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Abstract: This paper describes a modified structural dynamics model for 

aeroelastic analysis of high-aspect-ratio wings undergoing large deformation 

behavior. To achieve this objective, a moderate deflection beam model is modified 

with some important large deflection terms and then coupled with a state space 

unsteady aerodynamics model. Finite element method is used to discretize the 

equations of motion. A dynamic perturbation equation about a nonlinear static 

equilibrium is applied to determine the flutter boundary. The obtained results show 

good agreement in comparison with other existing data such as high-altitude long-

endurance (HALE) wing and Goland wing. It is found that the present aeroelastic 

tool have a good agreement in comparison with valid researches and also 

considering the effect of the geometric structural nonlinearity and higher order 

nonlinear terms on the flutter boundary determination is very significant.  
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1 INTRODUCTION 

In the study of wing aeroelastic problems, linear 

models are usually implemented, while these models 

have some restrictions such as small deflections and 

low angle of attack. However considering moderate or 

large deflections causes structural geometric 

nonlinearity and performing nonlinear analysis is so 

necessary. In a high aspect ratio wing, flexibility factor 

coupled with the long span results in the possibility of 

large deflections during normal flight condition and so 

the stiffness and natural frequencies of the wing may be 

changed. Hence in aeroelastic analysis of the high 

aspect ratio wings, nonlinear models must be 

implemented for predicting the instability limits.  

There is too much attention paid to nonlinear 

aeroelastic analysis in the last two decades. Many 

researchers investigated the effects of aerodynamic stall 

nonlinearity, structural geometry nonlinearity and free 

play nonlinearity on the aeroelastic behavior of typical 

section model as well as cantilevered wing model. In 

nonlinear aeroelastic analysis, the system can be 

simulated in time domain or in frequency domain. In 

the time domain method, the system is marched in time 

for various initial conditions and the response is gained 

in the form of time-varying curves or phase planes. If 

the speed reaches a critical value, instability occurs. In 

this case, the trajectories tend towards a limit cycle 

oscillations (LCO). In the frequency domain method, 

the dynamic perturbation equations are linearized about 

a nonlinear static equilibrium conditions to determine 

the stability boundaries. 

In order to construct models of nonlinear aeroelastic 

systems properly, appropriate nonlinear models and 

solution methods are required. Hodges and Dowell 

provided nonlinear equations with quadratic 

nonlinearities for rotor blades undergoing large 

deformations [1]. Dowell et al., compared their 

experimental results with the Hodges-Dowell 

equations, and showed that there are some differences 

between analytical and experimental results [2]. These 

differences are due to elimination of higher order 

nonlinear terms in the Hodges-Dowell model. Hodges 

et al., showed that the bending deflection equations 

should also involve third order nonlinear terms [3]. 

Rosen and Friedmann presented more accurate system 

of equations than those of Hodges-Dowell because they 

considered additional higher order nonlinear terms, so 

their results were in better agreement with experimental 

results obtained by Dowell et al., [2], [4].  

Crespo da Silva and Glynn applied the extended form 

of Hamilton's principle to develop a set of 

mathematically consistent nonlinear equations [5]. 

Cubic terms were not shown explicitly in their 

equations but these equations fully included the 

contributions due to nonlinear curvature and nonlinear 

inertia. Using these equations, nonlinear analysis of a 

cantilever beam was performed [6]. Also, these 

equations were developed to the case of composite 

beams by Pai and Nayfeh [7]. Hodges presented a 

general beam theory based on a nonlinear intrinsic 

formulation for the dynamics of initially curved and 

twisted beams in a moving frame [8]. This beam model 

is valid for both isotropic and composite materials. 

In order to investigate the aeroelastic stability of a 

nonlinear beam, it is essential that its structural 

dynamics equations are combined with a suitable 

aerodynamic model. Tang and Dowell studied the 

aeroelastic response of a high-aspect ratio wing [9], 

[10]. The presented equations by Hodges-Dowell were 

used for modeling the structural nonlinearity and the 

semi-experimental aerodynamics (ONERA stall model) 

was used to describe the nonlinear aerodynamics [1]. 

Patil and Hodges investigated nonlinear aeroelastic 

behavior of a complete aircraft with high aspect-ratio 

wings based on geometrically-exact nonlinear 

equations for the beam structural dynamics and the 

finite-state aerodynamic theory of Peters along with the 

ONERA dynamic stall model [8], [11-13].  

Yuan and Friedmann performed nonlinear aeroelastic 

analysis of a composite rotor blade using finite element 

method and quasi-steady aerodynamic theory [14], 

[15]. In this composite blade model, higher order terms 

associated with the strain–displacement relations are 

neglected using an ordering scheme, which 

appropriates for moderate deflection (small strain and 

moderate rotations) analysis. The moderate deflection 

simplification is justified for composite helicopter rotor 

blade analysis since rotor blades are designed from low 

stress and long-cycle fatigue considerations [16]. 

Friedmann et al., combined their previous work with an 

improved finite element cross-sectional analysis code 

(VABS) that was based on Hodges equations for 

application of composite materials [14], [16]. VABS 

also has been used to calculate the cross-sectional 

properties needed as inputs for other rotorcraft analysis 

codes [17], [18], [19].  

Friedmann et al., [16] model accounts for arbitrary 

cross-sectional warping, in-plane stresses, and 

moderate deflections. In moderate deflection ordering 

schemes that also used by Hodges and Dowell, a 

second order approximation implies that terms of order 
2  are neglected compared to terms of order 1, where 

  is blade bending slope [1]. Some studies also used a 

third order approximation where terms of order 
3 were neglected compared to terms of order 1 [5], 

[6]. The importance of using higher order terms in large 

deflections also noted in other studies [20-22]. Hodges 

developed a nonlinear beam kinematics in which the 

assumption of moderate rotation was removed [23]. 

This model was subsequently employed as the 
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theoretical basis for the beam element used in the 

computer program GRASP. Also some other 

researchers investigated vibration analysis of thin plates 

or beams [24-26]. 

In this study, Finite Element Method (FEM) is 

implemented for nonlinear aeroelastic analysis of a 

wing considering large deflections during normal flight 

condition that are not used by previous mentioned 

references. Therefore a nonlinear beam element is used 

to model wing‟s structural dynamics behaviour. An 

unsteady nonlinear aerodynamic theory is used for 

aerodynamic loading computation. Structural modeling 

is based on the presented model by Yuan and 

Friedmann [14]. But, the Yuan-Friedmann equations 

are developed for helicopter rotor blade application, 

moderate deflection and quasi-steady aerodynamic. 

However, in this study these equations have been 

modified for the case of fixed wings and to overcome 

previous model‟s large deformation modelling 

weakness, some important higher order terms are 

considered in this study. Also, the unsteady 

aerodynamic states model based on Jones‟s 

approximation is implemented for constructing an 

appropriate aeroelastic tool. Finally, the aeroelastic 

analyses for a certain test case are performed and the 

obtained results are compared and validated with those 

available in the literature. 

2 STRUCTURAL DYNAMICS SIMULATION  

To simulate the structural dynamic behavior of a wing, 

it can be discretized by utilizing several beam type 

elements along its elastic axis. The cross-section of the 

wing has a general shape with distinct shear center, 

tension center and center of mass. Angle of attack and 

pre-twist are included in this model. The nonlinear 

strain–displacement relations are developed from a 

moderate deflection theory (small strains and moderate 

rotations) with some important large deflection terms. 

Nonlinear equations of motion for each beam element 

are derived based on Hamilton‟s principle. 

 

2.1. Coordinate systems 

Several coordinate systems are required to describe 

deformation of the wing as shown in Figs. 1 and 2. The 

first two systems,  ˆ ˆ ˆ, ,x y ze e e  and  ˆ ˆ ˆ, ,xe e e 
, 

respectively, are used to determine the position and 

orientation of each beam element relative to the wing 

root in the unreformed configuration. The vector ˆ
xe  is 

aligned with the beam element elastic axis and the 

vectors ˆ
ye  and ẑe  are defined in the cross-section of 

the beam. Wing pre-twist angle and angle of attack 

have been taken into account by 0  as shown in Fig. 1. 

This angle is defined as the change in the orientation of 

ˆ ˆ,e e 
 with respect to ˆ ˆ,y ze e . The vectors ê  and ê

 

are assigned parallel to the modulus weighted principal 

axes of the cross-section. The beam element strain–

displacement relations are derived in  ˆ ˆ ˆ, ,xe e e   

system. However,  ˆ ˆ ˆ, ,xe e e 
    coordinate system is 

used to state the orientation of the local wing geometry 

after deformation. The orientation of  ˆ ˆ ˆ, ,xe e e 
    is 

obtained by rotating  ˆ ˆ ˆ, ,xe e e   coordinate system 

through three Euler angles in the order of , , x     

about ê
 rotated ê  and rotated ˆ

xe , respectively. 

This sequence was chosen to follow the work of 

previous authors. 

 

 

Fig. 1     Wing coordinate systems and deflections 

 

 

 
Fig. 2   Wing cross section before and after deflections 

 

2.2. Constitutive relations 

The constitutive relations are defined based on the 

assumptions of the linear elastic orthotropic model and 

the zero stress components within the cross-section 

 0       . Using these assumptions the 

constitutive relations are: 



48                                       Int  J   Advanced Design and Manufacturing Technology, Vol. 8/ No. 1/ March– 2015 
  

© 2015 IAU, Majlesi Branch 

 

11 15 16

15 55 56

16 56 66

xx xx

x x

x x

Q Q Q

Q Q Q

Q Q Q

 

 

 

 

 

    
    

    
        

                        (1) 

 
2.3. Aerodynamic modeling 

For a two-dimensional airfoil undergoing sinusoidal 

motion in pulsating incompressible flow, based on 

Greenberg's extension of Theodorsen's theory and 

using Jone's approximation unsteady aerodynamics 

theory, the unsteady aerodynamic lift (L ) and pitching 

moment (M ) per unit span about the elastic axis can 

be expressed [27], [28]. 
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Also, the profile drag per unit span is defined as: 
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Where a is the lift curve slope of the wing section; b is 

the semi-chord; A is air density;   is the pitch angle 

with respect to free-stream and Ax is the non-

dimensional distance between the aerodynamic center 

and the elastic axis of the airfoil cross-section, positive 

for aerodynamic center ahead of the elastic axis. The 

velocity vector of a point on the elastic axis of the wing 

relative to the air is: 
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Where 
FV  is the free-stream velocity and the 

transformation matrix  deT  that will be explained later. 

Also, iB  is the aerodynamic state according to Jone's 

approximate unsteady aerodynamics theory [28] which 

satisfies: 

 

( / )i i F i AB V b B U b x                  (6) 

 

Where 

/i F i iV b .  

The constants 
,i
and 

i
 are the coefficients used in 

the quasi-polynomial approximation of the Wagner 

function that for the first and second states are: 

1 2 1 20.165; 0.335; 0.0455; 0.3

 
2.4. Structural formulation 

In this study, the nonlinear kinematics of deformation 

is based on the mechanics of curved rods [14]. The 

kinematical assumptions used in [14] are: (1) the 

deformations of the cross-section in its own plane are 

neglected; (2) the strain components are small 

compared to unity. But in the present study, besides the 

mentioned assumptions, the axial shear strains and 

warping terms are also neglected. The strain 

components after applying the ordering scheme 

become: 
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 (7) 

Where, , ,v w   are out of plane and inplane deflection 

and twist at the elastic axis, respectively (Figs. 1 and 

2). Using Hamilton‟s principle for each beam element, 

one can derive the non-linear equations of motion and 

the corresponding finite element matrices: 

 
2

1

0

t

e

t

U T W dt    
                                           (8) 

Where ,U T  and 
eW are the variation of strain 

energy, kinetic energy, and virtual work of external 

loads, respectively. 

 
2.4.1. Strain energy 

The variational form of strain energy is 
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The small angle assumption for  yields: 
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Thus, the variation of the left hand side of Eq. (10) is: 
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However, the variation of the right hand side of Eq. 

(10) is 
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The main deference between the present study and Ref. 

[14], is that, in the present study, Eq. (10) is 

implemented after taking variation of axial strain, xx , 

that results in Eq. (11) and keeps higher order terms, 

which is important in large deflection computations but 

in Ref. [14] these terms did not appear because Eq. (10) 

has been used before taking variation of xx that yields 

to Eq. (12). Integrating Eq. (9) over the cross-section 

gives modulus weighted section constants, which are 

presented in Ref. [14]. These section constants can be 

calculated using separate, one-dimensional linear beam 

analysis. 

 
2.4.2. Kinetic energy 

The variation of the kinetic energy for each beam 

element is: 

0

.
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Where the velocity vector, V , is obtained by 

 

=V R                                                                         (14) 

 

The position vector, R , of a point on the deformed 

beam is written in the following form 
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All the terms in the velocity vector were transformed to 

the  ˆ ˆ ˆ, ,x y ze e e  coordinate system by: 
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Where the transformation matrix  deT  is expressed as: 
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Where 
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Integrating Eq. (13) over the cross-section yields mass 

weighted section constants about the shear center. 

 
2.4.3. External work contributions 

Using the principle of virtual work, the effects of the 

non-conservative distributed loads are involved. The 

virtual work on each beam element is defined as: 

 

 
0

. .

le

eW dx    P u Q θ

                                        
(19)

 
 

Where, P and Q are the distributed aerodynamic force 

and moment vectors along the elastic axis; u  and θ  

are the virtual displacement and rotation vectors, 

respectively, of a point on the deformed elastic axis. 

3 SOLUTION METHODOLOGY  

In this study, the finite element method is implemented 

for solving the system of aeroelastic equations. 

Therefore, the wing is divided into several beam 

elements. The discretized form of Hamilton‟s principle 

is written as  
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Where n is the total number of beam elements. The 

Hermitian shape functions are used to discretize the 
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space dependence: cubic polynomials for v and w ; 

quadratic polynomials for .  
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Each beam element consists of two end nodes and one 

internal node at its mid-point, which results in 11 nodal 

degrees of freedom, as shown in Fig. 3. Thus, 
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The vector of element nodal degrees of freedom, q , is 

defined as: 
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Fig. 3 Wing finite element model and related nodal 

degrees of freedom 

 

Since the variation of the generalized coordinates 

 , ,v w    are arbitrary over the time interval, 

therefore q  is also arbitrary; and this results in the 

finite element equations of motion for the i
th

 beam 

element, which is written as 

 

     i i i
[M ] q +[K ] q + F =0                           (24) 

 

Where  M  is the structural mass matrix,  K  is the 

stiffness matrix including linear structural stiffness 

matrix, nonlinear structural stiffness matrix and the 

nonlinear aerodynamic stiffness matrix that also is a 

function of the aerodynamic states. Also, the applied 

aerodynamic force vector,  F  is a nonlinear function 

of deflections and theirs derivatives with respect to 

time. So, it includes the aerodynamic damping terms. 

After computing and assembling the mass, stiffness 

matrices and force vector, the natural frequencies and 

related mode shapes of the wing are firstly calculated. 

Hence, for the free vibration analysis, the equations of 

motion for total elements are: 
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S
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The superscript s denotes the linear structural matrix 

used in the free vibration analysis. After imposing the 

boundary conditions, a standard eigenvalue procedure 

is implemented to find the natural frequencies and 

mode shapes of the wing. In order to reduce the 

computational size of the problem, a modal coordinate 

transformation is then applied. For the i
th

 element, the 

modal coordinate transformation has the following 

form: 

 

i i
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The new unknowns of the problem, y , is the vector of 

the generalized modal coordinates and has a size of 

mN where 
mN is the number of modes used to perform 

the modal coordinate transformation. The columns of 

i
[Q ] correspond to the portions of the normal mode 

eigenvectors for the i
th

 element. The assembled 

matrices and load vector of the wing are obtained as 

follows: 


n

T

i i i

i=1

[K]= [Q ][K ][Q ];


n

T

i i i

i=1

[C]= [Q ][C ][Q ]; 


n

T

i i i

i=1

[M]= [Q ][M ][Q ]; 
n

T

i i

i=1

[F]= [Q ][F];      (27) 

 

After applying this transformation to Eq. (24) and 

introducing the aerodynamic states, a set of nonlinear, 

coupled, ordinary differential equations containing 

multiple variables is obtained as follows: 

 

     eq eq eq
         f M X K X F 0

                
(28)

 
 

Where  

eq

M(y) 0
M = ,

0 0

 
    

 

eq

K(y, y, y,B,B) 0
K = ,

0 0

 
    

 

 
 
 
 

eq

B

F(y,y,y,B,B)
F =

F(y,y,B,B)
                              (29) 
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The new unknowns generalized modal coordinate 

vector is: 

 

 
 
 
 

y
X =

B
                                                            (30) 

 

Here,  B  is the Jones approximate unsteady 

aerodynamic states that has a size of 2n and is defined 

as: 

 

   
T

1 1 2 2 n n

1 2 1 2 1 2
B = B Β B B...B B                                    (31) 

 

 BF  is the additional force vector for modeling the 

unsteady aerodynamic (Eq. (7)). The solutions of Eq. 

(28) can be expressed in the form: 

 

0
X = X +ΔX                                                         (32) 

 

Where 
0
X  denotes steady-state solution and ΔX  

denotes the small perturbation on it. The static 

equilibrium position, 
0
X , is obtained from Eq. (28) by 

setting X=X=0  and solving the resulting nonlinear 

algebraic equations using iteratively by the Newton-

Raphson method. Subsequently, Eq. (28) can be 

linearized about the nonlinear static equilibrium 

position 
0
X , to yield: 

 

0 0 0
[M(X )]ΔX+[C(X )]ΔX+[K(X )]ΔX+H.O.T=0    (33) 

 

Where 

 

 
0 0

0

, , , ,

, ,

[ ] / [ ] /

[ ] /

           

  

X 0 0 X 0 0

X 0 0

M f X C f X

K f X

                        (34) 

 

Eq. (33), can be expressed in the first order state 

variable form after neglecting the higher order terms 

by: 

 

 z= A z                                                                  (35) 

 

Where the state vector z is defined as: 

 

ΔX
z =

ΔX

 
 
 

                                                       (36) 

 

And the system matrix A has the following form: 

   
-1 -1

0 I
A =

- M K - M C

 
 

               

                                  (37) 

 

The stability of the system is investigated through the 

eigenvalue analysis of A . Of course, these eigenvalues 

are complex conjugate pairs: 

 

, 1,...,j j j mi j N    
                             (38) 

 

The wing is stable if ( 0)i   for all j. 

4 RESULTS AND DISCUSSION  

Two test cases including HALE wing and Goland wing 

are considered here to validate the present aeroelastic 

model. The relative characteristics are shown in Tables 

1 and 2. For numerical simulation, the wing is 

discritized using 8 spanwise beam elements and the 

first 20 structural eigenmodes retained in the 

aeroelastic analysis 
m(n = 20) . 

 
Table 1 Input data for HALE wing [11] 

Specification Value 
Half span (m) 16 

Chord (m) 1m 

Mass per unit length (kg/m) 0.75  

Moment of Inertia (50% chord) (kg. m) 0.1  

Spanwise elastic axis 50% chord 

Center of gravity 50% chord 

Bending rigidity (N m2) 2×104 

Torsional rigidity (N m2) 1×104 

Bending rigidity (edgewise) (N m2) 4×106 

Density of air kg/m3 0.0889  

 

 

Table 2 Input data for Goland wing [13] 

Specification Value 
Half span (ft) 20 

Wing chord (ft) 6  

Mass per unit length (slugs/ft) 0.746  

Radius of gyration about mass center 25% chord 

Spanwise elastic axis (from l.e.) 33% chord  

Center of gravity (from l.e.) 43% chord 

Bending rigidity (lb ft2) 23.65×106 

Torsional rigidity (lb ft2) 2.39×106 

Air density (slugs/ ft3) 0.002378  

 

4.1. Linear Results  

In this section the linear aeroelastic behavior of the 

present model is validated. Table 3 presents the 

computed HALE wing‟s natural frequencies with 
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neglecting all nonlinear effects. They are compared 

against the reported results in Refs. [11], [29]. The 

obtained results show very good agreement in 

comparison with the exact solution. Table 4 presents 

the obtained results from a linear aeroelastic analysis 

including flutter speed, flutter frequency and 

divergence speed of the pervious wing model.  

 
Table 3 Comparison of the linear modal frequencies (rad/s) 

for Hale wing 

 Present Analysis Ref. [11] Exact 

Solution 

[29] 
Value Percentage 

error  

Value Percentage 

error  

1st Flat. 

Bend. 
2.243 0.0 2.247 0.2 2.243 

2nd 

Flat. 

Bend. 

14.057 0.01 14.606 3.9 14.056 

3rd Flat. 

Bend. 
39.380 0.06 44.012 11.8 39.356 

1st  

Torsion 
31.046 0.0 31.146 0.3 31.046 

1st 

Edge. 

Bend. 

31.718 0.0 31.739 0.1 31.718 

 
Table 4 Comparison of linear aeroelastic results for Hale 

wing 

 Present 

Analysis 

Ref. [12] 

Ref. [29] Value Error 

with 

[29] 

Value Error 

with 

[29] 

Flut. 

Speed 

(m/s) 

32.67 %0.5 32.21 %0.9 32.51 

Flut. Freq 

(rad/s) 
22.07 %1.3 22.61 %1.1 22.37 

Div. 

Speed 

(m/s) 

37.19 %0.1 37.29 %0.4 37.15 

 
Table 5 Comparison of linear aeroelastic results for Goland 

wing 

 

Present 

Analysis 
Ref. [13] 

Ref. 

[29] 
  

Value 

Error 

with 

[29] 

Value 

Error 

with 

[29] 

Flutter Speed 

(ft/sec) 
451 %0.2 445 %1.1 450 

Flutter 

Freq(rad/s) 
69.3 %2 70.2 %0.7 70.7 

 

These are also compared with the presented results in 

Refs. [12], [29]. It must be noted that the presented 

results in Ref. [29] were obtained by the Rayleigh-Ritz 

structural analysis with uncoupled beam mode shapes 

and implementation of Theodorsen's strip theory for 

unsteady aerodynamics. These results are almost 

identical. Table 5 presents the obtained results for a 

linear calculation of flutter speed and frequency of 

Goland wing that show good agreement with those 

exist in Refs. [13], [29]. 

 

4.2. Nonlinear Results  

To construct the eigenvalue problem of the considered 

nonlinear aeroelastic model, a concentrated force is 

added to the tip of Hale wing which causes deformation 

of the wing. Thus, the aeroelastic system can be 

expressed in the perturbation form about this 

deformation state (usual linearization method). The 

favorite results including, natural frequencies, flutter 

speed and frequency of aeroelastic model obtained by 

the solution of the perturbed eigenvalue problem. Figs. 

4-6, respectively, show the first five structural natural 

frequencies, nonlinear flutter speed and frequency 

versus the tip static displacement for two cases of 

structural equations.  

 

 

Fig. 4 Structural natural frequencies versus tip 

displacement 

 

In the first case, Yuan and Friedmann equations are 

used and the associated results are simulated by the 

present method without higher order terms (H.O.T) 

[14]. In the second case only higher order terms, 

discussed in section 2.8, are considered in the first case 

and assigned as the present method with H.O.T. In 

order to make comparison, the reported results by Patil 

et al., and Tang and Dowell are also presented in Fig. 



Int  J   Advanced Design and Manufacturing Technology, Vol. 8/ No. 1/ March - 2015  53 
  

© 2015 IAU, Majlesi Branch 

 

1[10], [11]. It must be noted that Tang and Dowell used 

Hodges-Dowell equations that did not include higher 

order terms and so their results are similar to the 

present method without H.O.T [10], [1]. Results of the 

present method with H.O.T are similar to those in Ref. 

[11] that used the geometrically exact formulation. The 

significant differences are seen in the range of the large 

tip displacements between both cases of with and 

without H.O.T in the present study. As it was shown 

here, the incorporating quadratic and cubic nonlinear 

terms due to large deflections behavior in aeroelastic 

analysis plays important role.  

 

 

Fig. 5 Variation of flutter speed with tip displacement 

 

 

 

Fig. 6 Variation of flutter frequency with tip displacement 

5 CONCLUDING REMARKS  

A modified model with the capability of calculating the 

stability of wing was developed based on Hamilton‟s 

principle and using a finite element formulation. 

Numerical results including the natural frequencies and 

aeroelastic stability of the selected wing configurations, 

which show the effects of wing tip displacement, were 

presented and compared with those available in the 

literature. The following conclusions are also obtained: 

 Incorporating Jones approximate unsteady 

aerodynamic model with the present structural 

model leads to an alternative applicable 

aeroelastic model for fixed wing analysis.  

 It is essential to consider some higher order 

terms in structural equations of motion for 

large deflection problems. 
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