
Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December - 2015 63

© 2015 IAU, Majlesi Branch

Scheduling of Unrelated Parallel

Machines using Two Multi

Objective Genetic Algorithms

with Sequence-Dependent Setup

Times and Precedent Constraints
S. Safaei
Department of Industrial Management,

Shahid Beheshti University, Iran

E-mail: sahar.safaie@gmail.com

R. Naderi*
Department of Industrial Management,

Semnan University, Iran

E-mail: rh.naderi@gmail.com

*Corresponding author

A. Sohrabi
Department of Molecular Biology, Research Center of Health Reference

Laboratory, Ministry of Health and Medical Education, Iran

E-mail: sohrabi58@gmail.com

A. Hatami
Department of Business Management,

Farabi College, University of Tehran, Iran

E-mail: hatami.am75@gmail.com

Received: 8 May 2015, Revised: 22 August 2015, Accepted: 27 September 2015

Abstract: This paper considers the problem of scheduling N jobs on M unrelated parallel
machines with sequence-dependent setup times. To better comply with industrial situations,
jobs have varying due dates and ready times and there are some precedence relations between
them. Furthermore sequence-dependent setup times and anticipatory setups are included in
the proposed model. Our objective is to determine a schedule that minimizes makespan and
number of tardy jobs. The problem is NP-hard, so for obtaining an optimal solution, in
reasonable computational time, we propose two multi objective genetic algorithms (MOGA).
To evaluate the proposed algorithms, random test problems are produced in medium and
large sizes with tight due dates. After setting the parameters, the performances of these
algorithms are evaluated using the concept of data envelopment analysis (DEA), distance
method, and a number of non-dominated solutions.

Keywords: Data Envelopment Analysis, Genetic Algorithm, Makespan, Multi-Objective,
Number of Tardy Job, Parallel Machine Scheduling, Precedence Constraints, Sequence-
Dependent Setup Times, Topsis Method

Reference: Safaei, S., Naderi, R., Sohrabi, A. and Hatami, A. “scheduling of unrelated
parallel machines using two multi objective genetic algorithm with sequence-dependent setup
times and precedent constraints”, Int J of Advanced Design and Manufacturing Technology,
Vol. 8/ No. 4, 2015, pp. 63–74.

Biographical notes: S. Safaei received her BSc in Industrial Management from Allameh
Tabatabaie University, Iran in 2006, and her MSc in Industrial Management from Shahid
Beheshti University, Iran in 2009. R. Naderi received her MSc in Industrial Management
from Shahid Beheshti University, Iran in 2009 and she is currently PhD student at the
department of Industrial Management in Semnan University, Iran. A. Sohrabi is an Assistant
Professor in Molecular Medicine in Research Center of Health Reference Laboratory,
Ministry of Health and Medical Education, Iran. A. Hatami is MSc student in Business
Management department of Farabi College, University of Tehran, Iran.

mailto:rh.naderi@gmail.com
mailto:sohrabi58@gmail.com
mailto:hatami.am75@gmail.com

64 Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December – 2015

© 2015 IAU, Majlesi Branch

1 INTRODUCTION

The problem of scheduling N jobs on M unrelated

parallel machines is considered with sequence-

dependent setup times to minimize makespan and

number of tardy jobs. Parallel machine scheduling is

important from both theoretical and practical points of

view. From a theoretical viewpoint, it is important

because many algorithms can be reduced to solve

single machine problems and from practical viewpoint,

it is important because in a real world manufacturing

environment most workshops have more than one

machine [1].

The classical parallel machine problem is defined as:

A set of the independent jobs to be processed on a

number of available identical parallel machines. Each

machine can process only one job at a specific time,

and each job can be processed on one machine. Each

job is ready at the beginning of the scheduling horizon

and has a distinct processing time and due date. It is

assumed that machines are identical, all jobs are

available at the beginning of scheduling and have

common due dates [2]. According to reference [3],

when machines are not identical and cannot be

completely correlated by simple rate adjustments, they

are named unrelated parallel machines. In this work,

we have considered unrelated parallel machine with

varying ready time and due dates. Many scheduling

researches assume that setup times are negligible

or part of the processing time. While, this

assumption simplifies the analysis and/or reflects

certain applications, it adversely affects the solution

quality for many applications which require explicit

treatment of setup times, and cause the model not to be

effective in real environments.

In a manufacturing environment, setup times consist of

all activities that are done on material in order to

prepare machines and situations in process phase. Setup

times can be divided into two important groups;

sequence-dependent setup times and sequence-

independent setup times [4]. On the other hand it can

be divided as anticipatory and non-anticipatory setups.

A setup is anticipatory if it can be started before the

corresponding job becomes available on the machine.

Otherwise, a setup is non- anticipatory [5]. Almost in

all real industrial environments, precedence constraints

are essential for sequencing and jobs scheduling. In

most real situations, some cases occur in which the

beginning of a job is at the completion of another job,

and if the precedent job is not completed, the following

job cannot be started. Here, in order to be more

realistic, we consider sequence-dependent setup times,

anticipatory setup and also precedence constraints. In a

real manufacturing environment, several objectives

frequently need to be considered at the same time. In

reality, managers consider multiple objectives and try

to find the best solution that meets the considerations.

But in many situations, one is confronted with

conditions that delay in delivery result in customers

cancelling their orders. Although, many researchers

have devoted considerable research efforts to minimize

the total completion time of jobs on parallel machines,

minimizing the number of tardy jobs is one of the

objectives that have been considered less by previous

researches. Decreasing the completion times can cause

reducing job lateness and tardiness, and also leads to

reduction in the total works-in-process inventories, and

total completion costs. These two conflicting

objectives can be considered together as the objectives

of the problem. Reference [6] shows that scheduling

jobs on two identical machines to minimize the

makespan is NP-hard. As identified by [7] when the

number of machines is greater than two, the problem is

an even strong NP-hard. So, two multi objective

genetic algorithms (MOGA) have been proposed to

solve the bi-objective problem in this article. To

evaluate the proposed algorithms, random test

problems are produced in medium and large sizes with

tight due dates, also the performances of these

algorithms are evaluated using the concept of data

envelopment analysis (DEA), distance method, and a

number of non-dominated solutions which are another

novelty aspects of this research.

2 LITERATURE REVIEW

The literature of parallel machine-scheduling problems

with conventional performance measures based on due

date, flow time and completion time has been widely

reviewed by Cheng and Sin [8], On the other hand,

Lam and Xing presented a review which focused on

parallel machine scheduling problems with non-

regular performance measures as a result of

incorporating the concepts associated with flexible

manufacturing systems and just-in-time manufacturing

[9].

The research on unrelated parallel machine scheduling

has focused on a variety of objectives; such as

minimizing the makespan, maximum tardiness, total

weighted tardiness and total weighted flow time. For

makespan minimization, these include the algorithms

with worst case performance [10], approximation

algorithm [11], two-phase heuristics [12], local search

heuristics [13], [14], the consideration of dynamic

machine availability [15], and an effective heuristic

through hashing [16]. So far, Uzsoy et al. discussed

minimizing the maximum lateness with precedence

constraints and sequence-dependency of jobs, in their

article a neighbourhood search algorithm that obtained

local optimal solution was presented along with a

Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December - 2015 65

© 2015 IAU, Majlesi Branch

branch and bound algorithm to obtain optimal

solutions [17]. Hurink and Knust have presented

scheduling of jobs on identical parallel machines with

sequence-dependent setup times and precedence

constraints to minimize maximum completion time, as

an NP_hard problem. In this paper, they investigate

designing an efficient list scheduling algorithm which

produces a dominant set of list schedules if it is

applied to all sequences of jobs which are compatible

with the specified precedence [18]. Researches in the

area of scheduling parallel machines with multiple

objectives are as follows:

Shmoys and Tardos considered a problem of

scheduling unrelated parallel machines to minimize

makespan and total cost, they considered a range of

possible processing times for each machine-job pair,

and the cost linearly increased as the processing time

decreased [19]. Suresh and Chaudhuri proposed a

Tabu search method to solve a bi- criteria problem on

unrelated parallel machines with the aim of

minimizing makespan and maximum tardiness [20].

Reference [21] conducted a wide-ranging survey on

bi-criteria parallel machines scheduling problems and

presented several different heuristic algorithms to

solve them. Reference [22] developed a fully

polynomial approximation scheme for minimizing

total cost and makespan. Funda et al employed the GA

and considered the total weighted earliness and

tardiness on the multi-objective scheduling problem of

parallel machines [23]. Reference [24] proposed an

efficient algorithm to solve optimally the bi-criteria

problem of minimizing the weighted sum of makespan

and mean flowtime on two identical parallel machines.

Reference [25] also studied a scheduling problem to

minimize flowtime subject to optimal makespan on

two identical parallel machines. Gupta et al. discussed

the multi-objective scheduling problem of parallel

machines, which attempts to minimize the makespan

under the consideration of minimizing the flowtime

[26]. Yu et al. proposed a two-stage Lagrangian

relaxation heuristic (LRH) method to solve the

problem, and apply it to printed wiring board

manufacturing [27]. Lin and Liao considered the

identical parallel machines problem with makespan

minimization subject to minimum total flowtime [28].

Reference [29] studied problems, they showed that it is

possible to construct in polynomial time an

approximate Pareto curve whenever the number of

machines is unvarying. Instead of proceeding in a

problem-by-problem basis, they identified a class of

multi-objective optimization problems possessing a

fully polynomial time approximation scheme (FPTAS)

for computing an ε-approximate Pareto curve. Cochran

et al. proposed a two-stage multi-population genetic

algorithm (MPGA) to solve the parallel machine

scheduling problem with two objectives of makespan

and total weighted tardiness. They used the genetic

algorithm to assign jobs to machines and then

sequence them based on the different heuristics [30].

Huo et al. presented multi-objective parallel machines

scheduling to minimize the number of tardy jobs and

maximum weighted lateness, and solved this problem

with heuristic algorithm [31].

Eren, T. developed a heuristic approach for

minimization of the weighted sum of total completion

time and total tardiness with a learning effect of setup

times and removal times [32]. Jolai, F. et al. developed

three bi-objective optimization methods based on

simulated annealing, called CWSA (classical weighted

simulated annealing), NWSA (normalized weighted

simulated annealing), and FSA (fuzzy simulated

annealing), to solve the problem with the goal of

finding optimal pareto front and finally they proposed a

new reliable method by mixing the Taguchi method

and a Multi-objective Decision Making (MODM)

approach. They used both small and large scale

problems [33]. Lee, C., et al addressed a scheduling

problem originated from the manufacturing plant and

the objective is to generate a schedule of the jobs on the

unrelated parallel machines to minimize the total

completion time. They proposed three heuristics

(DMH-1, DMH-2 and DMH-3) for solving the problem

[34]. Min joo and kim used a hybrid genetic algorithms

with three dispatching rules for large-sized problems.

And for assessing the performance of algorithms,

computational experiments were conducted [35]. Yang-

Kuei Lin and Hao-Chen Lin Research propose a

heuristic and a Tabu search algorithm for finding non-

dominated solutions to bicriteria unrelated parallel

machine scheduling problems with release dates [36].

3 MULTI-OBJECTIVE OPTIMIZATION

In the literature concerning multi-objective

optimization problems five main approaches can be

discerned:

i. Utility approach: a utility function or weighting

function, often a weighted linear combination of

the objectives is used to aggregate the considered

objectives in a single one.

ii. Hierarchical approach: the considered objectives

are ranked in a priority order and optimized in

this order.

iii. Goal programming: all of the objectives are taken

into account as constraints which express some

satisfying levels (or goals) and the objective is to

find a solution which provides a value as close as

possible to the predefined goal for each

objective. Sometimes one objective is chosen as

the main objective and is optimized under the

constraint related to other objectives.

66 Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December – 2015

© 2015 IAU, Majlesi Branch

iv. Interactive approach: at each step of the

procedure, the decision maker expresses his

preferences in regard to one (or several) solutions

proposed, so that the method will progressively

converge to a satisfying compromise among the

considered objectives.

v. Simultaneous or Pareto approach: the aim is to

generate, or to approximate in case of a

heuristic method, the complete set of efficient

solutions [37].

Many real-world problems engage simultaneous

optimization of several objective functions. In general,

these functions often compete and are in conflict with

each other. Multi-objective optimization with such

conflicting objective functions provides a set of

optimal solutions that called Pareto optimal, rather

than one optimal solution. The Multi-objective set

includes solutions with no better solution with

considering all objective functions. Without loss of

generality, let us consider a typical multi-objective

minimization problem with p decision variables and q

objectives (q > 1):

1 2() ((), (),..., ())

,

q

P q

Miny f x f x f x f x

X R andY R

 

 
 (1)

Definition 3-1: Solution a, is said to dominate solution

b if and only if:

 

 

(1) () (); 1,2,...,

(2) () (); 1,2,...,

i i

i i

f a f b i q

f a f b i q

  

  

(2)

Solutions that dominate other solutions but do not

dominate themselves are called non- dominated

solutions.

Definition 3-2: Vector a , is a globally Pareto-

optimal solution if vector b , does not exist such that

b , dominates a [38].

3.1. Evaluation methods

One important aspect that should be considered is

how to evaluate the quality of the obtained non-

dominated front. Several aspects have to be

considered to determine how good the obtained front

is. Some these methods are as follows:

1) The number of non-dominated solutions obtained,

2) The closeness between the obtained front and the

Pareto optimal front (if known),

3) The coverage of the Pareto front, i.e. the spread

and distribution of the non-dominated solutions [39].

In this paper, we use three methods to evaluate the

quality of solutions.

1- The number of non-dominated solutions

2- Free disposal hull (FDH) method

3- Distance method

Section 3.1.1 and Section 3.1.2 describe the last two

methods respectively.

3.1.1. FDH approach

Data envelopment analysis (DEA) is a non-parametric

approach to measuring efficiency. Since its advent in

1978 [40], this method has been extensively utilized to

analyze relative efficiency, and has covered a wide

area of applications and theoretical extensions [41].

From the definition of efficiency, DEA will be defined

as weighted sum of outputs divided by weighted sum

of inputs. The FDH is a special case of DEA.

A score of one is assigned to a unit only when

comparisons with other relevant units do not provide

evidence of inefficiency in the use of any input or

output, and a score less than one is assigned to

relatively inefficient units and it means that a linear

combination of other units from the sample, using a

smaller vector of inputs could produce the same vector

of outputs with a smaller vector of inputs.

One objective of this work is to compare the

performance of our two proposed meta-heuristics. We

do it by employing the FDH formulation and

considering the corresponding degrees of efficiency.

Further illustration of the application of FDH and its

formulations can be seen in [42].

3.1.2. Distance method

Distance method, like previous method can evaluate

the set of non-dominated solutions. In this method,

after determining non-dominated solutions of each

algorithm, the direct distance of these solutions in

relation with the origin will be found. Here we suppose

that the origin is (0, 0). The obtained average of these

distances (D) is the radius of a bow in the space of

solution. Each solution is along of a direct line which

connects to the origin, which will be transferred to a

point on the bow with the mentioned radius. In this

way, the solutions will permanently keep their

characteristic of being non-dominated. Now, we can

infer, by analogy, these two sets of non-dominated

solutions by considering the radius of the bow (D)

which was obtained, or by considering the dispersion

of point Where fi (x) and fi (x) are our objectives, d is

the Euclidean distance between solution i and point (0,

0). The s and σ metric measure the uniformity of the

spread of the points of the solution set.

2 2

1 2() ()i i

id f X f X  (3)

2 2

1 1 2 2(()) (())i i

i f fd f X LB f X LB    (4)

1

n

i

i

d

D
n




 (5)

Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December - 2015 67

© 2015 IAU, Majlesi Branch

2

1

()

1

n

i

i

D d

S
n









 (6)

2

1

n

i

i

d

n
 


 (7)

4 PROBLEM DESCRIPTION

We consider there are N jobs that have to be scheduled

in M machines under the following assumptions:

• There is only one operation for each job, and

this operation can be processed on any one of the M

machines.

• Each machine can only process one job at a

time and a job cannot be processed on different

machines at the same time.

• The machines operate with different speeds,

and all of them are available at the beginning of the

scheduling.

• Jobs are not independent, and there are some

precedence relations between them.

• All jobs are not available at the beginning of

the scheduling, and each one of them has its own

due date.

• Setup times are dependent on job sequence

and machine type and anticipatory setups are

considered.

• Pre-emption, i.e. job splitting is not allowed

for jobs.

The objectives of the problem are minimizing the

number of tardy jobs and the makespan.

4.1. Notations and their definitions

M: Total number of machines

N: Total number of jobs for processing

UB: Maximum number of situations on each machine

that jobs are placed on them; and are: UB  N  M 1

imP : Processing time of job i on machine m; i  1, 2...

N; m  1, 2... M

iP = Processing time of job i

jP = Processing time of job j

id : Due date of job i

ir : Time at which job i is available for processing

(ready time)

ijmS : Setup time to switch from job i to job j on

machine m; i, j  1, 2... N; m  1, 2... M

jmS : Setup time of job j on machine m, if it is the first

job on the machine

ijS : The same setup time for all machines, for

processing job j immediately after job i
L: A large positive number

Ci: Completion time of job i

Ui: 1iU if job i is tardy; 0iU otherwise,

ikmX : if job i is assigned on situation k at

machine m then ikmX =1 otherwise, ikmX =0; k 1,

2, ...,UB
Pr ec(i, j): precedent constraint between job i and j; if i

precedes j then Pr ec(i, j)  1; otherwise Pr ec(i, j) 

X a: if setup times is anticipatory X a  1, else X a  0

ar : If Ci  Sij  rj then ar =1; else ar =0.

4.2. Problem formulation

Based on the definition and notation described above,

suggested model can be formulated as follows:

Objective Function:

max()Min C (8)

1

n

i

Min Ui


 (9)

Constraints:

1 1

1, 1,2,...,
M UB

ikm

m k

X i N
 

  (10)

1

1, 1,2,..., , 1,2,...,
N

ikm

i

X k UB m M


   (11)

N

j,k-1,m

1 j 1

X 0, 2,...,

1,...,

N

ikm

i

X k UB

m M

 

  



 
 (12)

 

(1) (1)(. .). (. .)

(. () ())

, 1,..., , , 2,..., ,

1,2,..., , , 0,1

jkm i k m a j jkm i k m a

i a ijm j i j ij

a a

X X r r X X r

P X S C C P S

i j N i j k UB

m M X r

 

      

  

 

 (13)

1

*

1,2,..., , 1,2,...,

UB

i i im ikm

k

C r P X

i N m M



 

 


 (14)

68 Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December – 2015

© 2015 IAU, Majlesi Branch

1 1

,Pr (,) 1,

1,...,

M UB

j i jm jkm

m k

C C P X ec i j

i j N

 

  

 


 (15)

() 0, 1,2,...,i i iC d LU i N    (16)

 , 0,1 , 0ikm i iX U C  (17)

Function (8) and (9) minimize the makespan and the

total number of tardy jobs, respectively. Constraint

(10) ensures that each job is assigned to one of the

existing positions on the machines. Constraint (11)

guarantees that on each existing positions, at most

one job could be assigned. Constraint (12) ensures

that until one position on a machine is empty, jobs do

not assign to subsequent positions and jobs assigned

to empty positions on each of the machines,

respectively. Constraint (13) ensures that if setup

times are anticipatory, i.e. X a=1; then setup can be

started before the corresponding job becomes

available on the machine. Constraint (14) guarantees

that, interval between ready time and completion

time of a job is enough for processing of that job on

each machine. Constraint (15) observes precedence

relationships. Constraint (16) specifies the tardy jobs.

Constraint (17) defines the type of decision variables.

5 PROPOSED MULTI-OBJECTIVE GENETIC

ALGORITHM

A GA is a search technique that imitates the natural

selection and biological evolutionary process [43].

GAs have been used in a wide variety of applications,

particularly in combinatorial optimization problems,

and they were proved to be able to provide near

optimal solutions in reasonable time.

A GA starts with a population of randomly generated

solutions, called chromosomes. Each chromosome of

population is evaluated using some measure of

fitness. Parents (certain pairs of chromosomes) are

selected based on their fitness value. Each of these

pairs combines to produce new chromosomes and

some of the chromosomes are modified to generate

new population by replacing some of the original

chromosomes by new chromosomes. The process is

repeated until a stopping criterion is satisfied.

In this paper we have developed two multi-objective

genetic algorithms; the so called MOGAC and

MOGAT that are similar in generality, and differ in

evaluation and selection mechanisms.

5.1. Representation scheme

In this research, we use the encoding scheme proposed

by Cheng et al. to represent a solution (chromosome)

to the problem at hand [44]. In this encoding scheme,

integers are used to represent all sequences of jobs,

and an asterisk '*' is used to represent the partition of

jobs to machines. For example, for a schedule with 8

jobs and 3 machines, the chromosome can be

presented as [248*13*756]. The completed schedule is

thus: jobs 2, 4 and 8 on machine 1, jobs 1 and 3 on

machine 2, and jobs 7, 5 and 6 on machine 3.

Generally, for an M-machine N-job problem, a

permissible chromosome contains (M-1) partitioning

symbols and N job symbols, resulting in a total size of

(M+ N-1). [45]

5.2. Initialization

We generate one third of an initial set of solutions to

make up the initial population randomly according to

reference [45]. Also, in order to give the GA good

initial solutions and to increase the chances of

generating good new chromosomes, we insert some

solutions (chromosomes) generated by two heuristics

proposed in this research. To generate the random

solutions for one third of initial population, the

procedure is as follows.

i. Set i  1

ii. Produce (M 1) asterisks “*” and assign them

randomly to genes of the chromosome in which none

of them assigned to the first and last genes, and

between asterisks must be at least one unfilled genes.

iii. Assign numbers from 1 to N to the remaining

unfilled genes of chromosome

iv. Set i  i  1

v. if i> population _ size , STOP, else go to step ii

Our two heuristics are as follows:

1. At first for generating a chromosome, we sort

jobs randomly next to each other, and then we swap

some chromosomes to consider precedent constraints

(in a linear form). Then we start from the first gene

and assign that job to a machine with least completion

time, and this procedure will be continued till the last

gene. We generate one third of our initial population

with this method.
2. In the second heuristic, Jobs would be assigned

randomly to the machines and then, using the EDD

method, they would be sorted on each machine

according to their due-dates. We generate the last set

of our initial population with this method.

5.3. Evaluation

It is necessary to describe how objectives should be

computed before considering evaluation mechanism of

chromosomes in the algorithm.

5.3.1. Evaluation of objectives

Makespan (Cmax) is computed as follows:

Suppose job i is immediately after job j on machine m

Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December - 2015 69

© 2015 IAU, Majlesi Branch

and job(s) k precedes job i, C
i
 max{r

i
, C

j
 S

jim

,CK}  Pim

CK  max {Ck }; k  1, 2, ..., k

If job i does not have any precedents; CK  0

If job i is the first job on machine m; Ci =max {ri , Sim

,CK}  Pim

Cmax max {Ci }

Number of tardy jobs for each chromosome is

computed as follows:

iU =0

For i=1 to N

If Ci > di, then 1 ii UU

END

5.3.2. Evaluation of chromosomes in MOGAC

(primary and secondary ranking)

We calculate the two objectives (makespan and number

of tardy job) considered in this research for all the

chromosomes. Next, all the chromosomes are ranked by

the following procedure.
All solutions that are non-dominated with respect to

each other are assigned as rank 1, and then removed

from contention. For the remaining solutions, the next

set of non- dominated solutions, those dominated by

solutions whose rank is 1 but non-dominated amongst

the rest, are assigned as rank 2, and then removed from

contention. The procedure is continued until all

chromosomes are ranked. We refer to this as primary

ranking of chromosomes.

Next, we give the secondary ranking of all the

chromosomes with respect to their crowding distances.

The principle of a crowding technique is to give more

preference to those chromosomes that are away from

the peaks of multi-modal functions than to the

chromosomes that are in the peaks of multi-modal

functions. By doing this, the possibility of many

solutions in a population converging to a single non-

dominated solution is decreased, and diversity among

chromosomes during crossover, and in the subsequent

generation is maintained [45], [46]. Here, the method of

computing crowding distance is based on [47].

Crowding distance of chromosome k with respect to all

other chromosomes in the same rank is defined as c _

dk:

 l , l

k ki

FfK K

C d D
 

   (18)

Where klD is the crowding distance between

chromosomes k, l and kF denotes the rank on which

chromosome k lies and { fkF } denotes the

chromosomes that lie on the same front as that of

chromosome k. klD is defined as follows:

   fk

2

1 k F

() ()

max () min ()
fk

R
r r

kl

r r rk F

Z k Z l
D

Z k Z k   

 
 
  
 

 (19)

Where ()rZ k and ()rZ l denote the
thr objective

function for chromosome k, l, and R denotes the

number of objectives under consideration. Max ()rZ k 

and min ()rZ k  denote the maximum and minimum

thr objective value of Chromosomes k within the set

of chromosomes { fkF }. Note that if, Max)(kZr
 =

min)(kZr
 then we set value of:

   fk

2

k F

() ()
0

max () min ()
fk

r r

r rk F

Z k Z l

Z k Z k
  

 
  
  
 

 (20)

The chromosomes with the largest value of crowding

distance is ranked as 1 in comparison to other

chromosomes on the same front, since the chromosome

with the largest value of crowding distance lies farthest

with respect to other chromosomes on the same front.

The secondary ranks are assigned to chromosomes by

arranging them in descending order of c _ dk.

5.3.3. Evaluation of chromosomes in MOGAT

According to [45], evaluating chromosomes in this

algorithm is based on the TOPSIS method. This is a

technique for ranking a limited number of alternatives

using a number of decision criteria. It stands for total

order preference by similarity to the ideal solution. It is

based on the principles of geometry; plotted in

Euclidean space, the optimal solution is the one with

the shortest distance to the positive ideal solution and

the longest distance from the negative ideal solution.

The algorithm determines the relative distances and

sorts chromosomes in terms of similarity as TOPSIS

does, and giving higher priority to the extreme

solutions. The order strongly depends on the weights

that the decision maker assigns to each objective

according to their preferences. We assign equal

weights to each objective i.e. 1 0.5W  and 2 0.5W 

to have no preference between objectives.

5.4. Reproduction

The best chromosomes of the current population are

copied directly to the next generation (elitism

mechanism). Here we reproduce non-dominated

solutions of each generation to the next generation.

70 Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December – 2015

© 2015 IAU, Majlesi Branch

5.5. Selection

5.5.1. Selection in MOGAC

We use binary-tournament selection, elitist selection,

and purely random selection as our selection

mechanisms for MOGAC. In binary-tournament

selection scheme, we randomly choose two

chromosomes from the parent population. The fitter

chromosome is then selected according to its primary

rank. Any tie can be broken by the consideration of the

secondary rank, and any further tie is broken randomly.

5.5.2. Selection in MOGAT

Binary-tournament selection, elitist selection, and

purely random selection are employed as selection

mechanisms for MOGAT. Here in tournament

selection, the fitter chromosome is the one with the

higher rank with respect to the TOPSIS method. 5.6.

Local search we conduct two local search schemes on

the chromosomes whose primary rank is 1. These

approaches were also used by [46].

1. The first local search scheme is called random

insertion scheme. To explain this scheme, consider

chromosome [3 6 5 * 2 1 4 * 7 8]. We first randomly

choose a job position; say job position 7 is chosen.

Next, the chosen job is inserted in any other position

chosen at random; say position 2 is chosen, and hence

the generated chromosome is [3 4 6 5 * 2 1 * 7 8].

2. The second local search scheme is called

random swap scheme. For the random swap scheme,

two positions are taken at random and swapped.

5.6. Mutation operator

We use random pairwise exchanges as our mutation

scheme. This approach was also used by [44] and [45].

First, we select two random genes and then exchange

their positions. The randomly selected genes may be

either a job or a star. If both selected genes are stars,

we reselect the second gene until a job is found. Figure

1 shows an illustration of the mutation scheme.

Selection mechanism for mutation is purely random.

Fig. 1 Illustration of mutation scheme

5.7. Crossover operator

In this research, we employ the crossover scheme

proposed by [43]. The crossover scheme is described as

follows; first, we use binary-tournament selection

scheme as described in section 5.5.1 and 5.5.2, to

randomly choose two chromosomes. Next, the

crossover scheme takes two parents, and creates a

single offspring using the following procedure:

(1) It obtains asterisk positions (i.e. overall

partitioning structure) from one parent;

(2) It obtains the remaining jobs from the other

parent by making a left-to-right scan.

Figure 2 shows an illustration of the crossover scheme.

Fig. 2 Illustration of the crossover scheme

5.8. Termination condition

In this article, we use 4000 evaluations as the

algorithm termination criteria.

5.9. Computational results

The algorithms were coded in the MATLAB 7.5

environment, and the experiments were executed on a

Pentium 4 computer. The experimental parameters are

the mutation rate, and the local searches ratio.

5.9.1. Data generation

For solving the presented model, sample problems are

produced in medium and large sizes randomly. To

produce processing times, setup times, and ready times,

we have used uniform distribution [1,150] in a N

dimentional square matrix DU [1, 50] in a N by

(N, M) matrix and DU[0, 60] in a 1 by N
matrix, respectively. But they are modified to generate

only integer values. In this article for producing

precedent relations we have developed a procedure that

generates feasible precedents. The procedure for

producing precedent constraints is as follows:

1. If N  5 then L  2 otherwise
3

N
L  for example for

N  10, L  3.

2. Generate L random number between 1 and N

provided that no two numbers are equal. For example, 3,

6, 7 can be a feasible solution.

3. Define each level, e.g. L0: 1-2-3; L1: 4-5-6; L2: 7;

L3: 8-9-10.

Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December - 2015 71

© 2015 IAU, Majlesi Branch

4. Then randomly, it would be specified whether each

jobs of level L precedes jobs of level L+1 or not?

Finally, we will have a matrix (Pr ec) in which its

arrays included 0 and 1. If Pr ec (i, j)  1, it means that

job i precedes job j.

The random number generation for the due dates are
obtained by di  (Q  (M / 10))  DU [0.3 * (P  S),

2 * (P  S)] We have set Q  2 for generating tight

due dates.

5.10. Parameter setting

Input parameters of algorithms are as follows:

N: number of jobs

M: number of machines

Pm: mutation probability

Max- Gen: maximum number of generations

Pop- size: population size

It should be mentioned that Pc or crossover probability,

and Pr or reproduction probability, in our case, are

dependent parameters and are not considered as input

parameters. We study the effect of two important

parameters (mutation rate and local search ratio) on the

performance of our algorithms.

Different levels of these factors are shown in Table 1.

Table 1 Factors and factor levels

Factor symbol Levels Type

Mutation rate mP 3

(1) 0.2

(2) 0.3

(3) 0.4

m

m

m

P

P

P







Local Search

rate
L 3

(1) 2 1

(2) 2 2

(3) 3 2

L

L

L

 

 

 

Note that L (1): 2-1, means on each chromosome with

primary rank of 1, we consider twice local search #1 and

once local search #2.

Fig. 3 Efficiency with FDH

For setting parameters of two algorithms we consider 4

test problems, 2 medium size problems (N  50, M 

5) and (N  30, M  3), and two large size problems
(N  80, M  8) and (N  100, M  10). We run 3

times, all possible status of Table 1 on our test

problems. With respect to having multi objective model

and possessing a set of non-dominated solutions instead

of one discrete solution, here for comparing different

parameters, we consider two methods of FDH and

distance method to evaluate the quality of parameters.

Results are as shown in Figure 3 and Figure 4.

Fig. 4
2 of distance method

As Figure 3 and Figure 4 show, optimal parameters

with two methods confirm each other, and Pm(2)and

L(2)are set for our algorithms Thus parameters of

algorithms are set as follows:

The population size is 100. Corresponding to every

chromosome whose primary rank is 1, we generate 2

chromosomes by implementing the random insertion

scheme, and 2 chromosomes by implementing the

random swap scheme. The probability of mutation is

0.3 for the remaining population (after reproduction

and local search). The crossover would finally be

performed on number of remaining chromosomes of

population.

5.11. Comparison of MOGAT and MOGAC

In this section we compare performance of MOGAT

with MOGAC. With respect to comparing two sets of

final solutions, we consider three methods to evaluate

the quality of solutions; they are FDH method, distance

method, and number of non-dominated solutions.

5.11.1. Comparison based on FDH method

We calculated the degree of efficiency using weights

W1  0.25, W2 0.5, and W3 0.75. 10 large and 5

medium test problems were produced. Results are

shown in Table 2. Wilcoxon signed-ranked test shows

no significant difference between these two algorithms

using this method.

72 Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December – 2015

© 2015 IAU, Majlesi Branch

Table 2 Efficiency of algorithms

Test

Problem

MOGAT MOGAC

W1=

0.75

W1

=

0.5

W1=

0.25

W1=

0.75

W1

=

0.5

W1=

0.25

Large 1
0.98

8

0.99

2
0.996 1 1 1

Large 2
0.98

0

0.98

7
0.993 1 1 1

Large 3 1 1 1
0.96

2

0.97

4
0.987

Large 4 1 1 1
0.95

1

0.96

7
0.984

Large 5 1 1 1
0.93

9

0.95

5
0.977

Large 6
0.97

0

0.98

0
0.990 1 1 1

Large 7 1 1 1
0.95

3

0.96

9
0.984

Large 8 1 1 1
0.98

7

0.99

1
0.996

Large 9
0.84

1

0.72

8
0.614 1 1 1

Large 10
0.97

0

0.95

2
0.934 1 1 1

Medium

1

0.96

6

0.95

7
0.947 1 1 1

Medium

2

0.95

4

0.96

3
0.974 1 1 1

Medium

3

0.90

3

0.89

0
0.877 1 1 1

Medium

4
1 1 1

0.97

8

0.97

1
0.965

Medium

5
1 1 1

0.98

5

0.98

7
0.993

5.11.2. Comparison based on Distance method

Results of Evaluation of 2 for both algorithms are

shown in Table 3. Wilcoxon signed-ranked test shows

no significant difference between these two algorithms

using this method.

Table 3 2 Of algorithms

Test Problem MOGAT MOGAC

Large 1 150259 150916.5

Large 2 176425 167306

Large 3 143706.5 160177.5

Large 4 213508 196370

Large 5 238265 282105

Large 6 145176.5 131792.5

Large 7 139880 123929

Large 8 182155 213033

Large 9 160817 145571

Large 10 180663 156653.6

Medium 1 227471.667 231718.333

Medium 2 400108 366095.5

Medium 3 191904.5 180641

Medium 4 173462 195834

Medium 5 219717 210389

5.11.3. Comparison based on Number of non-

dominated solutions

Results of the number of non-dominated solution are

shown in Table 4. Once again Wilcoxon signed-ranked

test shows no significant difference between these two

algorithms using this method.

Table 4 Number of non-dominated solution

Test Problem MOGAT MOGAC

Large 1 2 4

Large 2 1 1

Large 3 3 2

Large 4 4 1

Large 5 5 1

Large 6 2 3

Large 7 4 1

Large 8 2 2

Large 9 1 2

Large 10 2 5

Medium 1 4 3

Medium 2 4 6

Medium 3 4 2

Medium 4 3 4

Medium 5 3 4

6 CONCLUSION

Industrial scheduling has greatly benefited from the use

of unrelated parallel machines due to their ability to

perform the same function, but with varying capability

or capacity. In this paper, two multi-objective genetic

algorithms (MOGAT&MOGAC) were proposed to find

the unrelated parallel machines scheduling problem that

minimizes makespan and number of tardy jobs with

considering that jobs have non-identical due dates, and

ready times with some precedence relations,

Furthermore sequence-dependent setup times and

anticipatory setups were included in the model. In this

paper, we proposed two heuristics, each of which

produced one third of our initial population.

The difference between MOGAT and MOGAC is in

the evaluation and selection mechanisms. Sorting the

chromosomes in MOGAT is based on TOPSIS method,

and in MOGAC it is based on non-dominated sorting

(primary sorting) and crowding distance (secondary

sorting). For solving the model, sample problems were

produced with a new proposed procedure for
generating precedent constraints, and a new proposed

formulation for producing due dates.

After comparing the results of two algorithms by using

FDH method, distance method, and number of non-

dominated solutions, we concluded there is no

statistically significant difference between these two

Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December - 2015 73

© 2015 IAU, Majlesi Branch

algorithms using Wilcoxon signed ranks test. The

approaches proposed in this article are fairly general in

that they can be extended to other multi-criteria

problems. Future research would involve further

exploration of objectives and consideration of some

realistic assumptions, such as, machine availability

constraints.

REFERENCES

[1] Lin, Yang-Kuei, “Data Generation and heuristics for
unrelated parallel machine scheduling problems”,
Doctoral Dissertation, Arizona State University, 2006.

[2] Blidgue, U., Kirac, F., Kurtulan, M., and Pekgun, P., “A
Tabu Search Algorithm for Parallel Machine total
Tardiness Problem. Computers and Operation
Research”, Vol. 31, No. 3, 2004, pp. 397-414.

[3] Pinedo, M., “Scheduling Theory, Algorithms and
Systems”, Prentice Hall, Englewood Cliffs, NJ, 2002.

[4] Sanjay Radhakrishnan, Jose, A., “Ventura Simulated
Annealing for Parallel Machine Scheduling with
Earliness/Tardiness Penalties and Sequence-Dependent
Setup Tmes”, International Journal of Production
Research, Vol. 38, No. 10, 2000, pp. 2233-2252.

[5] Allahverdi, A., Ng, C. T, Cheng, T. C. E, and Kovalyov
Mikhail, Y., “A Survey of Scheduling Pproblems with
Setup Times or Costs”, European Journal of Operational
Research 187, 2008, pp. 985-1032.

[6] Garey, M. R., Johnson, V., “Scheduling Tasks with Non
uniform Deadlines on Two Processors”, Journal of the
ACM 23, 1976, pp. 461-467.

[7] Brucker, P., “Scheduling Algorithm”, Berlin: Springer
1998.

[8] Cheng, T. C. E., Sin, C.C.S., “A State-of-the-art Review
of Parallel Machine Scheduling Research”, European
Journal of Operational Research, Vol. 47, No. 3, 1990,
pp. 271-292.

[9] Lam, K., Xing, W., “New Trends in Parallel Machine
Scheduling”, International Journal of Operations and
Production Management, Vol. 17, No. 3, 1997, pp. 326-
338.

[10] Davis, E., Jaffe, J. M., “Algorithms for Scheduling
Tasks on Unrelated Processors”, Laboratory for
Computer Science, Massachusetts Institute of
Technology, 1979.

[11] Lenstra, J. K., Rinnooy, Kan, A. H. G., and Brucker, P.,
“Complexity of Machine Cheduling Problems”, Annals
of Discrete Mathematics 1, 1977, pp. 343-362.

[12] Hariri, A. M. A., Potts, C. N., “Heuristics for Scheduling
Unrelated Parallel Machines”, Journal of Computers and
Operations Research, Vol. 18, No. 3, 1991, pp. 323-331.

[13] Glass, C. A., Potts, C. N., and Shade, P., “Unrelated
Parallel Machine Scheduling using Local Search”,
Mathematical and Computer Modeling, Vol. 20, No. 2,
1994, pp. 41-52.

[14] Piersma, N., Van Dijk, W., “A Local Search Heuristic
for Unrelated Parallel Machine Scheduling with
Efficient Neighborhood Search”, Mathematical and
Computer Modeling, Vol. 24, No. 9, 1996, pp. 9-11.

[15] Suresh, V., Chaudhuri, D., “Scheduling of Unrelated
Parallel Machines when Machine Availability is
Specified”, Production Planning and Control, Vol. 7, No.

4, 1996, pp. 393-400.
[16] Srivastava, B., “An Effective Heuristics for Minimizing

Makespan on Unrelated Parallel Machines”, Journal of
the Operational Research Society, Vol. 49, 1998, pp.
886-94.

[17] Uzsoy, R., Martin-Vega, L. A., Lee, C. Y., and Leonard,
P. A., “Production Algorithms for Semiconductor Test
Facility”, IEEE Transactions on Semiconductor
Manufacturing, Vol. 4, 1991, pp. 270-280.

[18] Hurink, J., Knust, S., “List Scheduling in a Parallel
Machine Environment with Precedence Constraints and
Setup Times”, Operations Research Letters, Vol. 29,
2001, pp. 231-239.

[19] Shmoys, D. B., Tardos, E., “Scheduling Unrelated
Machines with Costs”, Proceeding of the 4th Annual
ACM-SIAM Symposium, Austin, TX, Jan 1993, pp.
448-454.

[20] Suresh, V., Chaudhuri, D., “Bi-criteria Scheduling
Problem for Unrelated Parallel-Machines”, Computers
and Industrial Engineering, Vol. 30, 1996, pp. 77-82.

[21] Prakash, D., “Bi-Criteria Scheduling Problems on
Parallel Machines”, M.Sc. Thesis, Department of
Industrial and System Engineering, Virginia Polytechnic
Institute and State University, U.S.A. 1997.

[22] Porkolab, L., Jansen, K., “Improved approximation
schemes for scheduling unrelated parallel- machines”,
ACM Symposium on Theory of Computing, 1999, pp.
408-417.

[23] Funda S., Serifoglu, G. U., “Parallel Machine
Scheduling with Earliness Tardiness Penalties”,
Computers and Operation Researches, Vol. 26, 1999, pp.
773-787.

[24] Gupta, J. N. D., Ho, J. C., and Webster, S., “Bi-Criteria
Optimisation of the Makespan and Mean Flowtime on
Two Identical Parallel Machines”, Journal of the
Operational Research Society, Vol. 51, No. 11, 2000, pp.
1330-1339.

[25] Gupta, J. N. D., Ho, J. C., “Minimizing Makespan
Subject to Minimum Flowtime on two Identical Parallel
Machines”, Computers and Operations Research, Vol.
28, 2001, pp. 705-717

[26] Gupta, J. N. D., Ruize-Torres, J. A., “LISTFIT Heuristic
for Minimizing Makespan on Identical Parallel
Machines”, Vol. 12, 2001, pp. 28-36.

[27] Yu, L., Shih, H. M., Pfund, M., Carlyle, W. M., and
Fowler, J. W., “Scheduling of Unrelated Parallel
Machines: an Application to PWB Manufacturing”, IIE
Transactions, Vol. 34, No. 11, 2002, pp. 921-931.

[28] Lin, C. H, Liao, C. J., “Makespan Minimization Subject
to Flowtime Optimality on Identical Parallel Machines”,
Computers and Operations Research, Vol. 31, 2003, pp.
1655-1666.

[29] Angel, E., Bampis, E., and Kononov, A., “On the
Approximate Tradeoff for bi-criteria Batching and
Parallel Machine Scheduling Problems”, Theoretical
Computer Science, Vol. 306, No. 1-3, 2003, pp. 319-338

[30] Cochran, J. K., Horng, S.-M., and Fowler, J. W., “A
Multi-population Genetic Algorithm to Solve Multi-
objective Scheduling Problems for Parallel Machines”,
Computers and Operations Research, Vol. 30, 2003, pp.
1087-1102.

[31] Huo, Y., Leung, J., and Zhao, H., “Bi-Criteria
Scheduling Problems: Number of Tardy Jobs and
Maximum Weighted Tardiness”, European Journal of
Operational Research, Vol. 177, 2007, pp. 116-134.

74 Int J Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December – 2015

© 2015 IAU, Majlesi Branch

[32] Eren, T., “A Bi-Criteria Parallel Machine Scheduling
with a Learning Effect of Setup and Removal Times”,
Applied Mathematical Modeling, Vol. 33, 2009, pp.
1141-1150.

[33] Jolai, F., Asefi, H., Rabiee, M., and Ramezani, P., “Bi-
objective Simulated Annealing Approaches for No-wait
Two Stage Flexible Flow Shop Scheduling Problem”,
Scientia Iranica (Sharif University of Technology), Vol.
20, No. 3, 2013, pp. 861-872.

[34] Lee, C. -H., Liao, C. -J., and Chao, C. -W., “Unrelated
Parallel Machine Scheduling with Dedicated Machines
and Common Deadline”, Computer and industrial
engineering, Vol. 74, 2014, pp. 161-168.

[35] Min Joo, C., Soo Kim, B., “Hybrid Genetic Algorithms
with Dispatching Rules for Unrelated Parallel Machine
Scheduling with Setup Time and Production
Availability”, Computer and Industrial Engineering, Vol.
86, 2015, pp. 102-109.

[36] Lin, Y. –K, Lin, H. -C., “Bicriteria Scheduling Problem
for Unrelated Parallel Machines with Release Dates”,
Computers & Operations Research, Vol. 64, 2015, pp.
28–39.

[37] Loukil, T., Teghem, J., and Tuiyttens, D., “Solving
Multi-Objective Production Scheduling Problems using
Metaheuristics”, European Journal of Operational
Research, Vol. 161, 2005, pp. 42-61.

[38] Tavakkoli-Moghaddam, R., Rahimi-Vahed, A., and
Hossein Mirzaei, A., “A Hybrid Multi-Objective
Immune Algorithm for a Flow Shop Scheduling Problem
with Bi-Objectives: Weighted Mean Completion Time
and Weighted Mean Tardiness”, International Journal of
Information Science, Vol. 177, 2007, pp. 5072-5090.

[39] Deb, K., “Multi-Objective Optimization Using
Evolutionary Algorithms”, John Wiley& Sons, Inc.,

New York, NY, 2001.
[40] Charnes, A., Cooper, W. W., and Rhodes, E.,

“Measuring the Efficiency of Decision Making Units”,
European Journal of Operational Research, Vol. 2, No.
6, 1978, pp. 429-444.

[41] Allen, R., Athanassopoulos, A., Dyson, R. G., and
Thanassoulis, E., “Weights Restrictions and Value
Judgements in Data Envelopment Analysis: Evolution,
Development and Future Directions”, Annals of
Operational Research, Vol. 73, 1997, pp. 13-34.

[42] Ruiz-Torres, A. J., Lopez, F. J., “Using the FDH
Formulation of DEA to Evaluate a Multi-Criteria
Problem in Parallel Machine Scheduling”, Computers
and Industrial Engineering, Vol. 47, 2004, pp. 107-121.
16.

[43] Holland, J. H., “Adaptation in Natural and Artificial
Systems”, University of Michigan Press, 1975.

[44] Cheng, R., Gen, M., and Tosawa, T., “Minmax
Earliness/ Tardiness Scheduling in Identical Parallel
Machine System using Genetic Algorithms”, Computers
and Industrial Engineering, Vol. 29, 1995, pp. 513-517.

[45] Lin, Y. K., Fowler, J. W., and Pfund, M. E., “Multiple-
Objective Heuristics for Scheduling Unrelated Parallel
Machines”, European Journal of Operational Research,
Vol. 227, No. 2, 2013, pp. 239-253.

[46] Lin, Y. –K., “Data Generatiion and Heuristics for
Unrelated Parallel Machine Scheduling Problems”,
Doctoral Dissertation, Arizona State University, 2006.

[47] Pasupathy, T., Rajendran, C., and Suresh, R. K., “A

multi-Objective Genetic Algorithm for Scheduling in

Flow Shops to Minimize the Makespan and Total Flow

Time of Jobs”, International Journal of Advanced

Manufacturing Technology, Vol. 27, 2006, pp. 804-815.

http://www.sciencedirect.com/science/journal/03772217/227/2

