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Abstract: In this paper, the effects of fractured sleepers on rail track vibration under 
moving wheelset have been investigated. Two parallel rails of the track have been 
modeled as Euler-Bernoulli beams mounted on rail pads acting as elastic points. 
Moreover sleepers have been modeled as visco-elastic Euler-Bernoulli beams. It is 
assumed that, some sleepers under the rail track have been fractured and modeled by 
two beams. The wheelset has 5 DOF which are longitudinal, vertical and lateral 
movements plus roll and axial rotations. To determine normal contact force between 
the wheel and the rail, relative position of the wheel and the rail has been determined 
at each instant. Using the coordinate of each wheel point in the rail coordinate 
system, the penetration of the wheel into the rail has been determined. In order to 
investigate rail-wheel contact forces, Hertzian nonlinear contact theory and Kalker 
theory have been applied. A computer program has been developed that numerically 
solves the equations of motion of the system for different operating conditions using 
RungeKutta Cash-Karp computation method. Using this model the effects of wheel-
set velocity, wagon weight, number of fractured sleepers and fracture location on rail 
track vibration have been investigated. 
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1 INTRODUCTION 

Ride comfort is a prime concern for public 
transportation. Research has proven that insufficient 
railway maintenance, sleeper defects, passing over 
zigzag or curved routs and vertical and lateral rail 
irregularities are the most important parameters 
effecting wagon and track vibration. 
The sleeper defect due to wheel impact from freight 
wagons is one of the most important concerns of 
railway companies. A large number of researches have 
been performed on this subject. For example sensitivity 
analysis of free vibration behaviors of an in situ railway 
concrete sleeper (standard gauge sleeper), incorporating 
sleeper/ballast interaction, subjected to variations of rail 
pad properties has been presented by Kaewunruen and 
Remennikov [1]. In the mentioned study Timoshenko-
beam and spring elements have been used in the in situ 
railway concrete sleeper modeling. In addition 
experimental failure mode evaluation, flexural 
toughness, and energy absorption mechanisms for 
railway pre-stressed concrete sleepers under static and 
impact loadings have been investigated [2]. 
Analytical and experimental study of sleeper SAT S 312 
in slab track Sateba system has been presented by Guigou-
Cartera et al.[3].In the mentioned study, a simple 
prediction tool based on a two-dimensional model has 
been developed for a slab track system composed of 
two rails with rail pads, sleepers with sleeper pads, and 
a concrete base slab. The track and the slab are 
considered as infinite beams with bending stiffness, 
loss factor and mass per unit length. 
In this paper, effects of sleepers defect on rail track 
vibration under moving train will be studied. Using the 
presented model in this article the effects of train velocity, 
wagon weight, number of fractured sleepers and fracture 
location on rail track vibration will be investigated. 

2 MODELING 

Considering the nature of this problem, the use of 3-
dimensional wheel-set model is essential. Determination 
of the correct contact point between wheel and rail and the 
exact value of the contact force between the two members 
are the major issues in 3-D modeling of the wheel-set. 
There are two methods for deriving axle equations and 
determining contact forces between wheel and rail.  In one 
method, the constraints against axle motion by the rail are 
used to calculate the normal forces at wheel rail contact 
point. The other method uses the elastic contact theory of 
wheel and rail in order to determine wheel-rail contact 
parameters. 
In this method after determining the relative position of 
the wheel and the rail, Hertz contact theory is used to find 

the normal contact force between the two elements.  
Studies using this method are mostly two-dimensional. In 
the current article elastic contact theory and 3-D wheel-set 
model are used for wheel/rail contact modeling. Figure 
1shows3-D model of the wheel-set, rails, sleepers and 
coordinate systems used in this research. The frame 
‘X’, ‘Y’, ‘Z’ is the fixed coordinate system, where its 
origin being at the track center line. The axes ሖܺ , ሖܻ , 
ሖܼmake up the wheel-set body coordinate system, which 

has its origin at the wheel-set center of mass. 
 

 
 

Fig. 1   3D view of wheel-set, rails and sleepers 
 
Figure 2 shows the rail, sleeper and padmodels adopted 
in the present study. Sleepershave been modeled as 
visco-elastic Euler-Bernoulli beams. Alsorails are 
modeled as Euler-Bernoulli beams on elastic points as 
rail pads. The pads are modeled by springs and 
dampers. 
 

 
 

Fig. 2 Front view of rails, pads and sleeper model 

3 EQUATIONS OF MOTIONS 

3.1. Sleeper Equations of Motions 

Describing the sleeper as visco-elastic Euler-Bernoulli 
beams, the equation of vertical vibration of the sleeper 
is given by: 
 

4 2

4 2

( , ) ( , )
( ) ( ) ( ) ( )s s

s s s s b s b s Rr r Rl l

w x t w x t
EI A K w C w F x x F x x

x t
ρ δ δ

∂ ∂
+ + + = − + −

∂ ∂
&

       
(1) 

 
where ‘Es’, ‘Is’, ‘As’, ‘ws’ and ‘ρs’ are module of 
elasticity, second moment of area, cross section area, 
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displacement and density of sleeper respectively. ‘Kb’ 
is the stiffness factor of the sleeperand ‘Cb’ is the 
damping factor of the sleeper. ‘FRr’ and ‘FRL’ are 
vertical forces of right and left rails. Using Separation 
of variables, the solution can be expressed as: 
 

( , ) ( ) ( )
s s s

w x t X x T t=                                                      (2) 
 
where: 
 

2 4 2( ) ( )
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X x x ax bx c= + +                                             (3) 

 
The boundary conditions are: 
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where ‘Ls’ is the sleeper length. The solution can be 
determined as: 
 

2 44, 5 , 3.75
s s

a b L c L= = − =                                       (5) 
 
Substituting Eq.(2) into Eq.(1) yields: 
 

(4) (2) (1) ( ) ( )
s s s s s s s b s b s Rr r Rl l

EITX AT X CT X KTX F x x F x xρ δ δ+ + + = − + −        (6) 

  
Multiplying Eq. (6) by ‘Xs’ and then applying integral 
on the sleeper length, yields the second-order ordinary 
differential equation of the sleeper vibration in terms of 
the generalized coordinate ‘Ts’ as follows: 
 

2 2 2 2
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thus: 
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in which: 
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3.2. Rails Equation of Motion: 

Describing each rail as an Euler-Bernoulli beam, the 
vertical vibration of rail is given by: 
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In which 
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and 
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where ‘ER’, ‘IR’, ‘AR’, ‘wRr’ and ‘ρR’ are module of 
elasticity, second moment of area, cross section area, 
displacement and density of rail respectively. ‘Kp’ is 
Fasten erstiffness of the pad and ‘Cp’ is Fasten 
erdamping of the pad. ‘FRr’ is the vertical force from 
sleeper to rail, and ‘Fw’ is vertical wheel/rail force. 
Also the same equations can be written for left rail. 
Boundary conditions are: 
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in which LR is rail length. The solution can be 
determined as: 
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Substituting Eq.(14) into Eq.(10) yields: 
 

(4)
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Multiplying Eq. (15) by “XR(x)” and then applying 
integral on the raillength, yields the second-order 
ordinary differential equation of the rail vertical 
vibration in terms of the generalized coordinate “TR” as 
follows: 
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3.3. Wheel-set Equations of Motion: 

Using the components of the wheel-set forces and 
position vectors in the equilibrium coordinate system, 
the following equations yield: 
Longitudinal equation: 
 

Lx Rx Lx Rxmx F F N N= + + +&&
                                            (17) 

 
lateral equation: 
 

Ly Ry Ly Rymy F F N N= + + +&&
                                            

(18) 

 
vertical equation: 
 

Lz Rz Lz Rz Amz F F N N W= + + + −&&
                                     (19) 

 
rolling equation: 
 

( ) ( ) ( ) ( )wx Ry Rz Rz Rz Ry Ry Ly Lz Lz Lz Ly LyI R F N R F N R F N R F Nφ= + − + + + − +&&
      

(20) 

 
spin equation: 
 

( ) ( )wy Rz Rx Rx Rz Rz Lz Lx Lx Lz LzI R F R F N R F R F Nβ = − + + − +&&
      

(21) 

 
where ‘FL’ and ‘FR’ are creep forces at the left and right 
contact points, ‘NL’ and ‘NR’ are normal forces at left 
and right contact points, ‘RL’ and ‘RR’ are position 
vectors at left and right contact points, ‘WA’ is Weight 
of wheel-set, ‘Ф’ is Roll displacement about ‘ ݔᇱ’ axis, 
‘β’ is Roll displacement about ݕᇱaxis, and ‘Iw’ is the 
wheel second moment of area. 
The creep forces, in general, are defined with respect to 
the contact plane. However, after the coordinate 
transformation, creep forces and creep moments are 
obtained in an equilibrium coordinate system. The 
creep force and creep moment components in 
equilibrium coordinate system are [4]: 
Left wheel: 
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right wheel: 
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where ‘ro’ is the nominal wheel-set rolling radius, ‘V’ is 
the Wheel-set velocity, ‘Ω’ is the normal angular 
velocity and ‘ML’ and ‘MR’ are creep moments at the 
left and right contact points. Also, ‘f11’, ‘f22’, ‘f33’ and 
‘f12’ are the creep coefficients, defined as: 
 

11 22( )f ab GC=  
2

22 33( )f ab GC=                                                            (24) 
3

2
12 23( )f ab GC=  

33 11( )f ab GC=  

 
where ‘Cij’ is creepage and spin coefficients, ‘G’ is 
Modulus of rigidity and ‘a’ and ‘b’ are semi-axis of the 
contact ellipse in the longitudinal and lateral direction. 
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in which N is the total normal force of the wheel: 
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where ‘υw’ and ‘υR’ are poisson’s ratio for the wheel 
and rail materials ,‘Ew’ is the wheel-set module of 
elasticity,‘R1’ is the principal rolling radius of the 
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wheel,‘ ሖܴ ଵ’ is the principal transverse radius of 
curvature of the wheel profile, ‘R2’ is the principal 
rolling radius of rail, and‘ ሖܴ ଶ’ is the principal transverse 
radius of curvature of the rail profile. The coefficients 
‘m’ and ‘n’ in Eq. (28) depend on the ratio‘K4/K3’ 
where ‘K4’ is defined as follows: 
 

1

2
2 2

4

1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1 1
( ) ( ) 2( )( )

2
K

R R R R R R R R
= − + − + − −

′ ′ ′ ′
⎡ ⎤
⎢ ⎥
⎣ ⎦    

(27) 

 
The coefficients m and n are given in table 1 as a 
function of θ in which θ is defined as [4]: 
 

1 4

3

cos ( )
K

K
θ −=

                                                          
(28) 

 
Table 1 Coefficients m and n 

θ (deg) m N θ (deg) m n 
0.5 61.4 0.1018 30 2.731 0.493 
1 36.89 0.1314 35 2.397 0.53 
1.5 27.48 0.1522 40 2.136 0.567 
2 22.26 0.1691 45 1.927 0.604 
3 16.5 0.1964 50 1.754 0.641 
4 13.31 0.2188 55 1.611 0.678 
6 9.79 0.2552 60 1.486 0.717 
8 7.86 0.285 70 1.284 0.802 
10 6.604 0.3112 80 1.128 0.893 
20 3.813 1.4123 90 1 1 

4 RESULTS AND DISCUSSION 

In this section the effects of the sleeper defects on rail 
track vibration are studied. The main parameters of the 
wagon, rails and sleepers used in the simulation are 
listed in Tables 2-4. 
 

Table 2  Main parameters of the sleeper 
Parameter Value Parameter Value 

Es[GPa] 25 ds [m] 0.79 
Is [m4] 1.85×10-5 As [m2] 22.5×10-3

ρs [Kg/m3] 2320  Kb [N/m] 23×106

Ls [m] 1.7 Cb [N.s/m] 50×103

 
 

Table 3 Main parameters of the rail 
Parameter Value Parameter Value 

ER [GPa] 207 AR [m2] 7.17×10-3

IR [m4] 2.35×10-5 Kp [N/m] 200×106

ρR [Kg/m3] 7800 Cp [N.s/m] 70×103

 

 

Table 4 Main parameters of the wheel-set 
Parameter Value Parameter Value 

Ew [GPa] 206 Iwx [m4] 680 
ro [m] 0.49 Iwy [m4] 73

Pw 0.3  Iwz[m4] 680 
Mw [Kg] 1200 G [GPa] 79.3

 
The complete system equations are obtained by 
combining the wheel-set, rail and sleepers equations. 
Using the Runge-Kutta method, these equations have 
been solved for different conditions. Effects of wheel-
set weight, wheel-set velocity and defect position on 
maximum rail displacement have been illustrated in 
Figures 3-6. 
 

 
 

Fig. 3 Effects of wheel-set velocity on maximum 
displacement of the rail (perfect sleeper) 

 
 

 
 

Fig. 4 Effects of wheel-set velocity on maximum 
displacement of the rail (defect position: xs=0) 
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Fig. 5 Effects of wheel-set velocity on maximum  
displacement of the rail (defect position: xs=

௟ೞ

ଷ
) 

 

 
 

Fig. 6 Effects of wheel-set velocity on maximum  
displacement of the rail (defect position: xs=

௟ೞ

ସ
) 

5 CONCLUSION 

In this paper the effects of sleeper defects on rail track 
vibration under moving train have been investigated. 
The complete system equations have been obtained by 
combining the wheel-set, rails and sleeper equations 
and solved using the Runge-Kutta method. Using these 
equations, the effects of wheel-set weight, wheel-set 
velocity and defect position on maximum rail 
displacement have been investigated. According to 
these figures, defect position has not a significant effect 
on maximum rail displacement. The results presented 
in this article can be used in estimation of the 
appropriate time for railway repair. 
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