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1 INTRODUCTION 

The problem of scheduling N jobs on M unrelated 

parallel machines is considered with sequence-

dependent setup times to minimize makespan and 

number of tardy jobs. Parallel machine scheduling is 

important from both theoretical and practical points of 

view. From a theoretical viewpoint, it is important 

because many algorithms can be reduced to solve 

single machine problems and from practical viewpoint, 

it is important because in a real world manufacturing 

environment most workshops have more than one 

machine [1]. 

The classical parallel machine problem is defined as: 

A set of the independent jobs to be processed on a 

number of available identical parallel machines. Each 

machine can process only one job at a specific time, 

and each job can be processed on one machine. Each 

job is ready at the beginning of the scheduling horizon 

and has a distinct processing time and due date. It is 

assumed that machines are identical, all jobs are 

available at the beginning of scheduling and have 

common due dates [2]. According to reference [3], 

when machines are not identical and cannot be 

completely correlated by simple rate adjustments, they 

are named unrelated parallel machines. In this work, 

we have considered unrelated parallel machine with 

varying ready time and due dates. Many  scheduling  

researches  assume  that  setup  times  are  negligible  

or  part  of  the processing time. While, this 

assumption simplifies the analysis and/or reflects 

certain applications, it adversely affects the solution 

quality for many applications which require explicit 

treatment of setup times, and cause the model not to be 

effective in real environments. 

In a manufacturing environment, setup times consist of 

all activities that are done on material in order to 

prepare machines and situations in process phase. Setup 

times can be divided into two important groups; 

sequence-dependent setup times and sequence- 

independent setup times [4]. On the other hand it can 

be divided as anticipatory and non-anticipatory setups. 

A setup is anticipatory if it can be started before the 

corresponding job becomes available on the machine. 

Otherwise, a setup is non- anticipatory [5]. Almost  in  

all real industrial environments, precedence  constraints  

are  essential  for sequencing and jobs scheduling. In 

most real situations, some cases occur in which the 

beginning of a job is at the completion of another job, 

and if the precedent job is not completed, the following 

job cannot be started. Here, in order to be more 

realistic, we consider sequence-dependent setup times, 

anticipatory setup and also precedence constraints. In a 

real manufacturing environment, several objectives 

frequently need to be considered at the same time. In 

reality, managers consider multiple objectives and try 

to find the best solution that meets the considerations. 

But in many situations, one is confronted with 

conditions that delay in delivery result in customers 

cancelling their orders. Although, many researchers 

have devoted considerable research efforts to minimize 

the total completion time of jobs on parallel machines, 

minimizing the number of tardy jobs is one of the 

objectives that have been considered less by previous 

researches. Decreasing the completion times can cause 

reducing job lateness and tardiness, and also leads to 

reduction in the total works-in-process inventories, and 

total completion costs. These two conflicting  

objectives can be considered  together as the objectives  

of  the problem. Reference [6] shows that scheduling 

jobs on two identical machines to minimize the 

makespan is NP-hard. As identified by [7] when the 

number of machines is greater than two, the problem is 

an even strong NP-hard.  So, two multi objective 

genetic algorithms (MOGA) have been proposed to 

solve the bi-objective problem in this article. To 

evaluate the proposed algorithms, random test 

problems are produced in medium and large sizes with 

tight due dates, also the performances of these 

algorithms are evaluated using the concept of data 

envelopment analysis (DEA), distance method, and a 

number of non-dominated solutions which are another 

novelty aspects of this research. 

2 LITERATURE REVIEW 

The literature of parallel machine-scheduling problems 

with conventional performance measures based on due 

date, flow time and completion time has been widely 

reviewed by Cheng and Sin [8], On the other hand, 

Lam and Xing presented a review which focused on 

parallel machine scheduling problems with non-

regular performance measures as a result of 

incorporating the concepts associated with flexible 

manufacturing systems and just-in-time manufacturing 

[9]. 

The research on unrelated parallel machine scheduling 

has focused on a variety of objectives; such as 

minimizing the makespan, maximum tardiness, total 

weighted tardiness and total weighted flow time. For 

makespan minimization, these include the algorithms 

with worst case performance [10], approximation 

algorithm [11], two-phase heuristics [12], local search 

heuristics [13], [14], the consideration of dynamic 

machine availability [15], and an effective heuristic 

through hashing [16]. So far, Uzsoy et al. discussed 

minimizing the maximum lateness with precedence 

constraints and sequence-dependency of jobs, in their 

article a neighbourhood search algorithm that obtained 

local optimal solution was presented along with a 
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branch and bound algorithm to obtain optimal 

solutions [17]. Hurink and Knust have presented 

scheduling of jobs on identical parallel machines with 

sequence-dependent setup times and precedence 

constraints to minimize maximum completion time, as 

an NP_hard problem. In this paper, they investigate 

designing an efficient list scheduling algorithm which 

produces a dominant set of list schedules if it is 

applied to all sequences of jobs which are compatible 

with the specified precedence [18]. Researches in the 

area of scheduling parallel machines with multiple 

objectives are as follows: 

Shmoys and Tardos considered a problem of  

scheduling  unrelated  parallel machines to minimize 

makespan and total cost, they considered a range of 

possible processing times for each machine-job pair, 

and the cost linearly increased as the processing time 

decreased [19]. Suresh and Chaudhuri proposed a 

Tabu search method to solve a bi- criteria problem on 

unrelated parallel machines with the aim of 

minimizing makespan and maximum tardiness [20]. 

Reference [21] conducted a wide-ranging survey on 

bi-criteria parallel machines scheduling problems and 

presented several different heuristic algorithms to 

solve them. Reference [22] developed a fully 

polynomial approximation scheme for minimizing 

total cost and makespan. Funda et al employed the GA 

and considered the total weighted earliness and 

tardiness on the multi-objective scheduling problem of 

parallel machines [23]. Reference [24] proposed an 

efficient algorithm to solve optimally the bi-criteria 

problem of minimizing the weighted sum of makespan 

and mean flowtime on two identical parallel machines. 

Reference [25] also studied a scheduling problem to 

minimize flowtime subject to optimal makespan on 

two identical parallel machines. Gupta et al. discussed 

the multi-objective scheduling problem of parallel 

machines, which attempts to minimize the makespan 

under the consideration of minimizing the flowtime 

[26]. Yu et al. proposed a two-stage Lagrangian 

relaxation heuristic (LRH) method to solve the 

problem, and apply it to printed wiring board 

manufacturing [27]. Lin and Liao considered the 

identical parallel machines problem with makespan 

minimization subject to minimum total flowtime [28]. 

Reference [29] studied problems, they showed that it is 

possible to construct in polynomial time an 

approximate Pareto curve  whenever the number of 

machines is unvarying. Instead of proceeding in a 

problem-by-problem basis, they identified a class of 

multi-objective optimization problems possessing a 

fully polynomial time approximation scheme (FPTAS) 

for computing an ε-approximate Pareto curve. Cochran 

et al. proposed a two-stage multi-population genetic 

algorithm (MPGA) to solve the parallel machine 

scheduling problem with two objectives of makespan 

and total weighted tardiness. They used the genetic 

algorithm to assign jobs to machines and then 

sequence them based on the different heuristics [30]. 

Huo et al. presented multi-objective parallel machines 

scheduling to minimize the number of tardy jobs and 

maximum weighted lateness, and solved this problem 

with heuristic algorithm [31]. 

Eren, T. developed a heuristic approach for 

minimization of the weighted sum of total completion 

time and total tardiness with a learning effect of setup 

times and removal times [32]. Jolai, F. et al. developed 

three bi-objective optimization methods based on 

simulated annealing, called CWSA (classical weighted 

simulated annealing), NWSA (normalized weighted 

simulated annealing), and FSA (fuzzy simulated 

annealing), to solve the problem with the goal of 

finding optimal pareto front and finally they proposed a 

new reliable method by mixing the Taguchi method 

and a Multi-objective Decision Making (MODM) 

approach. They used both small and large scale 

problems [33]. Lee, C., et al addressed a scheduling 

problem originated from the manufacturing plant and 

the objective is to generate a schedule of the jobs on the 

unrelated parallel machines to minimize the total 

completion time. They proposed three heuristics 

(DMH-1, DMH-2 and DMH-3) for solving the problem 

[34]. Min joo and kim used a hybrid genetic algorithms 

with three dispatching rules for large-sized problems. 

And for assessing the performance of algorithms, 

computational experiments were conducted [35]. Yang-

Kuei Lin and  Hao-Chen Lin Research propose a 

heuristic and a Tabu search algorithm for finding non-

dominated solutions to bicriteria unrelated parallel 

machine scheduling problems with release dates [36].  

3 MULTI-OBJECTIVE OPTIMIZATION  

In the literature concerning multi-objective 

optimization problems five main approaches can be 

discerned: 

i. Utility approach: a utility function or weighting 

function, often a weighted linear combination of 

the objectives is used to aggregate the considered 

objectives in a single one. 

ii. Hierarchical approach: the considered objectives 

are ranked in a priority order and optimized in 

this order. 

iii. Goal programming: all of the objectives are taken 

into account as constraints which express some 

satisfying levels (or goals) and the objective is to 

find a solution which provides a value as close as 

possible to the predefined goal for each 

objective. Sometimes one objective is chosen as 

the main objective and is optimized under the 

constraint related to other objectives. 
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iv. Interactive approach: at each step of the 

procedure, the decision maker expresses his 

preferences in regard to one (or several) solutions 

proposed, so that the method will progressively 

converge to a satisfying compromise among the 

considered objectives. 

v. Simultaneous or Pareto approach: the aim is to 

generate, or to approximate in case of a 

heuristic method, the complete set of efficient 

solutions [37]. 

Many real-world problems engage simultaneous 

optimization of several objective functions. In general, 

these functions often compete and are in conflict with 

each other. Multi-objective optimization with such 

conflicting objective functions provides a set of 

optimal solutions that called Pareto optimal, rather 

than one optimal solution. The Multi-objective set 

includes solutions with no better solution with 

considering all objective functions. Without loss of 

generality, let us consider a typical multi-objective 

minimization problem with p decision variables and q 

objectives (q > 1): 
 

1 2( ) ( ( ), ( ),..., ( ))

,

q

P q

Miny f x f x f x f x

X R andY R

 

 
                        (1) 

 

Definition 3-1: Solution a, is said to dominate solution 

b if and only if: 

 

 

 

(1) ( ) ( ); 1,2,...,

(2) ( ) ( ); 1,2,...,

i i

i i

f a f b i q

f a f b i q

  

  
 

(2) 

 

Solutions that dominate other solutions but do not 

dominate themselves are called non- dominated 

solutions. 

Definition 3-2: Vector a , is a globally Pareto-

optimal solution if vector b , does not exist such that 

b , dominates a  [38]. 

 

3.1. Evaluation methods 

One important aspect that should be considered is 

how to evaluate the quality of the obtained non-

dominated front. Several aspects have to be 

considered to determine how good the obtained front 

is. Some these methods are as follows: 

1) The number of non-dominated solutions obtained, 

2) The closeness between the obtained front and the 

Pareto optimal front (if known), 

3) The coverage of the Pareto front, i.e. the spread 

and distribution of the non-dominated solutions [39]. 

In this paper, we use three methods to evaluate the 

quality of solutions. 

1- The number of non-dominated solutions 

2- Free disposal hull (FDH) method 

3- Distance method 

Section 3.1.1 and Section 3.1.2 describe the last two 

methods respectively. 

 

3.1.1. FDH approach 

Data envelopment analysis (DEA) is a non-parametric 

approach to measuring efficiency. Since its advent in 

1978 [40], this method has been extensively utilized to 

analyze relative efficiency, and has covered a wide 

area of applications and theoretical extensions [41]. 

From the definition of efficiency, DEA will be defined 

as weighted sum of outputs divided by weighted sum 

of inputs. The FDH is a special case of DEA. 

A score of one is assigned to a unit only when 

comparisons with other relevant units do not provide 

evidence of inefficiency in the use of any input or 

output, and a score less than one is assigned to 

relatively inefficient units and it means that a linear 

combination of other units from the sample, using a 

smaller vector of inputs could produce the same vector 

of outputs with a smaller vector of inputs. 

One objective of this work is to compare the 

performance of our two proposed meta-heuristics. We 

do it by employing the FDH formulation and 

considering the corresponding degrees of efficiency. 

Further illustration of the application of FDH and its 

formulations can be seen in [42]. 

 

3.1.2. Distance method 

Distance method, like previous method can evaluate 

the set of non-dominated solutions. In this method, 

after determining non-dominated solutions of each 

algorithm, the direct distance of these solutions in 

relation with the origin will be found. Here we suppose 

that the origin is (0, 0). The obtained average of these 

distances (D) is the radius of a bow in the space of 

solution. Each solution is along of a direct line which 

connects to the origin, which will be transferred to a 

point on the bow with the mentioned radius. In this 

way, the solutions will permanently keep their 

characteristic of being non-dominated. Now, we can 

infer, by analogy, these two sets of non-dominated 

solutions by considering the radius of the bow (D) 

which was obtained, or by considering the dispersion 

of point Where fi (x) and fi (x) are our objectives, d is 

the Euclidean distance between solution i and point (0, 

0). The s and σ metric measure the uniformity of the 

spread of the points of the solution set.  

 

2 2

1 2( ) ( )i i

id f X f X                                     (3) 

2 2

1 1 2 2( ( ) ) ( ( ) )i i
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i
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n
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4 PROBLEM DESCRIPTION 

We consider there are N jobs that have to be scheduled 

in M machines under the following assumptions: 

• There is only one operation for each job, and 

this operation can be processed on any one of the M 

machines. 

• Each machine can only process one job at a 

time and a job cannot be processed on different 

machines at the same time. 

• The machines operate with different speeds, 

and all of them are available at the beginning of the 

scheduling. 

• Jobs are not independent, and there are some 

precedence relations between them. 

• All jobs are not available at the beginning of 

the scheduling, and each one of them has its own 

due date. 

• Setup times are dependent on job sequence 

and machine type and anticipatory setups are 

considered. 

• Pre-emption, i.e. job splitting is not allowed 

for jobs. 

The objectives of the problem are minimizing the 

number of tardy jobs and the makespan. 

 

4.1. Notations and their definitions 

M: Total number of machines 

N: Total number of jobs for processing 

UB: Maximum number of situations on each machine 

that jobs are placed on them; and are: UB  N  M 1 

imP : Processing time of job i on machine m; i  1, 2... 

N; m  1, 2... M 

iP = Processing time of job i 

jP = Processing time of job j 

id : Due date of job i 

ir : Time at which job i is available for processing 

(ready time) 

ijmS : Setup time to switch from job i to job j on 

machine m; i, j  1, 2... N; m  1, 2... M 

jmS : Setup time of job j on machine m, if it is the first 

job on the machine 

ijS : The same setup time for all machines, for 

processing job j immediately after job i 
L: A large positive number 

Ci:  Completion time of job i 

Ui:  1iU  if job i is tardy; 0iU  otherwise, 

ikmX : if  job  i   is  assigned  on  situation  k at  

machine  m   then ikmX =1 otherwise, ikmX =0; k 1, 

2, ...,UB 
Pr ec(i,  j): precedent constraint between job i and j; if i 

precedes j then Pr ec(i,  j)  1; otherwise Pr ec(i, j)  

X a: if setup times is anticipatory X a  1, else  X a  0 

ar : If Ci  Sij   rj then ar =1;  else ar =0. 

 

4.2. Problem formulation 

Based on the definition and notation described above, 

suggested model can be formulated as follows: 

 
Objective Function: 

 

max( )Min C                                                                 (8) 

 

1

n

i

Min Ui


                                                              (9) 

 
Constraints: 

 

1 1

1, 1,2,...,
M UB

ikm

m k

X i N
 

                                       (10) 

 

1

1, 1,2,..., , 1,2,...,
N

ikm

i

X k UB m M


                     (11) 

 
N

j,k-1,m

1 j 1

X 0, 2,...,

1,...,

N

ikm

i

X k UB

m M

 

  



 
                      (12) 
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i j N i j k UB
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,Pr ( , ) 1,

1,...,

M UB

j i jm jkm

m k

C C P X ec i j

i j N

 

  

 


                 (15) 

 

( ) 0, 1,2,...,i i iC d LU i N                                 (16) 

 

 , 0,1 , 0ikm i iX U C                                              (17) 

 

Function (8) and (9) minimize the makespan and the 

total number of tardy jobs, respectively. Constraint 

(10) ensures that each job is assigned to one of the 

existing positions on the machines. Constraint (11) 

guarantees that on each existing positions, at most 

one job could be assigned. Constraint (12) ensures 

that until one position on a machine is empty, jobs do 

not assign to subsequent positions and jobs assigned 

to empty positions on each of the machines, 

respectively. Constraint (13) ensures that if setup 

times are anticipatory, i.e. X a=1; then setup can be 

started before the corresponding job becomes 

available on the machine. Constraint (14) guarantees 

that, interval between ready time and completion 

time of a job is enough for processing of that job on 

each machine. Constraint (15) observes precedence 

relationships. Constraint (16) specifies the tardy jobs. 

Constraint (17) defines the type of decision variables. 

5 PROPOSED MULTI-OBJECTIVE GENETIC 

ALGORITHM 

A GA is a search technique that imitates the natural 

selection and biological evolutionary process [43]. 

GAs have been used in a wide variety of applications, 

particularly in combinatorial optimization problems, 

and they were proved to be able to provide near 

optimal solutions in reasonable time. 

A GA starts with a population of randomly generated 

solutions, called chromosomes. Each chromosome of 

population is evaluated using some measure of 

fitness. Parents (certain pairs of chromosomes) are 

selected based on their fitness value. Each of these 

pairs combines to produce new chromosomes and 

some of the chromosomes are modified to generate 

new population by replacing some of the original 

chromosomes by new chromosomes. The process is 

repeated until a stopping criterion is satisfied. 

In this paper we have developed two multi-objective 

genetic algorithms; the so called MOGAC and 

MOGAT that are similar in generality, and differ in 

evaluation and selection mechanisms. 

5.1. Representation scheme  

In this research, we use the encoding scheme proposed 

by Cheng et al. to represent a solution (chromosome) 

to the problem at hand [44]. In this encoding scheme, 

integers are used to represent all sequences of jobs, 

and an asterisk '*' is used to represent the partition of 

jobs to machines. For example, for a schedule with 8 

jobs and 3 machines, the chromosome can be 

presented as [248*13*756]. The completed schedule is 

thus: jobs 2, 4 and 8 on machine 1, jobs 1 and 3 on 

machine 2, and jobs 7, 5 and 6 on machine 3. 

Generally, for an M-machine N-job problem, a 

permissible chromosome contains (M-1) partitioning 

symbols and N job symbols, resulting in a total size of 

(M+ N-1). [45] 

 

5.2. Initialization 

We generate one third of an initial set of solutions to 

make up the initial population randomly according to 

reference [45]. Also, in order to give the GA good 

initial solutions and to increase the chances of 

generating good new chromosomes, we insert some 

solutions (chromosomes) generated by two heuristics 

proposed in this research. To generate the random 

solutions for one third of initial population, the 

procedure is as follows. 

i. Set i  1  

ii. Produce (M 1) asterisks “*” and assign them 

randomly  to  genes  of the chromosome in which none 

of them assigned to the first and last genes, and 

between asterisks must be at least one unfilled genes.  

iii. Assign numbers from 1 to N to the remaining 

unfilled genes of chromosome 

iv. Set i  i  1 

v. if i> population _ size , STOP, else go to step ii 

Our two heuristics are as follows: 

1. At first for generating a chromosome, we sort 

jobs randomly next to each other, and then we swap 

some chromosomes to consider precedent constraints 

(in a linear form). Then we start from the first gene 

and assign that job to a machine with least completion 

time, and this procedure will be continued till the last 

gene. We generate one third of our initial population 

with this method. 
2. In the second heuristic, Jobs would be assigned 

randomly to the machines and then, using the EDD 

method, they would be sorted on each machine 

according to their due-dates. We generate the last set 

of our initial population with this method. 
 

5.3. Evaluation 

It is necessary to describe how objectives should be 

computed before considering evaluation mechanism of 

chromosomes in the algorithm. 

 

5.3.1. Evaluation of objectives 

Makespan (Cmax) is computed as follows: 

Suppose job i is immediately after job j on machine m 
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and job(s) k precedes job i, C
i  
 max{r

i 
, C 

j  
 S 

jim 

,CK}  Pim 

CK  max {Ck }; k  1, 2, ..., k

If job i does not have any precedents; CK  0 

If job i is the first job on machine m; Ci =max {ri , Sim 

,CK}  Pim 

Cmax max {Ci } 

Number of tardy jobs for each chromosome is 

computed as follows: 

iU =0 

For i=1 to N 

If Ci > di, then 1 ii UU  

END 
 

5.3.2. Evaluation of chromosomes in MOGAC 

(primary and secondary ranking) 

We calculate the two objectives (makespan and number 

of tardy job) considered in this research for all the 

chromosomes. Next, all the chromosomes are ranked by 

the following procedure. 
All solutions that are non-dominated with respect to 

each other are assigned as rank 1, and then removed 

from contention. For the remaining solutions, the next 

set of non- dominated solutions, those dominated by 

solutions whose rank is 1 but non-dominated amongst 

the rest, are assigned as rank 2, and then removed from 

contention. The procedure is continued until all 

chromosomes are ranked. We refer to this as primary 

ranking of chromosomes. 

Next, we give the secondary ranking of all the 

chromosomes with respect to their crowding distances. 

The principle of a crowding technique is to give more 

preference to those chromosomes that are away from 

the peaks of multi-modal functions than to the 

chromosomes that are in the peaks of multi-modal 

functions. By doing this, the possibility of many 

solutions in a population converging to a single non-

dominated solution is decreased, and diversity among 

chromosomes during crossover, and in the subsequent 

generation is maintained [45], [46]. Here, the method of 

computing crowding distance is based on [47]. 

Crowding distance of chromosome k with respect to all 

other chromosomes in the same rank is defined as c _ 

dk: 

 

 l , l

k ki

FfK K

C d D
 

                                               (18) 

 

Where klD  is the crowding distance between 

chromosomes k, l and kF  denotes the rank on which 

chromosome k lies and { fkF } denotes the 

chromosomes that lie on the same front as that of 

chromosome k. klD  is defined as follows: 
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Where ( )rZ k and ( )rZ l denote the 
thr  objective 

function for chromosome k, l, and R denotes the 

number of objectives under consideration. Max ( )rZ k   

and min ( )rZ k   denote the maximum and minimum 

thr  objective value of Chromosomes k within the set 

of chromosomes { fkF }. Note that if, Max )(kZr
  = 

min )(kZr
  then we set value of: 
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( ) ( )
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r r
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Z k Z l

Z k Z k
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 
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  
 

                   (20) 

 
The chromosomes with the largest value of crowding 

distance is ranked as 1 in comparison to other 

chromosomes on the same front, since the chromosome 

with the largest value of crowding distance lies farthest 

with respect to other chromosomes on the same front. 

The secondary ranks are assigned to chromosomes by 

arranging them in descending order of c _ dk. 

 

5.3.3. Evaluation of chromosomes in MOGAT 

According to [45], evaluating chromosomes in this 

algorithm is based on the TOPSIS method. This is a 

technique for ranking a limited number of alternatives 

using a number of decision criteria. It stands for total 

order preference by similarity to the ideal solution. It is 

based on the principles of geometry; plotted in 

Euclidean space, the optimal solution is the one with 

the shortest distance to the positive ideal solution and 

the longest distance from the negative ideal solution. 

The algorithm determines the relative distances and 

sorts chromosomes in terms of similarity as TOPSIS 

does, and giving higher priority to the extreme 

solutions. The order strongly depends on the weights 

that the decision maker assigns to each objective 

according to their preferences. We assign equal 

weights to each objective i.e. 1 0.5W   and 2 0.5W    

to have no preference between objectives. 

 

5.4. Reproduction 

The best chromosomes of the current population are 

copied directly to the next generation (elitism 

mechanism). Here we reproduce non-dominated 

solutions of each generation to the next generation. 
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5.5. Selection 

5.5.1. Selection in MOGAC 

We use binary-tournament selection, elitist selection, 

and purely random selection as our selection 

mechanisms for MOGAC. In binary-tournament 

selection scheme, we randomly choose two 

chromosomes from the parent population. The fitter 

chromosome is then selected according to its primary 

rank. Any tie can be broken by the consideration of the 

secondary rank, and any further tie is broken randomly. 

 
5.5.2. Selection in MOGAT 

Binary-tournament selection, elitist selection, and 

purely random selection are employed as selection 

mechanisms for MOGAT. Here in tournament 

selection, the fitter chromosome is the one with the 

higher rank with respect to the TOPSIS method. 5.6. 

Local search we conduct two local search schemes on 

the chromosomes whose primary rank is 1. These 

approaches were also used by [46]. 

1. The first local search scheme is called random 

insertion scheme. To explain this scheme, consider 

chromosome [3 6 5 * 2 1 4 * 7 8].  We first randomly 

choose a job position; say job position 7 is chosen. 

Next, the chosen job is inserted in any other position 

chosen at random; say position 2 is chosen, and hence 

the generated chromosome is [3 4 6 5 * 2 1 * 7 8]. 

2. The second local search scheme is called 

random swap scheme. For the random swap scheme, 

two positions are taken at random and swapped. 

 

5.6. Mutation operator 

We use random pairwise exchanges as our mutation 

scheme. This approach was also used by [44] and [45]. 

First, we select two random genes and then exchange 

their positions. The randomly selected genes may be 

either a job or a star. If both selected genes are stars, 

we reselect the second gene until a job is found. Figure 

1 shows an illustration of the mutation scheme. 

Selection mechanism for mutation is purely random. 

 

 
Fig. 1 Illustration of mutation scheme 

 

5.7. Crossover operator 

In this research, we employ the crossover scheme 

proposed by [43]. The crossover scheme is described as 

follows; first, we use binary-tournament selection 

scheme as described in section 5.5.1 and 5.5.2, to 

randomly choose two chromosomes. Next, the 

crossover scheme takes two parents, and creates a 

single offspring using the following procedure: 

(1) It obtains asterisk positions (i.e. overall 

partitioning structure) from one parent; 

(2) It obtains the remaining jobs from the other 

parent by making a left-to-right scan. 

 

Figure 2 shows an illustration of the crossover scheme. 

 

 
Fig. 2 Illustration of the crossover scheme 

 

5.8. Termination condition 

In this article, we use 4000 evaluations as the 

algorithm termination criteria. 

 

5.9. Computational results 

The algorithms were coded in the MATLAB 7.5 

environment, and the experiments were executed on a 

Pentium 4 computer. The experimental parameters are 

the mutation rate, and the local searches ratio. 

 
5.9.1. Data generation 

For solving the presented model, sample problems are 

produced in medium and large sizes randomly. To 

produce processing times, setup times, and ready times, 

we have used uniform distribution [1,150] in a N 

dimentional square matrix DU [1, 50] in a N by 

(N, M) matrix and DU[0, 60] in a 1 by N 
matrix, respectively. But they are modified to generate 

only integer values. In this article for producing 

precedent relations we have developed a procedure that 

generates feasible precedents. The procedure for 

producing precedent constraints is as follows:  

1. If N  5 then L  2 otherwise 
3

N
L   for example for 

N  10, L  3. 

2. Generate L random number between 1 and N 

provided that no two numbers are equal. For example, 3, 

6, 7 can be a feasible solution. 

3. Define each level, e.g. L0: 1-2-3; L1: 4-5-6; L2: 7; 

L3: 8-9-10. 
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4. Then randomly, it would be specified whether each 

jobs of level L precedes jobs of level L+1 or not? 

 
Finally, we will have a matrix (Pr ec) in which its 

arrays included 0 and 1. If Pr ec (i, j)  1, it means that 

job i precedes job j. 

The random number generation for the due dates are 
obtained by di  (Q  (M / 10))  DU [0.3 * (P  S ), 

2 * (P  S )]  We have set Q  2 for generating tight 

due dates. 

 
5.10. Parameter setting 

Input parameters of algorithms are as follows: 

N: number of jobs 

M: number of machines 

Pm: mutation probability 

Max- Gen: maximum number of generations 

Pop- size: population size 

It should be mentioned that Pc or crossover probability, 

and Pr or reproduction probability, in our case, are 

dependent parameters and are not considered as input 

parameters. We study the effect of two important 

parameters (mutation rate and local search ratio) on the 

performance of our algorithms. 

Different levels of these factors are shown in Table 1.  

 
Table 1   Factors and factor levels 

Factor symbol Levels Type 

Mutation rate mP 3 

(1) 0.2

(2) 0.3

(3) 0.4

m

m

m

P

P

P







 

Local Search 

rate 
L 3 

(1) 2 1

(2) 2 2

(3) 3 2

L

L

L

 

 

 

 

 

Note that L (1): 2-1, means on each chromosome with 

primary rank of 1, we consider twice local search #1 and 

once local search #2. 

 
Fig. 3 Efficiency with FDH 

For setting parameters of two algorithms we consider 4 

test problems, 2 medium size problems (N  50, M  

5) and (N  30, M  3), and two large size problems 
(N  80, M  8) and (N  100, M  10).  We run 3 

times, all possible status of Table 1 on our test 

problems. With respect to having multi objective model 

and possessing a set of non-dominated solutions instead 

of one discrete solution, here for comparing different 

parameters, we consider two methods of FDH and 

distance method to evaluate the quality of parameters. 

Results are as shown in Figure 3 and Figure 4. 
 

 

Fig. 4  
2 of distance method 

 

As Figure 3 and Figure 4 show, optimal parameters 

with two methods confirm each other, and Pm(2)and 

L(2)are set for our algorithms Thus parameters of 

algorithms are set as follows: 

The population size is 100. Corresponding to every 

chromosome whose primary rank is 1, we generate 2 

chromosomes by implementing the random insertion 

scheme, and 2 chromosomes by implementing the 

random swap scheme. The probability of mutation is 

0.3 for the remaining population (after reproduction 

and local search). The crossover would finally be 

performed on number of remaining chromosomes of 

population. 

 

5.11. Comparison of MOGAT and MOGAC 

In this section we compare performance of MOGAT 

with MOGAC. With respect to comparing two sets of 

final solutions, we consider three methods to evaluate 

the quality of solutions; they are FDH method, distance 

method, and number of non-dominated solutions. 

 

5.11.1. Comparison based on FDH method 

We calculated the degree of efficiency using weights 

W1  0.25, W2 0.5, and W3 0.75. 10 large and 5 

medium test problems were produced. Results are 

shown in Table 2. Wilcoxon signed-ranked test shows 

no significant difference between these two algorithms 

using this method. 
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Table 2   Efficiency of algorithms 

Test 

Problem 

MOGAT MOGAC 

W1= 

0.75 

W1

= 

0.5 

W1= 

0.25 

W1= 

0.75 

W1

= 

0.5 

W1= 

0.25 

Large 1 
0.98

8 

0.99

2 
0.996 1 1 1 

Large 2 
0.98

0 

0.98

7 
0.993 1 1 1 

Large 3 1 1 1 
0.96

2 

0.97

4 
0.987 

Large 4 1 1 1 
0.95

1 

0.96

7 
0.984 

Large 5 1 1 1 
0.93

9 

0.95

5 
0.977 

Large 6 
0.97

0 

0.98

0 
0.990 1 1 1 

Large 7 1 1 1 
0.95

3 

0.96

9 
0.984 

Large 8 1 1 1 
0.98

7 

0.99

1 
0.996 

Large 9 
0.84

1 

0.72

8 
0.614 1 1 1 

Large 10 
0.97

0 

0.95

2 
0.934 1 1 1 

Medium 

1 

0.96

6 

0.95

7 
0.947 1 1 1 

Medium 

2 

0.95

4 

0.96

3 
0.974 1 1 1 

Medium 

3 

0.90

3 

0.89

0 
0.877 1 1 1 

Medium 

4 
1 1 1 

0.97

8 

0.97

1 
0.965 

Medium 

5 
1 1 1 

0.98

5 

0.98

7 
0.993 

 

5.11.2. Comparison based on Distance method 

Results of Evaluation of 2 for both algorithms are 

shown in Table 3. Wilcoxon signed-ranked test shows 

no significant difference between these two algorithms 

using this method. 

 

Table 3   2  Of algorithms 

Test Problem MOGAT MOGAC 

Large 1 150259 150916.5 

Large 2 176425 167306 

Large 3 143706.5 160177.5 

Large 4 213508 196370 

Large 5 238265 282105 

Large 6 145176.5 131792.5 

Large 7 139880 123929 

Large 8 182155 213033 

Large 9 160817 145571 

Large 10 180663 156653.6 

Medium 1 227471.667 231718.333 

Medium 2 400108 366095.5 

Medium 3 191904.5 180641 

Medium 4 173462 195834 

Medium 5 219717 210389 

5.11.3. Comparison based on Number of non-

dominated solutions 

Results of the number of non-dominated solution are 

shown in Table 4. Once again Wilcoxon signed-ranked 

test shows no significant difference between these two 

algorithms using this method. 

 
Table 4      Number of non-dominated solution 

Test Problem MOGAT MOGAC 

Large 1 2 4 

Large 2 1 1 

Large 3 3 2 

Large 4 4 1 

Large 5 5 1 

Large 6 2 3 

Large 7 4 1 

Large 8 2 2 

Large 9 1 2 

Large 10 2 5 

Medium 1 4 3 

Medium 2 4 6 

Medium 3 4 2 

Medium 4 3 4 

Medium 5 3 4 

6 CONCLUSION 

Industrial scheduling has greatly benefited from the use 

of unrelated parallel machines due to their ability to 

perform the same function, but with varying capability 

or capacity. In this paper, two multi-objective genetic 

algorithms (MOGAT&MOGAC) were proposed to find 

the unrelated parallel machines scheduling problem that 

minimizes makespan and number of tardy jobs with 

considering that jobs have non-identical due dates, and 

ready times with some precedence relations,  

Furthermore sequence-dependent setup times and 

anticipatory setups were included in the model. In this 

paper, we proposed two heuristics, each of which 

produced one third of our initial population. 

The difference between MOGAT and MOGAC is in 

the evaluation and selection mechanisms. Sorting the 

chromosomes in MOGAT is based on TOPSIS method, 

and in MOGAC it is based on non-dominated sorting 

(primary sorting) and crowding distance (secondary 

sorting). For solving the model, sample problems were 

produced with a new proposed procedure for 
generating precedent constraints, and a new proposed 

formulation for producing due dates. 

After comparing the results of two algorithms by using 

FDH method, distance method, and number of non-

dominated solutions, we concluded there is no 

statistically significant difference between these two 



Int  J   Advanced Design and Manufacturing Technology, Vol. 8/ No. 4/ December - 2015  73 
  

© 2015 IAU, Majlesi Branch 

 

algorithms using Wilcoxon signed ranks test. The 

approaches proposed in this article are fairly general in 

that they can be extended to other multi-criteria 

problems. Future research would involve further 

exploration of objectives and consideration of some 

realistic assumptions, such as, machine availability 

constraints. 
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