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Abstract: A numerical study of transient natural convection heat and mass transfer 
along a vertical complex wavy surface has been performed. A complex wavy 
surface was created from two sinusoidal functions, a fundamental wave and its first 
harmonic. The complex wavy surface is maintained at uniform wall temperature 
and constant wall concentration. An implicit finite-difference scheme is used for 
analysis. The numerical results demonstrate that the additional harmonic 
substantially alters the flow field, temperature and concentration distribution near 
the surface. Also the numerical results show that the local heat and mass transfer 
rate for a complex surface are smaller than of a flat plate. This decreased local heat 
and mass transfer rate seems to depend on the ratio of amplitude surface. 
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1 INTRODUCTION 

The analysis of natural convection has been of 

considerable interest to engineers and scientists. Most 

studies of natural convection are mainly concerned 

with heat convection solely. However, Gebhart and 

Pera [1] indicated that buoyancy effects from 

concentration gradients can be as important as those 

from temperature gradients. There are applications of 

interest in which combined heat and mass transfer by 

natural convection, such as design of chemical 

processing equipment, design of heat exchangers, 

formation and dispersion of fog, distributions of 

temperature and moisture over agricultural fields, 

pollution of the environments and thermoprotection 

systems. 

Extensive studies of natural convection of heat and 

mass transfer have been investigated in the past 

decades and various extensions of the problem have 

been reported in the literature. Yan and Lin [2] studied 

numerically on natural convection heat and mass 

transfer with film evaporation and condensation in 

vertical concentric annular ducts. They found that the 

heat transfer is enhanced due to heat exchange with 

phase changing. In addition, the enhancement of heat 

transfer due to mass transfer is more significant with a 

higher wetted wall temperature. Chang et al. [3] 

investigated the combined buoyancy effects of thermal 

and mass diffusion on the natural convection flows in a 
vertical open tube. They found that the heat transfer 

augmentation through mass diffusion connected with 

film evaporation is considerable. Massive amount of 

works on heat and mass transfer have focused mainly 

on regular geometries, such as a vertical flat plate [4], 

flat plate with inclination [5], parallel-plate channel [6], 

and rectangular ducts [7], etc. However, it is necessary 

to study the heat and mass transfer for complex 

geometries because the prediction of heat and mass 

transfer for irregular surfaces is a topic of fundamental 

importance and irregular surfaces often appear in many 

applications, for examples, flat-plate solar collectors 

and flat-plate condensers in refrigerators. Few studies 

have considered the effects of complex geometries. 

Wang and Kleinstreuer [8] investigated the thermal 

convection on micropolar fluids passing a convex with 

suction/ injection. They developed a numerical model 

to study the effectiveness of dehydration media for 

wedge-shaped surface with mass and heat transfer. Yih 

[9] studied the heat and mass transfer characteristic in 

natural convection flow over a truncated cone subjected 

to uniform wall temperature and concentration or 

uniform heat and mass flux embedded in porous media. 

He first investigated the natural convection heat 

transfer from an isothermal vertical wavy surface and 

used an extended Prantdl’s transposition theorem and a 

finite- difference scheme. He proposed a simple 

transformation to study the natural convection heat 

transfer for an isothermal vertical sinusoidal surface. 

Chiu and Chou [10] analyzed the transient forced and 

free thermal convection along a wavy surface in 

micropolar fluids, and investigated the natural 

convection heat transfer along a vertical wavy surface 

in micropolar fluids. Recently, the study of natural 

convection heat transfers along a wavy surface in a 

thermally stratified fluid saturated porous medium with 

the effects of wave phase was presented by Yih [11]. 

Besides, Yan and his colleagues [12] performed a 

series of studies about the natural convection heat 

transfer in porous enclosures. Cheng [13] studied 

coupled heat and mass transfer by natural convection 

flow along a wavy conical surface and vertical wavy 

surface in a porous medium. Jang and Yan [14] 

analyzed natural convection along a vertical wavy 

surface. Recently, Yan [15] has studied numerically on 

natural convection heat transfer along a vertical 

complex wavy surface with Newtonian fluids. 

However, this study only pertains to steady flow and 

heat transfer.  
The transient natural heat and mass transfer along a 

vertical complex wavy surface, especially in 

Newtonian fluid, has not been well investigated. The 

objective of the present investigation is to analyze the 

transient natural convection heat and mass transfer in 

Newtonian fluid flow along a vertical complex wavy 

surface numerically by using Prandtl’s transposition 

theorem. 

2 PROCEDURE FOR PAPER SUBMISSION 

2.1. Problem statement 

The geometry of this problem as schematically shown 

in Fig. 1 is a vertical wavy surface. u  and V  velocity 

are the velocity components in the x and y  directions 

respectively. The flow is transient, laminar and 

incompressible with simultaneous heat and mass along 

a semi-infinite vertical wavy surface. The thermo-

physical properties are assumed to be constant except 

the buoyancy term in the x momentum equation. The 

Boussinesq approximation is used to characterize the 

buoyancy effect. The wavy surface of the plate is 

described in the function below: 
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Which is the fundamental wavelength. The origin of 

the coordinate system is placed at the leading edge of 

the vertical surface. Initially, i.e. t < 0, the fluid 

oncoming to the surface is still quiescent and both the 

fluid and the wavy surface have constant 
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temperature
T and concentration

C . At time t = 0, 

the temperature and the concentration of the wavy 

surface are suddenly changed to new levels, 
WT  

and
WC , respectively. Due to the temperature and 

concentration differences between the wavy surface 

and ambient, the combined buoyancy forces are then 

generated, which in turn, induce the fluid motion in the 

ambient. 

 

 
Fig. 1 Physical model and coordinates 

 

2.2. Governing equations 

The governing equations for an unsteady, laminar, and 

incompressible flow along a semi-infinite vertical wavy 

surface with boussinesq approximation may be written 

as: 

 

Continuity equation: 
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Momentum equation: 
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Energy equation: 
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Concentration equation: 
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In non-dimensionalizing the governing equations, the 

following dimensionless variables were introduced: 

  

;
)(

4
1

Gr
l

xy
y


  ;

l

x
x   

;
)(

4
1

Gr
l

xy
y


  ;

2
1

Gr

lu
u


  

;
)(

4
1

l
Gr

xV
V



 
  

;
2

2

Gr

lp
p


  

;
)()(

x

x

x

x












  ;

)(
)(

l

x
x


   

;









TT

TT

w

  
;

)(
2

32



 lTTg
Gr wt 

  










CC

CC
C

w

                   (7) 

 

It is noted that when N  is equal to zero, there is no 

mass diffusion body force and the problem reduces to 

pure heat convection, when N  becomes infinite, there 

is no thermal diffusion. After ignoring small order 

terms in Gr, the dimensionless governing equations 

become: 
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It is worth noting that   and    indicate the first and 

second differentiations of   with respect to x . Eq. 

(13) shows that when 0N , the mass diffusion 

buoyancy forces oppose those of thermal diffusion, and 

when 0N , the mass diffusion buoyancy forces aid 

those of thermal diffusion. For the current problem, 

xp  , the pressure gradient is zero. Therefore, 

eliminating yp   in Eq. (9) and (10) results in the 

following equation: 
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Finally Eqs. (14), (15), (16) and (17) in the parabolic 

coordinates ( x , y ) become: 
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2.3. Initial and boundary conditions 

The appropriate initial condition can be written as: 
 

0t      , TT   , CC    0Vu  (18) 

 

For 0t , the boundary conditions for the problem 

are: 

 

At the wavy surface; 
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Matching with the quiescent free stream: 
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Substituting dimensionless parameters into the Eq. 

(18)-(20), the corresponding initial and boundary 

condition are: 
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2.4. Governing parameters 

After obtaining the velocity, temperature and 

concentration fields along the complex wavy surface, 

the computations of local friction coefficient, Nusselt 

number and Sherwood number are of practical interest. 

The local heat and mass transfer rates are large when 

the normal velocity is approaching surface; they are 

small when the convective stream moves away from 

the surface. The heat and mass transfer mechanism 

along a complex wavy surface is different from that 

along a flat surface, and is modified by the fluid motion 

normal to the surface. The local Nusselt number and 

Sherwood number are defined respectively as: 
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The shearing stress on the wavy surface is: 
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Since the local skin-friction coefficient fxC  is defined 

by: 
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Substituting Eq. (26) into Eq. (27) in terms of the non-

dimensional quantities, we have: 
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3 NUMERICAL APPROACH 

Because of the non-linear interactions among the 

momentum equations, the energy equation and the 

concentration equation, solution for the problem can be 

solved by numerical finite-difference procedures. The 

governing equations are parabolic in x  and t . Hence 

the solution can be marched at time and the 

downstream direction. For the purpose of the numerical 

stability, a fully implicit formulation at time is adopted. 

The unsteady terms are approximated by backward 

difference. The axial convection is approximated by the 

upstream difference and the transverse convection and 

diffusion terms by the central difference is used to 

transform the governing equations into the finite-

difference equations. The resulting system of algebraic 

equations can be cast into a tri-diagonal matrix 

equation, which can be efficiently solved by the 

Thomas algorithm [38]. During each transient and axial 

step, the numerical evaluation is iterated until the 

relative errors of the velocity, temperature and 

concentration at sequential iterations are less than 
510
. If not, repeat the iterations for the current axial 

location. If yes, apply the above procedures from 

0x  to the desired downstream location ( 4x ). 

Then march the solution from the onset of the transient 

to the final steady state. The steady-state criteria for the 

relative deviations of the variables, ,,Vu  and C , 

between two time intervals are less than 610 . The 

detailed numerical procedures are similar to those of 

Ref. [9]. In the study, 251 non-uniform grid points were 

employed in the transverse direction ( y ). Some of the 

calculations were tested using 501 grid points in the y-

direction, but no significant improvement over the 251 

grid points was found. Additionally, there are 401 grid 

points in the marching direction. In the program test, a 

finer axial step size was tried and found to give 

acceptable accuracy. For the time interval, the first time 

interval is set to be 610 . The sequential time interval 

is then enlarged by 1%. To further check the adequacy 

of the numerical scheme used in this work, the results 

for the limiting case of natural convection heat transfer 

in a wavy surface were first obtained. Excellent 

agreement between the present predictions and those of 

Yan [3] was found. Besides, the predicted results of 

natural convection heat and mass transfer at steady 

state agree with the related work [1]. Through these 

program tests, it was found that the present numerical 

method is suitable for this study. 

4 RESULT AND DISCUSSION 

In the present study, numerical calculations are 

performed for the wavy surface described by 
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is an equation. In Fig. 2 the geometry of this problem is 

shown for two cases. 

 

 
(a) 

 
(b) 

Fig. 2  (a): Surface curvature for variable a2 and a1 = 0.3 

& (b): Surface curvature for variable a2 and a1 = 0.3 

 

In case 1 (Fig. 2.a), amplitude of the harmonic wave 

(
2a ) increases, while amplitude of the fundamental 

wave (
1a ) is fixed at 0.3. In case 2 (Fig. 2.b), the 

amplitude of fundamental wave increases while the 

amplitude of the harmonic wave is fixed at 0.3. 

Numerical results show that in case 1, by increasing the 

amplitude of harmonic wave, the rate of local heat and 

mass transfer and the friction coefficient on the surface 

generally decreases (Fig. 3).  
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(a) 

 
(b) 

 

(c) 

Fig. 3  (a): Local heat transfer rate per unit wetted area for 

variable a2 and a1 = 0.3, (b): Local mass transfer rate per unit 

wetted area for variable a2 and a1 = 0.3 & (c): Local friction 

coefficient per unit wetted area for variable a2 and a1 = 0.3 
 

This decrease is sensitive to the amplitude that is less 

than 0.3. In this situation the fundamental wave 

amplitude is fixed at 0.3. For case 2 by increasing the 

amplitude of fundamental wave, the rate of local heat 

and mass transfer and the friction coefficient on the 

surface decrease (Fig. 4), this decrease is insensitive to 

the amplitude. This is due to the fact that the flow 

velocity near the wavy surface determines the rate of 

local heat and mass transfer and the friction coefficient 

on the surface. 

 
(a) 

 
(b) 

 

(c) 

Fig. 4  (a): Local heat transfer rate per unit wetted area for 

variable a1 and a2 = 0.3, (b): Local mass transfer rate per unit 

wetted area for variable a1 and a2 = 0.3 & (c): Local friction 

coefficient per unit wetted area for variable a1 and a2 = 0.3 
 

This can be seen clearly with plot of velocity near the 

surface in Fig 5. For case 1, by increasing the 

amplitude of harmonic wave, the velocity near the 

surface decreases intensely. While for case 2, this 

decrease is lower than case 1. With decrease in velocity 

in case 1, the rate of local heat and mass transfer and 

the friction coefficient suddenly decrease. While in the 



 Int  J   Advanced Design and Manufacturing Technology, Vol. 11/ No. 1/ March - 2018                                       67 
  

© 2018 IAU, Majlesi Branch 

 

case 2, this decrease is lesser. In fact in the case 2 by 

increasing 1a , the effect on the ratio of amplitude to 

wavelength is low. While for the case 1 by increasing 

2a , this effect is greater. Otherwise, if the amplitude of 

the harmonic wave becomes dominant, the fundamental 

wave is lesser factor in determining the surface 

curvature, consequently, the amplitude of the 

fundamental wave plays a lesser role in determination 

the velocity near the surface (shown in Fig. 5).   

 

 
(a) 

 

(b) 

Fig. 5  (a): Axial velocity distribution for variable a2 and 

a1 = 0.3 at time=3.0047 & (b): axial velocity distribution for 

variable a2 and a1 = 0.3 at time=3.0047 

 

Fig. 6 and Fig. 7 shows the concentration and the 

temperature distribution for the case 1 and 2. For the 

case 1 the thermal and concentration boundary layer 

thickness is thinner than case 2. In addition, for the first 

case, the mass and heat boundary layer grows more 

than second case in the same increase in amplitude. 

These results mention this fact that the rate of local heat 

and mass transfer for case 1 is larger than case 2. As 

mentioned before this effect is because of the shape of 

the surface.   

 
(a) 

 
(b) 

Fig. 6  (a) Temperature distribution for variable a2 and   

a1 = 0.3 at time=3.0047 & (b): Concentration distribution for 

variable a2 and a1 = 0.3 at time=3.0047 
 

 
(a) 

 
(b) 

Fig. 7  (a): Temperature distribution for variable a1 and  

a2 = 0.3 at time=3.0047 & (b): Concentration distribution for 

variable a1 and a2 = 0.3 at time=3.0047 
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7 CONCLUSION 

A numerical research of transient natural convection 

heat and mass transfer along a vertical complex wavy 

surface has been accomplished. The numerical 

consequences determine that the additional harmonic 

substantially alters the flow field, temperature and 

concentration distribution near the surface. Moreover, 

the numerical results demonstrate that the local mass 

and heat transfer rate for a complex surface are smaller 

than of a flat plate. This decreased local mass and heat 

transfer rate seem to depend on the ratio of amplitude 

surface. 

8 APPENDIX OR NOMENCLATURE 
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Vu, dimensionless velocity 
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yx, coordinate system (m) 
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