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1 INTRODUCTION 

Cable robots are a type of parallel manipulator wherein 

the end-effector is supported by n cables with n 

tensioning motors. In addition to the well-known 

advantages of parallel robots relative to serial robots, 

cable robots also have very low mass and even better 

stiffness than other parallel robots. In recent years, path 

planning of cable robots is well studied. Two strategies 

can be defined for path optimization: direct and indirect 

methods. These techniques are used in enormous 

articles and they have own benefits and drawbacks [1]. 

Besides the trajectory planning in which controls and 

states are obtained to minimize the desired performance 

index, one efficient way to increase the robot 

performance is balancing [2]. 

Trajectory planning problem can be stated as an 

optimal control problem usually solved by direct 

methods. Direct method converts the trajectory 

planning problem into a parameter optimization 

problem accomplished by discretization of dynamic 

variables including states and controls [3]‎. In some of 

the previous works dealing with path planning of 

robotic manipulators the direct methods are employed, 

and often the Spline or polynomial functions are used 

as the motion profiles [4], [5]. Lahouar et al., used 

direct method for collision-free path planning of cable-

driven parallel robots [6]. On the other hand, indirect 

methods are based on Pontryagin Minimum Principle 

(PMP), which solves the optimal control problem 

exactly [7].  

Based on PMP, the problem of optimal control is first 

transformed into multipoint boundary value problem. 

In the next step, this problem is discretized to attain the 

numerical solution using the method such as shooting, 

relaxation or collocation techniques. The indirect 

method was first applied to solve the minimum time 

motion problems along the specified paths. Then, it was 

extended to handle free motions as well [8]. PMP is 

also used to solve directly the optimal dynamic motion 

planning problem [9]. Furuno et al. used this technique 

for trajectory planning of mobile manipulators [10]. 

Korayem et al., used this method for trajectory 

planning of flexible joint [11], flexible link [12] and 

redundant manipulators [13]. Korayem et al. designed a 

computational approach for achieving optimal 

trajectory to maximize dynamic load capacity of cable 

robot in point-to-point motion [14].  

Korayem et al., used the open loop optimal control 

method for generating the optimal trajectory [15]. 

Balancing introduces some modifications in the 

architecture of the original mechanism, which actually 

simplifies its dynamic model and, as a result, its control 

as well. Besides control simplification, balancing can 

also provide a reduction of driving torques. Balancing 

can be classified into either static or dynamic. Static 

balancing means that the weight of the members does 

not produce any force at actuators for any configuration 

of the manipulator [16]. In dynamic balancing, some 

modifications are applied to the original kinematic 

chain of unbalanced mechanisms to achieve static 

balancing and complete decoupling of dynamic 

equations [17]. Thus coriolis, centripetal, gravitational 

and cross inertia terms are eliminated. Furthermore, 

mechanical balancing of mechanisms has received 

sustained interest from researchers, since it allows one 

to significantly decrease the size of actuators for 

equivalent displacements of the end effector.  

This role is generally rather fulfilled by springs, 

counterweights, pneumatic or hydraulic cylinders, and 

even by electromagnetic devices. Springs do not affect 

much the mechanism's inertia. Thus, they are widely 

used in balancing. As example, Nikoobin et al., used 

the optimal spring balancing for robot manipulators 

[18] or Perreault et al. which has developed a nonlinear 

spring to maintain a given minimum tension in the 

cables of a parallel cable-driven mechanism [19]. Even 

if, in general, counterweights add inertia to the 

mechanism, they have been extensively used to balance 

the mechanisms. Nikoobin et al., presented a balancing 

approach for open chain robot manipulators using the 

open loop optimal control by counterweights [20] or in 

the other work, the indirect method is used to determine 

the optimal trajectory of planar cable robot in point to 

point motion [21]. The results of literature survey are 

summarized as follows: 

A weak point of the direct methods is that it leads to an 

approximately optimal solution. Furthermore, they are 

exhaustively time-consuming due to the large number 

of parameters involved, especially for systems with a 

large number of degree of freedoms [22]. The indirect 

methods are widely used as a powerful and efficient 

tool for analyzing the nonlinear systems and path 

planning of different types of systems [23], [24]. In the 

balancing method, the value of the spring constants or 

the counterweights are achieved without considering 

the trajectory [16], [17], [19].  

On the other side, in the optimal balancing method, the 

value of the spring constants or the counterweights is 

obtained with considering the trajectory. The optimal 

balancing method has been applied to the serial robot 

and planar cable robot [18], [20], [21], but this method 

has not been applied on spatial cable robot yet. In this 

paper, a method based on the indirect solution of 

optimal control problem is introduced to specify the 

optimal trajectory of spatially suspended cable robot in 

point to point motion with considering the 

counterweights. In the proposed method called optimal 

balancing, states, controls and the values of 

counterweights are obtained simultaneously, in which 

the objective function is minimized. 
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2 DYNAMIC MODELING OF ROBOT 

In this section, the dynamic equation of robot is 

extracted [25], [26]. A cable-suspended robot typically 

consists of a moving platform that is connected to a 

fixed base by several cables [27]. The spatial 

suspended cable robot including the counterweights is 

shown in Fig. 1. As it can be seen, three compensation 

masses mc1, mc2 and mc3 are attached to cables 1, 2 and 

3, respectively. The cross section of the robot 

workspace is an equilateral triangle with side length a. 

The global coordinate system is placed in the 

confluence of the medians of this triangle. The end 

effector of the robot with mass m has three degrees of 

freedom as X=[x y z]
T
. Moreover, the acceleration of 

gravity is in the direction z and the downward. The 

system consists of three motors, three pulleys and three 

cables. The coordinate of pulleys is as follow: 
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Fig. 1 Three cable robot with counterweights. 

 

At first, the cables length is determined by following 

equation 
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By using the cables length, the Jacobian matrix can be 

calculated as follow 
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Also the linear velocity of cables is calculated as 

follow: 
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                                       (4) 

where Ẋ is the linear velocity of the end effector in 

direction x, y and z. Rotating the i
th

 pulley leads to 

change of the i
th

 cable length. Therefore, the pulleys 

angles are obtained as follow 
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where L0i is the initial length of the cables. By 

derivation of the pulley angle with respect to time, 

angular velocity of pulleys is obtained as follow 
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Now, the positions of compensation masses mc1, mc2 

and mc3 are described. The initial position of the 

compensation masses is 2b/3 according to the location 

of the end effector in coordinate X=[0 0 0]
T
 (Fig. 2). 

Therefore, the position of three compensation masses is 

obtained in terms of the global coordinate system by 

following equation 
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Fig. 2 Position of mc1 according to the location of the end-

effector in X=[0 0 0]T. 
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The Lagrange's method is used to obtain the dynamic 

equation. This method is written in terms of the 

potential energy U, the kinetic energy K and the 

generalized force or torque Q, as follow: 
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(8) 

 

Parameter q in Eq. (8) is called generalized coordinate. 

By the following steps, the dynamic equation of the end 

effector is obtained. 

Step 1- The equation of motion for mass m: 

The kinetic energy, the potential energy, and the 

generalized force are obtained as follow 
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where g, J and T are gravity acceleration, Jacobian 

matrix and cable tension vector, respectively. By using 

Eq. (8), the dynamic equation is obtained as follow 
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(10) 

 

Step 2- The equation of motion for counterweights 

mc1, mc2 and mc3: 

The dynamic equation is obtained as follow 
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Fig. 3 Pulley 1. 

Step 3- The equation of motion for Pulleys 1, 2 and 3: 

The kinetic energy and the generalized torque of pulley 

1 is obtained by Eq. (12), according to Fig. 3, 
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(12) 

where β1 and j
′
 are pulley angle 1 and moment of inertia 

of pulley, respectively. Also, τ1, r and c are motor 

torque, pulley radius and viscous damping coefficient, 

respectively. By using Eq. (8), the dynamic equation is 

obtained as follow 
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Thus, cable tension 1 is derived as 
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Similarly, the cable tensions 2 and 3 is derived. 

Therefore, cable tension is written as follow 
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Now, by multiplying the Eq. (15) by -J
T
, following 

equation is obtained. 
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(16) 

Then, by substituting the Eq. (10) into Eq. (16), one can 

write 
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Finally, the final dynamic equation is achieved as 

follow 
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Where Mt, Nt and Gt are the inertia matrix, the Coriolis 

and centrifugal terms, and gravity term, respectively. 

3 FORMULATION OF OPTIMAL BALANCING 

In optimal balancing approach presented in this article, 

the values of counterweights, trajectory of robot and 

applied torque in each pulley must be obtained 

simultaneously in such a way that a given performance 

index is minimized. For this purpose, compensation 

masses are assumed as unknown variables, and then 

dynamic equations for robot manipulator are derived. 

By considering the counterweights vector denoted by 

mci, Eq. (18) is obtained. Now, optimal balancing 

problem can be solved. So, by defining the continuous 

state vector as 
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The dynamic equation (18) can be rewritten in state 

space form as 
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Where f is continuous in the variables x, u and t, and is 

continuously differentiable with respect to x. Then 

Hamiltonian function can be written as follow 
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Where L(x,u,mc) is Lagrange function and ψ=[ψ1 ψ2]
T
 

denotes co-state vector. Substituting for f(x,u,mc) from 

Eq. (20) into Eq. (21) gives 
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Using the PMP, one can write the optimality conditions 

as follow [7] 
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Now, by substituting the Hamiltonian function (22) into 

Eq. (23), the optimality conditions become : 
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Where for a 3-dof robot, Eq. (24) represents 6 

equations dealing with states, Eq. (25) represents 6 

equations dealing with co-states, Eq. (26) represents 3 

equations dealing with auxiliary states μ related to 

counter weights, Eq. (27) represents 3 equations 

dealing with controls and Eq. (28) represent 18 (12+6) 

boundary conditions. By substituting the control value 

u obtained of Eq. (27) into Eqs. (24), (25) and (26), a 

set of 15 ordinary differential equations is established 

which beside the 18 boundary value conditions given in 

Eq. (28), forms a two-point boundary value problem. 

Finally, the derived TPBVP is solved to obtain 6 state, 

6 costate, 3 counterweight value, and 3 auxiliary state 

μ. 

For the spatial robot, two different conditions are 

considered: unbalanced and optimally balanced. In 

unbalanced case, counterweights of robot are zero 

(mc1=mc2=mc3=0). In optimal balanced case the values 

of counterweights are depended on dynamic equations, 

performance index and boundary conditions according 

to Eqs. (24-28). 

The initial position of the end-effector at t=0 is 

(x0,y0,z0) and the final position at t=tf is (xf,yf,zf). The 

initial and final velocity is considered to be zero. So, 

one can write the boundary conditions as follow 
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At the first step, by defining the continuous state vector 

as follow 
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The state space from of equations, using Eq. (20), 

becomes 
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Now by considering the performance index as 

minimum control effort which is defined as follows: 
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(32) 

 

And the co-state vector as ψ1=[x7 x8 x9]
T
 and ψ2=[x10 

x11 x12]
T
, the Hamiltonian function using Eq. (22) 

becomes: 
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(33) 

 

Where ẋi ; i=1,…,6 can be substituted from Eq. (31). 

Then by substituting Eq. (31) into Eq. (33), and 

differentiating the Hamiltonian function with respect to 

the states, according to Eq. (25), the co-state equations 

are obtained as follows: 
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(34) 

 

After that, using Eq. (27), the control values can be 

obtained by solving the following equations as : 
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(35) 

 

By solving Eq. (35), the optimal torques are obtained 

based on states, co-states, and counterweight 

parameters. Thus, the optimal torques are derived by 

the optimum trajectory and the optimal values of 

counterweights. 

Dynamic equations, co-state equations and optimal 

control law are the same as obtained in Eqs. (31), (34) 

and (35), respectively. Here, in all equations mc1, mc2 

and mc3 are considered to be unknown parameters. 

Now using Eq. (26), by defining the three new state 

variables x13, x14 and x15, the optimality conditions 

associated with the parameters are given by : 
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(36) 

 

Where according to Eq. (28) the associated boundary 

conditions become 
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At last, by substituting Eq. (35) into Eqs. (31), (34) and 

(36), 15 nonlinear ordinary differential equations with 

respect to states [x1 x2 x3 x4 x5 x6]
T
, co-states [x7 x8 x9 x10 

x11 x12]
T
, new states [x13 x14 x15]

T
, and unknown 

parameters [mc1 mc2 mc3]
T
 will be achieved. These 

fifteen equations with eighteen boundary conditions 

given in Eq. (29) and Eq. (37), construct a two-point 

boundary value problem which can be solved using the 

bvp4c command in MATLAB. 

4 SIMULATION RESULTS 

All required parameters of the robot are given in Table 

1. For simulation, two paths are considered. 

 
Table 1 The Robot parameters 

a(m) h(m) m(kg) r(m) j(kg.m2) c(N.m.s) g(m/s2) 

2 1.5 3 0.03 0.001 0.01 9.81 

 

4.1. Path 1 

The path is shown in Table 2. 

 
Table 2 The properties of path for spatial cable robot 

Position (m) Velocity (m/s) Time (s) 

x0=0.5, y0=-0.3, 

z0=1.1 

xf=-0.1, yf=0.45, 

zf=0.3 

Vx0=Vy0=Vz0=0 

Vxf=Vyf=Vzf=0 

tf=1 

 

By solving the two-point boundary value problem 

obtained in Section 3, the values of objective function 

obtained from Eq. (32) are shown in Table 3. As it can 

be seen, performance index for optimal balanced case 

is smaller than the unbalanced case significantly. 

 
Table 3 The objective function value 

 Objective function ((N.m)2.s) 

Unbalanced 0.6186 

Optimal balanced 0.1600 
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The optimal value of the counterweights is illustrated in 

Table 4. The position of the end effector is illustrated in 

Fig. 4 and the velocity of the end effector is shown in 

Fig. 5. 
 

Table 4 The optimal value of the compensation masses 

Counterweights mc1 mc2 mc3 

0.9420 0.0908 2.0961 

 

 
2D plot 

 
3D plot 

Fig. 4 The position of end effector. 

 

 
Fig. 5 The velocity of end effector. 

 

 
Fig. 6 The torque of pulley 1. 

 

Fig. 7 The torque of pulley 2. 

 

 

Fig. 8 The torque of pulley 3. 

 

The torque for unbalanced and optimal balanced cases 

is plotted in Figs. 6-8. As it can be seen the applied 

torque for optimal balanced case is lower than the 

unbalanced case. The cable tensions are obtained by 

Eq. (15). The three cable tensions are shown in Fig. 9. 

 

 

Fig. 9 The tension of cables. 

4.2. Path 2 

The path is shown in Table 5. 

 
Table 5 The properties of path for spatial cable robot 

Position (m) Velocity (m/s) Time (s) 

x0=-0.4, y0=-0.2, 

z0=0.55 

xf=0.35, yf=0.05, 

zf=1.2 

Vx0=Vy0=Vz0=0 

Vxf=Vyf=Vzf=0 

tf=1 
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By solving the two-point boundary value problem 

obtained in Section 3, the values of objective function 

obtained from Eq. (32) are shown in Table 6. As it can 

be seen, performance index for optimal balanced case 

is smaller than the unbalanced case significantly. 

 
Table 6 The objective function value 

 Objective function ((N.m)2.s) 

Unbalanced 1.5445 

Optimal balanced 0.1691 

 

The optimal value of the counterweights is illustrated in 

Table 7. The position of the end effector is illustrated in 

Fig. 10 and the velocity of the end effector is shown in 

Fig. 11. 

 
Table 7 The optimal value of the compensation masses 

Counterweights mc1 mc2 mc3 

1.7632 2.8214 2.4851 

 

 
2D plot 

 
3D plot 

Fig. 10 The position of end effector. 

 

 

Fig. 11 The velocity of end effector. 

The torque for unbalanced and optimal balanced cases 

is plotted in Figs. 12-14. As it can be seen, the applied 

torque for optimal balanced case is lower than the 

unbalanced case. 

 

Fig. 12 The torque of pulley 1. 

 

 

Fig. 13 The torque of pulley 2. 

 

 

Fig. 14 The torque of pulley 3. 

 

The cable tensions are obtained by Eq. (15). The three 

cable tensions are shown in Fig. 15. 
 

 
Fig. 15 The tension of cables. 
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5 CONCLUSION 

One important contribution of the optimal balancing is 

that states, controls, and the values of counterweights 

are determined simultaneously in order to minimize the 

given performance objective, by solving the equations 

obtained of optimality conditions. In this article, a new 

area for balancing and trajectory planning is suggested 

which results in the best possible response. The 

efficiency of the proposed method is investigated 

through computer simulations by considering a spatial 

three-cable robot. The obtained results show that the 

performance index can be reduced significantly if the 

values of counterweights are chosen properly. 
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