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Abstract: In this work, an optimal control scheme with adaptive weighting 
coefficients is presented which coordinates different vehicle dynamics control 
objectives, thus ruling out possible conflicts among them. In a new approach, the 
weighting coefficients in optimal control are adjusted according to the vehicle state 
in the phase plane in such a way that a priority is given to each objective of 
handling and stability in each region. The optimal control acts as a high-level 
control for the vehicle body, which determines the body lateral force and yaw 
moment for stable vehicle motion. The body lateral force and yaw moment provide 
the inputs to the mid-level force (control) distribution module, which works out the 
desired lateral and longitudinal forces at each wheel. Therefore, the high-level 
control objectives are allocated to individual tire forces in an optimal manner with 
the assumption of a 4-wheel-independent car. A low-level control uses the desired 
individual tire forces to compute the steering angle and applied torque at each 
wheel. Simulation tests with a nonlinear vehicle model are conducted and 
comparison with the well-recognized work in the literature is made to show the 
efficiency of the proposed method.  
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1 INTRODUCTION 

A major part of advances in automotive technology in 
the past decade has been in the area of safety, and most 
modern passenger vehicles are now equipped with 
active safety systems. Vehicle dynamics control 
components are systems designed to provide safety by 
assisting driver in critical conditions, for which tires 
have gone saturated and corresponding nonlinear 
behaviors of tire forces preclude driver from a proper 
understanding of driving circumstances [1]. Handling 
and stability form the main objectives of vehicle 
dynamics control, which are achieved through 
following desired yaw rate and bounding side-slip 
angle within the stable region in the phase plane [2].  
There are several ways of controlling the yaw dynamics 
as well as the side slip angle of a vehicle (see Ref. [3] 
and Refs. therein). Integrated control strategies have 
been introduced to control several aspects of vehicle 
dynamics, for different objectives, with avoiding 
possible conflicts [4-8]. In this regard, different 
subsystems are integrated in such a way that individual 
control objectives are achieved without negatively 
affecting each other. For example, Smakman [4] makes 
use of active suspension and braking subsystems, or 
Selby [5] and Burgio [7] integrate individual brakes 
and active steering for vehicle dynamics control. An 
integration of active steering, driveline, and braking 
subsystems is presented in Ref. [6].  
In such works, vehicle dynamics control objectives are 
assigned to individual subsystems based on some fuzzy 
rules, without assuring the use of maximum capacity of 
the whole integrated system. Therefore, optimal control 
allocation (OCA) methods have been recently 
introduced into vehicle dynamics control to utilize the 
maximum capacity of available actuators in an 
integrated system [9-18]. In this regard, a set of 
actuators (individual tire forces) jointly produce body 
forces and moments commanded by some high-level 
controller, and in addition optimize an objective 
function for definite performance. 
In this work, in a new approach, optimal control with 
adaptive weighting coefficients is presented for a 
vehicle stabilization scheme. Referring to Fig. 1, the 
stabilization strategy consists of a high-level module 
that deals with the vehicle dynamics control objectives 
(handling and stability), a low-level module that 
handles the steering angle and applied torque for each 
wheel, and a mid-level OCA module that generates tire 
longitudinal and lateral force references for the low-
level control module. The high-level control design is 
based on Optimal Control with Adaptive Coefficients 
(OCAC), for which the weighting coefficients of the 
cost function are adapted based on the vehicle state in 
the phase plane such that the objectives of handling and 
stability are achieved with avoiding possible conflicts.  

The mid-level OCA unit maps the high-level control 
objectives to desired individual tire forces. Therefore, 
the body lateral force and yaw moment of the high-
level control are intended while minimizing a proper 
cost function. To this end, an optimization problem is 
defined and an analytical solution is derived such that a 
real-time implementation can be realized without the 
use of numeric optimization software. The low-level 
control uses the desired lateral and longitudinal forces 
of each tire to compute the corresponding wheel 
steering angles and applied torques. 
The simulation cases show that the suggested control 
strategy stabilizes the vehicle in extreme maneuvers 
where the nonlinear vehicle dynamics otherwise 
(without active control) becomes unstable in the sense 
of over/under steering. In addition, comparison with the 
well-recognized work in the literature is made to 
demonstrate the efficiency of the proposed scheme in 
enhancing vehicle stability. 

 

 
 

Fig. 1 Integrated optimal control scheme 
 

 
Fig. 2    Different regions in ββ −  phase-plane [18] 

2 HIGH-LEVEL CONTROL DESIGN 

In general, vehicle handling and stability are achieved 
through following the desired yaw rate and limiting 
side-slip angle respectively. For this purpose, according 
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to the vehicle lateral dynamics, there are two available 
virtual control inputs of total body lateral force (Y ) 
and yaw moment ( M ). To design these virtual control 
inputs, an optimal control scheme with adaptive 
weighting coefficients is considered, for which the 
coefficients of the cost function are adjusted according 
to the phase-plane methodology. A description of stable 
and unstable regions in the phase-plane of the side-slip 
angle (β ) has been shown in Fig. 2. Inside the stable 
region the side slip angle is small where the lateral tire 
forces possess linear characteristics.  
Thus, the body lateral force increases with the vehicle 
side slip, resulting in a stable vehicle motion in the 
reference region. The lateral tire forces, however, 
saturate with the increase of the vehicle side slip 
beyond the stable region. In such conditions, further 
increase in the vehicle body lateral force is not viable, 
thus rendering the vehicle lateral dynamics unstable. 
So, the stability controller must be activated to control 
the vehicle outside the stable regime. The control 
design is based on a 2DOF linear vehicle model, with 
small angle and constant speed assumptions [19]. The 
basic equations of motion for this model are: 
  

YrmV =+ )(β                                                        (1) 
 

MrIz =                                                                    (2) 
 
Where m and zI  denote the total mass and yaw inertia 
of the vehicle, V is the vehicle velocity, and r 
represents the vehicle yaw rate. Equations (1) and (2) 
are put into matrix form as follows: 
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For the high-level control design, the side slip angle β 
and the yaw rate r are considered as the two state 
variables while the body yaw moment M and the body 
lateral force Y constitute the set of control inputs, which 
must be determined from the control law. In what 
follows, first the design procedure based on optimal 

control is presented; then optimal control with adaptive 
weighting coefficients is demonstrated. 
 
2.1. Optimal control 
The target of the controller is to make the side slip 
angle β and the yaw rate r track the corresponding 
desired values of βd=0 and dr . In stationary turn, a 
definite relationship exists between the steering angle, 
the vehicle velocity and the yaw rate. This relation is 
used to derive the desired yaw rate ( dr ) [1].  The 
integrated performance index of the optimal control is 
defined as: 
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Where RM, RY, Qr, and Qβ are the weighting coefficients 
that indicate the relative importance of the 
corresponding term. Considering Eq. (4), the cost 
function in Eq. (5) is written as: 
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In which 
 

);,( YM RRdiagR =      );,( βQQdiagQ r=    
T

ddd rx ][ β=                                                        (7) 
 
Optimal control problem is defined to find the control 
inputs M and Y that minimize the cost function Eq. (6) 
subjected to the system Eq. (3). The solution to this 
problem is provided in the form of the linear 
feedback/feed forward control law [20]. 
 

PBRv T1−−=                                                           (8) 
 
In which 
 

SKxP +=                                                               (9) 
 
Where the feedback gain K is the solution of the 
algebraic equation 
 

01 =−++ − KBKBRQKAKA TT                     (10) 
 
 
And the feed forward term S satisfy  
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2.2. Optimal control with adaptive weighting 
coefficients 
Optimal control with adaptive weighting coefficients is 
used to make consistency between various control 
objectives and to rule out possible conflicts. Vehicle 
dynamics control objectives include handling and 
stability. Inside the stable region of the phase plane 
(Fig. 2), handling improvement is the main control 
objective that is achieved through tracking the desired 
yaw rate. On the other hand, vehicle stability is related 
directly to the side slip motion, and this motion should 
be restricted to the stable region. Inside the stable 
regime, where vehicle has small side slip angle and 
tires remain in linear region, vehicle stability is not a 
major concern and it is guaranteed by linear 
characteristics of lateral tire forces [4]. However, as the 
vehicle state leaves the reference (stable) boundaries, 
with the growth of the side slip angle, linear tire force 
property turns into saturation, and vehicle stability will 
be in danger.  
In such conditions, stability dominates handling and the 
high level control should focus on returning the vehicle 
state into the reference region for stable vehicle motion. 
It is shown in Ref. [4] that vehicle handling 
improvement and stability cannot be fulfilled 
simultaneously outside the stable region due to the tires 
saturation in this regime, where the control objectives 
need to be put in order of priority. To this end, optimal 
control with adaptive weighting coefficients is 
suggested for integrated vehicle dynamics control. 
Consider the boundaries of the reference region in Fig. 
2 defined through Ref. [5]. 
 

1
24
4

24
1

<+ ββ                                                   (12) 

 
Then, the weighting coefficients of Qr and Qβ are 
updated according to the vehicle state in the phase 
plane, as shown in Fig. 3. In this regard, when the 
vehicle state lies inside the stable regime the weighting 
coefficient corresponding to yaw rate tracking has a 
larger value than that of the side slip angle. Therefore, 
the performance index of handling in the cost function 
Eq. (5) dominates vehicle stability and vehicle handling 
is given priority inside the stable region. Conversely, 
beyond reference boundaries, vehicle stability is 
prioritized by choosing larger value for the weighting 
coefficient Qβ (as shown in Fig. 3). In such conditions, 
the integrated vehicle dynamics control focuses to draw 
the phase plane trajectory back into the stable region 
and utilizes the control inputs in an optimal manner for 
this purpose. The considered adaptation mechanism in 
Fig. 3 transits the control task from one to another 
instead of switching between several types of control 
objectives. As a result, abrupt system responses that 

can be induced by sudden hard switching actions are 
excluded. 
 

 
Fig. 3 Adaptation of weighting coefficients based on 

phase plane notion 

3 ALLOCATOIN OF HIGH-LEVEL CONTROL TO 
INDIVIDUAL TIRE FORCES 

To achieve control objectives, the longitudinal and 
lateral forces of each tire must be determined. In this 
paper, a vehicle system in which each tire can be 
braked/derived and steered independently is 
considered. Thus, the overall control system contains 
eight constrained actuators for only three control 
objectives, making the integrated vehicle system an 
over-actuated control scheme. A general approach to 
resolve redundancy is to define an optimization 
problem where a cost function, for specific 
performance, is minimized. The well-accepted cost 
function for OCA in vehicle systems is the sum of work 
load of four wheels, which is written as: 
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Where i denotes the wheel number, Xi and Yi stand for 
the desired longitudinal and lateral tire forces, 
respectively, Zi is the vertical load, Ai is the weighting 
coefficient, and µi is friction coefficient of the ith tire. 
All the variables are defined in the vehicle body fixed 
coordinate system, as shown in Fig. 4. Defining the 
actuators vector, u, an 8×1 vector which contains the 
desired tire forces, is given as: 
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The cost function in matrix form is written as: 
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In which W8×8 is the diagonal weighting matrix for 
control allocation problem. To satisfy the high-level 
control objectives, all the variables in the cost function 
must satisfy the two equality constraints given by (Fig. 
4): 
 

∑
=
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4

1i
iYY                                                                 (16) 
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Also, the longitudinal forces, Xi, should satisfy the 
demanded total longitudinal acceleration, ax, by driver, 
i.e. 
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As observed in Eqs. (16)-(18), these equality 
constraints are linear in terms of actuator inputs and 
can be expressed in matrix form as : 
 

vAu =                                                                     (19) 
 
Where 83×∈RA  is the constant matrix. 
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And the vector of generalized forces/moment, v, is 
given by: 
 

[ ]TMYXv =                                                 (21) 
 

 
Fig. 4 Vehicle plane motion parameters 

Now, the optimization problem is defined as follows: 
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To realize u, first order optimality conditions can be 
written as: 
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In which λ  denotes the vector of Lagrange multipliers 
for equality constraints. To solve the set of linear 
equations in Eq. (23), first u  is written in terms of λ  
as: 
 

λTAWu 1−−=                                                        (24)  
 
Next Eq. (24) is inserted into second part of Eq. (23) 
and solves the corresponding equation for λ. 
  

vAAW T 11 )( −−−=λ                                              (25) 
 
Using Eq. (25) in first part of Eq. (23), u  is attained to 
be: 
 

vAAWAWu TT 111 )( −−−=                                   (26) 
 
Subsequently the desired longitudinal and lateral forces 
of each tire are determined by the use of the vector of 
control inputu . Then, using the inverse of a simple tire 
model [9], the active steering angle of each wheel (δi) 
can be determined. In addition, the individual 
longitudinal forces are fed into a low-level slip ratio 
controller to realize the applied braking torque at each 
wheel. 

4 LOW-LEVEL SLIP RATIO CONTROL DESIGN 

The longitudinal force of each tire is related to the 
corresponding longitudinal slip ratio and is adjusted 
through Slip Ratio Control (SRC). The slip ratio of the 
ith tire, iσ , is defined as : 
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i
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ω

ωσ −
=        during onAccelerati        (28) 

 
Where R denotes the radius and iω  is the angular 
velocity of the ith wheel. In the case where longitudinal 
slip ratio is small, the longitudinal tire force is found to 
be proportional to the slip ratio. Then, it gains its 
maximum value at a typical value of σ*, after which it 
starts to lessen. Experimental studies have established 
that the tire lateral force decreases with increasing slip 
ratios greater than | σ*| as well [21]. In this paper, the 
SRC scheme presented in Ref. [17] is employed. In this 
regard, when the tire slip ratio is smaller than σ*, by 
neglecting the wheel rotational inertia [9], the applied 
braking/traction torque, Ti, at wheel i is obtained as: 
 

ii RXT =                                                                  (29) 
 
In this case, the SRC works for Desired Longitudinal 
Force Generation (DLFG). However, when the 
demanded Xi is too high, applying (29) would increase 
the slip ratio beyond σ*, inevitably leading to wheel 
lock and lateral tire force drop. In such conditions, the 
idea of Anti-lock Braking System (ABS) is employed 
to keep the slip ratio of tires at σ*. This idea is utilized 
during both braking and traction. When traction torque 
applies the proposed slip ratio control is in the Traction 
Control System (TCS) mode. The SRC scheme is 
shown in Fig. 5. 
 

 
Fig. 5 The SRC scheme applied to the vehicle system [17] 

5 SIMULATION RESULTS 

To evaluate the proposed vehicle dynamics control 
scheme, computer simulations are performed. A 9DOF 
nonlinear vehicle model with Dug off’s tire model and 
a driver model [18] is utilized for this purpose. The 
vehicle behavior is tested during a single lane change 
maneuver with driver’s braking. The vehicle is 
assumed to move with an initial velocity of 130 km/h 

on a slippery road with the coefficient of friction 0.3. 
To show the efficiency of the presented method, 
comparisons are made with the results of integrated 
vehicle control including conventional Optimal Control 
(OC) as the high-level unit (Section 2.1).  
 

 
 

Fig. 6 Vehicle path 

 
 

 
Fig. 7 Vehicle side slip angle 

 
 

 
 

Fig. 8 Vehicle yaw rate by OC 
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Fig. 9 Vehicle yaw rate by OCAC 

 

  
Fig. 10 Phase plane trajectory  

 
The simulation results for this scenario are shown in 
figures 6-10. As shown by Fig. 6, the vehicle with no 
active control and only guided by driver has an 
unstable response, representing the adverse conditions 
of the considered maneuver. However, the integrated 
control system with either OCAC or OC as the high-
level control makes the vehicle converge properly to 
the driver’s intended path. Furthermore, when 
compared to the system with OC, the vehicle under the 
presented method (OCAC) has a faster convergence 
and less deviation from the desired path. 
Vehicle side slip angle for both methods is presented in 
Fig. 7, which shows the superiority of the proposed 
method in reducing the side slip motion, in that OCAC 
has much less side slip angle than OC does. Moreover, 
yaw rate time histories in figures 8 and 9 establish that, 
actual yaw rate under OCAC has faster convergence to 
the desired value and is smoother than that of OC. 
In Fig. 10, after phase plane trajectory has left the 
stable region, it has been attracted again to this area 
immediately due to efficient function of the considered 
adaptation law. In the unstable regime, maintaining the 

vehicle stability dominates the task of improving 
vehicle handling, thus deteriorating the quality of yaw 
rate tracking in some parts (Fig. 9). At the same time, 
the integrated system with high-level OC pulls the state 
trajectory further out of the stable region, due to control 
objective conflicts at the handling limit by this 
approach. 

6 CONCLUSION 

Four-wheel independent steering/driving vehicle 
dynamics control system can be described as a 
redundantly actuated system, for which input 
redundancy may be used to achieve optimized control 
performances. In this way, the overall vehicle control 
scheme is split into three layers, where generalized 
forces/moment for body control are determined by a 
high-level optimal control as the first layer. To 
organize different control objectives to rule out 
possible conflicts, an optimal control scheme with 
adaptive weighting coefficients is presented where 
contribution of each control objective in the cost 
function is adjusted based on the vehicle state in the 
phase plane. To produce body forces/moment, a mid-
level force distribution module allocates the high-level 
control outputs to individual longitudinal and lateral 
forces. To achieve high-level objectives in an optimal 
way an optimization problem is defined and solved 
analytically. The applied torque and steering angle at 
each wheel are determined through a low-level unit, 
comprising a slip ratio control scheme. Simulation 
testing is performed using a nonlinear vehicle model to 
implement and compare the presented vehicle 
dynamics approach with other vehicle control 
approaches. Testing conducted under various adverse 
driving conditions showed that the integrated vehicle 
control developed in this work significantly enhance 
vehicle handling and stability. 

7 NOMENCLATURE 

A state matrix 
ax driver’s braking acceleration  
Ai weighting coefficients of ith tire 
B control input matrix 
D vehicle tread 
F objective function in OCA 
Iz yaw moment of inertia of vehicle 

J objective function in optimal 
control 

K optimal control gains matrix 

Lf,r 
distance between mass center and 
axle 

m vehicle mass 
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M body yaw moment 
P matrix in Ricatti equation 

Q matrix of weighting coefficients 
for vehicle state 

Qr 
weighting coefficient of r in 
optimal control 

Qβ 
weighting coefficient of β in 
optimal control 

R wheel radius  

R matrix of weighting coefficients 
for virtual control input 

RM 
weighting coefficient of M in 
optimal control 

RY 
weighting coefficient of Y in 
optimal control 

r yaw angle velocity 
S matrix in Ricatti equation 
Ti

 applied torque at the ith wheel 
u vector of allocated tire forces 
V vehicle velocity 
vxi longitudinal velocity of the ith tire 
v vector of virtual control input 

W matrix of weighting coefficients 
in OCA  

x state vector 
X Body longitudinal force 
Y Body lateral force 

Xi 
allocated longitudinal force to the 
ith tire  

Yi 
allocated lateral force to the ith 
tire 

Zi vertical load of ith tire 
 

Greek letters 
β vehicle side slip angle 
δi steering angle of ith tire 

  slip ratio of the ith tire 
σ* reference value of slip ratio  
λi vector of Lagrange multipliers  
μi

 friction coefficient of the ith tire 
ωi angular velocity of the ith tire 

 
Subscripts/Superscripts 
f front 
r rear 
d desired value 

 
Coordinate system 

(x,y,z) moving coordinate attached to 
vehicle centre  
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