of a 3-DoF vessel (surge, sway and yaw motion) with 
two independent inputs. 
Another difficulty in the path following of marine 
surface vessels is the intrinsic physical limitations in 
the control inputs. The problem becomes more 
challenging when the controller must consider safety 
constraints. The two important safety constraints for 
marine vessels are the probabilities of slamming and 
deck wetness, both of which are not allowed to exceed 
prescribed limiting values [5]. Since the roll motion of 
the marine vehicle is the principal cause for the 
described phenomena [6], enforcing roll constraints 
while manoeuvring in seaways becomes an important 
designation in surface vessel control. To overcome the 
mentioned challenges, some control design 
methodologies have been developed.  
Reference [7] used model predictive control (MPC) to 
control both the cross tracking and heading error by the 
rudder angle for an under-actuated surface vessel while 
considering rudder limitation and roll constraints. MPC 
can handle underactuated problem by combining all the 
objectives into a single objective function. However, 
due to computational complexity, the MPC applications 
for systems with fast dynamics (such as planning boats) 
are not wide spread [8]. In addition, [7] used a reduced 
order linear model for MPC implementation. In 
general, the linear models result in the loss of vital 
mathematical information from the dynamics of the 
physical system where their range of operation is small 
to be valid. A better choice to tackle path following 
problem while satisfying the input and state constraints, 
is nonlinear optimal control. Nonlinear optimal control 
satisfies any of the desirable constraints and is suitable 
for nonlinear system [9].  
In an optimal control problem, the goal is 
determination of the states and controls that minimize a 
cost functional subject to the nonlinear dynamic 
constraints, the boundary condition and the inequality 
path constraints. There are two ways to resolve optimal 
control problems, namely by direct and indirect 
methods [10]. The indirect methods are based on 
Pontryagin maximum principle that transforms the 
optimal control problem into Euler-Lagrange equations. 
On the other hand, the direct methods transform the 
optimal control problem into a nonlinear programming 

problem (NLP). In this paper, to solve 4-DoF path 
following problem for a planning boat, a kind of direct 
method known as Gauss Pseudospectral Method 
(GPM) is addressed to transform the optimal control 
problem into a NLP by parameterization of the states 
and the controls. These parameterization techniques 
have an important role in convergence and accuracy of 
the solution and low computation time [11]. The 
resulted NLP is solved by a well-developed algorithm 
called SNOPT.  
This paper is organized as follows: Section 2 presents 
the Gauss pseudospectral method in its most current 
form and provides a complete NLP, which includes 
both path constraints and differential dynamics in the 
optimal control problem formulation. In Section 3, the 
4-DoF planning boat model along with the Serret-
Frenet formulation is presented to facilitate the path 
following control design. The simulation results 
together with some discussions are presented in Section 
4 followed by the conclusions in Section 5. 

2 GAUSS PSEUDOSPECTRAL METHOD 

Let’s consider the following general optimal control 
problem and determine the state, x(t), and control, u(t), 
that minimize the cost functional 
 

0

0 0( ( ), , ( ), ) ( ( ), ( ), )x x x u= Φ + ∫
ft

f f
t

J t t t t g t t t dt          (1) 

Subject to the dynamic constraints 

 

0( ) ( ( ), ( ), ), [ , ]x f x u= ∈ ft t t t t t t                      (2) 

 

The boundary conditions: 

 

0 0( ( ), , ( ), )h x x 0τ τ =f ft t                                      (3) 

 

The inequality path constraints: 

 

0( ( ), ( ), ) , [ , ]C x u 0≤ ∈ ft t t t t t                          (4) 
 
Where t0 is the fixed or free initial time and tf is the 
fixed or free final time. Equations (1)-(4) are referred 
as the continuous Bolza problem [12]. The GPM 
method requires a fixed time interval, such as [−1, 1]. 
So the time variable is mapped to this interval via the 
following affine transformation. 
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Rewrite the optimal control problem as: 
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Subject to the constraints 
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And 

 

0 0( ( ), , ( ), )h x x 0τ τ =f ft t                                (8) 

0( ( ), ( ), ; , ) .ft tτ τ τ ≤C x u 0                                    (9) 
 
Equations (5)-(9) are called the transformed continuous 
Bolza problem. In the GPM, this optimal control 
problem is discretized at some specific discretization 
points called the Legendre-Gauss (LG) points, and then 
transcribed into a nonlinear program (NLP) by 
approximating the states and controls using Lagrange 
interpolating polynomials [12]. The set of N 
discretization points includes K = N − 2 interior LG 
collocation points, defined as the roots of the Kth-
degree Legendre polynomial, the initial point τ0 =−1, 
and the final point τf = 1. An approximation to the state, 
X(τ), is formed with a basis of K+1 Lagrange 
interpolating polynomials ( ), 0,1,..., ,iL i Kτ =  as 
follows: 
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The control is approximated using a basis of K 

Lagrange interpolating polynomials †
iL  as follows: 
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The continuous dynamics of Eq. (7) are then 
transcribed into the following set of K algebraic 
constraints via orthogonal collocation: 
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Where 1,...,k K=  and the differentiation matrix, D, 
consisting of the derivative of each Lagrange 
polynomial corresponding to the state at each 
collocation point. This matrix can be computed offline 
as follows: 
 

0, ,

0

0,

( )
( )

( )

K

k jK
j j i

ki i k K

i j
j j i

D L
τ τ

τ
τ τ

= ≠

=

= ≠

−
= =

−

∏
∑

∏
                          

(15) 

 
Where i=0,...,K.  Defining X0=X(τ0) and Xf=X(τf), Xf  is 
calculated via a Gauss quadrature. 
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Where ωk are the Gauss weights? In addition, Eq. (6) 
can be approximated with a Gauss quadrature, resulting 
in  
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The boundary constraint is written as: 
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0 0( , , , )f ft t =h X X 0                                     (18) 

The path constraint is computed at the LG points as: 
 

0( , , ; , ) . ( 1,..., )k k k ft t k Kτ ≤ =C X U 0        (19) 

 
Equations (14), (16), (17), (18), and (19) form the NLP 
(20): 
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Whose solution is an approximate solution to the 
continuous Bolza problem. In this paper to solve this 
NLP, SNOPT solver is used. The SNOPT is a software 
package for solving large-scale optimization problems. 
It is designed for problems with many thousands of 
constraints and variables but is best suited for problems 
with a moderate number of degrees of freedom (up to 
2000) [13]. It helps us to solve non-convex 
optimization problems. 

3 PLANING BOAT DYNAMICS MODEL IN FOUR 
DEGREES OF FREEDOM 

In this section a summarized dynamics model of a high 
speed planning boat is presented that was previously 
explained by other authors in [14], [15]. Figure 1 shows 
a schematic view of the coordinate system used in the 
description of the marine craft dynamics. There are two 
reference frames shown in this figure. The first is the 
earth-fixed frame ( , , )x y z and the other reference 

frame is the body-fixed frame ( , , )b b bx y z which is 
fixed to the hull. As seen from Fig. 1, it is considered 
that the vessel stern has a fixed pitch propeller which 
can also be oriented so that the propeller exerts the 
thrust force (T) on planning boat hull. 

 
 
Fig. 1 Reference frames used for 4-DoF modeling of high 

speed craft with control forces exerted on it 
 
In this paper, heave and pitch dynamics are neglected 
by assuming that the mean heave and pitch (trim) are 
small. The 4-DoF equations of the planning boat's 
dynamics may be formulated as follows [16], [17] 
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(21)

 
 
Where m is the boat’s mass, [Ixx

b, Izz
b] is the vector of 

moment of inertia about xb and zb respectively. [u, v] is 
the vector of linear surge and sway velocities and [p, r] 
is the vector of angular roll and yaw rate in body-fixed 
coordinate. In the right hand of Eq. (21), TR  represents 
total (speed dependent) resistance of planning hull. To 
calculate this term, the boat’s body plan is imported to 
MAXSURF software and use Savitsky pre-planning 
and Savitsky planning algorithm. Savitsky pre-planning 
algorithm is useful for estimating the resistance of a 
planning hull before it gets “onto the plane”. On the 
other hand, Savitsky planning algorithm is used for 
estimating the resistance of planning hulls during the 
planning speed regime [18]. T represents thrust force 
and pφ represents propeller turn angle relative to xp 
axis. [xp, zp] is the vector of position of propeller 
relative to boat’s center of gravity. In 
addition, Hτ denotes the vector of hydrodynamic force 
and moments as linear functions of the velocity and 
acceleration components as follows: 
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where the coefficients are functions of speed (see [14], 
[16] for more detailed information). The thrust force is 
assumed to be fixed and compensate for the calm water 
resistance so that the boat nominal speed is a constant 
value of 10 m/s. The motion of thruster produces drag 
forces that slow down the boat. In addition to Eq. (21), 
from kinematics of the craft, there are some non-
holonomic constraints as follows: 
 

 

 

            (23) 

 
 
Where x and y represent position of the craft in the 
global frame and φ  and ψ denote roll and yaw angle of 
craft in the global frame respectively. Additionally, we 
must take into account the actuator constraints. The 
thrust force is limited to 7.5 kN according to Eq. (24) 
and the value of propeller turn angle is limited to 10o. 
  

max0 ( )T t T≤ ≤                                                           (24) 
 

p ( ) 10tφ °≤
                                                            (25) 

 
To enforce roll motion, the roll angle and roll rate are 
limited as follows: 
 

( ) 20degtφ ≤                                                          (26) 
 

deg( ) 10p t
s

≤                                                          (27) 

 
Figure 2, depicts the Serret-Frenet frame used for path 
following. The origin of {SF} is always the closest 
point on the curve C from the body-fixed {B} origin. 
The error dynamics based on the Serret-Frenet 
equations are [7]: 
 

( sin cos ) .
1

SF

u v r
e

ψ ψ ψ
κ ψ ψ
κ

= −

= − +
−                        (28) 

 
sin cose u vψ ψ= +                                            (29) 

 
In Eq. (29), e, is defined as the distance between the 
origins of {SF} and {B}, and ψ ψ ψ= − SF , are 
referred to the cross track error and heading error 

respectively. ψ SF  is the path tangential direction as 
shown in Fig. 2 [19], and κ is the curvature of the given 
path. The control objective of the path following 
problem is to drive e and ψ  to zero. So a linear 
quadratic performance index is introduced as a function 
of e and ψ  as: 
 

2 2

0

1 ( )
2

ft

J Qe Pψ= +∫                                                (30) 

 
Where Q, P are positive weight constants.  
 

Fig. 2 Illustration of the coordination in the earth-fixed 
frame {E}, the ship body-fixed frame {B}, and the Serret-

Frenet frame {SF} [7] 

4 APPLICATION 

Economy (fuel cost), safety (related to accuracy and 
maneuverability), and user preferences are the three 
major factors which play an important role in controller 
design. The autopilot system must penalize undesirable 
quantities such as: 

 deviation of the controlled variables from the 
desired value, 

 amount of control signal (rudder angle), 
 amount of roll angle for safety reasons. 

These demands must be translated into a performance 
criterion function to be minimized by an optimal 
control system. 
The autopilot then has two main tasks: 

 steady-state track (or course) keeping. 
 course changing (that is, turning or 

maneuvering). 
There are, therefore, two steering modes to be 
considered; course changing and track keeping. For 
this purpose, two scenarios are defined: one for course 
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keeping and one for course changing. In the first 
scenario, a straight line reference trajectory is defined 
with ψSF = 45 degrees. The boat initial heading and the 
cross track error are assumed to be -90o and 10 m 
respectively. It is also assumed that the boat’s initial 
position is at the earth-fixed origin. Fig. 3, shows the 
desired path and the boat course for Q = 100, P = 1000. 
As seen, the boat heading and cross track error, become 
zero after an initial deviation from the desired path. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The desired path and the boat course to follow a 
straight line 

 
 

 
Fig. 4 The roll and the propeller turn angle during straight 

line following 
 

The roll and the propeller turn angle are shown in Fig. 
4. The amounts of roll and propeller turn angle do not 
exceed their corresponding limit. The mean 
computation time for the 60-node solution for the 
above simulation is approximately 23 seconds.  
To verify the ability of the proposed path following 
controller for harder situations, in which both cross 
track and heading error are not zero and the desired 
heading changes with time, we define a circular path 
with ψSF = 0.033 πt. The boat initial heading and cross 

track error in this scenario are 90 deg and 10 m 
respectively.  
Figure 5 shows the boat and desired heading to be 
followed in the simulation. As seen in the figure, the 
boat initiates the course by 90 deg heading, afterwards 
the heading error decreases to reach the desired path.  
The roll and the propeller turn angle are shown in Fig. 
6. Again, the roll and propeller turn angle values do not 
exceed their corresponding limit. 

 

 

 

 

 

 

 

Fig. 5 The desired path and the boat course to follow a 
circular path 

 

Fig. 6 The roll and the propeller turn angle during 
circular path following 

 

 
Finally, Fig. 7, depicts the course of the boat in the last 
scenario. The controller ability in the second scenario 
shows its great performance of LQR based feedback 
controller, since both the reference and actual trajectory 
of the vessel is changing with time and both the values 
of roll angle and the deflection of the rudder are 
permissible. 
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Fig. 7 Boat circular path 
 

5 CONCLUSION 

In this paper the problem of path following for 4-DoF 
dynamics of a planning boat is defined as an optimal 
control problem. The objective of the optimal control 
problem is to drive the cross track and heading error 
between the vessel and desired path in the Serret-Frenet 
frame to zero. Because of intricate dynamics of high-
speed planning boats, hard constraints on states and 
controls, convergence towards a global optimum is 
difficult to achieve with traditional methods. The Gauss 
pseudospectral method is used to transcribe optimal 
control problem to (NLP). SNOPT solver also helped 
us to solve the resulted expensive NLP. Two case 
studies of straight and circular path has been examined 
and showed that the proposed method can handle the 
path following problem of high speed planning crafts.  
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