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Abstract: Parallel kinematic machines, are closed loop structures which have more 
accuracy, stiffness and ability to withstand high loads. In this paper the vibration 
equations of the new parallel mechanism, that has higher stiffness because of 
parallelogram system and fixed length pods, have been derived by analytical 
approach. Whereas the proposed mechanism is applied as a machine tools, its 
vibrational behavior investigation has key impact factor. All the kinematic chains of 
the mechanism have been taken into consideration to achieve the coupled system of 
equations. To extract mechanism natural frequencies, modal analysis is carried out 
using three methods including analytical, finite element (FEM) and experimental 
method on parallel mechanism which has four degrees of freedom including three 
linear motion along the x, y and z axes and a rotary motion about x axis. Finally the 
natural frequencies and mode shapes obtained from analytical, experimental and 
FEM were compared. It is worth noting that all the frequencies obtained from three 
methods had little differences. 
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1 INTRODUCTION 

Parallel mechanisms are significantly used in many 

fields of engineering science and industries such as 

machining, metrology, flight simulator, simulated 

earthquake, medical equipment, and etc. In general, 

these mechanisms have two main bodies which are 

coupled with each other which act through multiple links 

in parallel mode [1]. In comparison to arms of traditional 

series, the potential benefits of parallel structures are as 

follows: higher kinematic accuracy, lighter weight and 

better structural rigidity, stable capacity and suitable 

position of saddle arrangement, low production cost and 

better load bearing ability, however, from application 

point of view limited workspace and technical 

complexity are two important disadvantages of parallel 

arms. Therefore the parallel kinematic machine are so 

suitable when the accuracy, rigidity, high speed and the 

ability to carry a heavy load is required in a limited 

workspace [2].  

In terms of configuration and movement structure, 

parallel mechanisms are divided into two types of pods 

with fixed – length and variable – length: Mechanisms 

with fixed – length pods, in their own group and along 

the path of guides, are distinguishable. In these 

mechanism, the pods with fixed length are used which 

are connected to a saddle at their end part and the saddles 

are on motion through guides and this motion is carried 

out through a linear or rotational operators. In 

mechanisms with variable – length pods, rotational and 

spherical joints are fixed to fix and moving platforms by 

bolt and the only variable parameter is the pods length. 

The position and orientation of moving platform is 

determined by changing the pods length. In recent years, 

much research has been carried out on parallel robots. 

One of the evolutions which is already in industrial 

production, especially in the field of manufacturing, is 

the use of parallel mechanisms independently or as part 

of other industrial machinery.  

Parallel robots with six degrees of freedom, generally 

suffers from small workspace, complex mechanical 

design, difficulty in making and controlling the move 

due to complicated kinematic analysis. To overcome 

these shortcomings, the new structures for parallel 

robots with fewer than six degrees of freedom are used. 

On the other hand, in many industrial cases, there is a 

need to provide facilities with more than three degrees 

of freedom with parallel arrangement as well as simpler 

arrangement compared to six degrees of freedom [3].  

Vibration of machine tools directly influences the 

efficiency, accuracy and quality of machining surface 

and tool life. Thus, to predict dynamic behavior, 

machine tool vibration analysis is necessary and as a 

reason, it has become manufacturers and researchers 

interest [4]- [10]. Determining vibration characteristic of 

machine tools structure and knowing the dynamic 

behavior of structures, in addition to its usage in 

dynamics issues of the machining, is of special 

importance features in determination of suitable 

working conditions and selecting the appropriate 

machining parameters to avoid resonance areas in 

machining time.  

To avoid chatter phenomenon in workshops, the 

operators choose the machining parameters cautiously. 

Moreover, in several cases, due to arising chatter, 

additional manually operations are needed to 

compensate defective surface finish of workpieces. In 

any case, reduction in efficiency is returning. In Renault 

automobile company, the excessive cost of machining of 

each cylinder block, due to arising chatter, is estimated 

to be 0.35€. For this company with three millions 

productions annually, chatter prevention is crucial [11]. 

In another study, Budak et al. [12] showed that, the 

machining time of a turbine blade decreases from 35 min 

to 19 min, when the machining operation is performed 

on the basis of predictive stability model.  

Accurate computer simulation of machine tools 

structure and consideration of vibration behavior 

analysis using finite element software contribute to 

achieving natural frequencies and vibration mode shapes 

for machine tools construction; in this field, various 

research is carried out by researchers [13]- [17]. 

Considering vibration analysis of structures using finite 

element software plays an important role to provide 

correct plan to carry out precise experimental modal 

test .Since testing and modal analysis provide important 

information on the dynamic behavior of engineering 

structures as well as clever solving of vibration issues, it 

is used as an appropriate tool to study the dynamic 

behavior and to solve complex vibration issues on 

structural vibration of mechanical systems, especially 

machine tools.  
From the application point of view, parallel mechanisms 

are divided in two major groups: first, mechanisms 

which are used as an interface in accurate vibration 

isolation and have little movement and second, 

mechanisms which are used for precise positioning. The 

vibration control of second groups even though having 

broad band, high power capability and appropriate 

sensors, is limited [18]. In order to machine work pieces 

accurately, in recent years, usage of these mechanisms 

as a table or spindle of machine tool, which requires 

precise, rigid and controllable components are 

dramatically increased. The used drivers in the 

positioning mechanisms inevitably have higher 

movement and a lower resolution; therefore, in the 

designed mechanisms for positioning, change in the 

mechanism configuration, displacement of moving 

platform or a change in mass and platform inertia and 

the applied load, probably will lead to alter the natural 

frequencies and vibration modes of mechanisms. Thus 

in the positioning mechanisms, regarding a wide range 
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of changes in the configuration of these mechanisms, 

prediction and prevention of the vibrations is possible. 

Mahboubkhah et al [19], [20] have examined free 

vibration of hexapod and its natural frequencies range 

for different configurations with two different methods, 

in one of the method, pod mass is neglected and 

equivalent stiffness of each pod is applied in vibration 

equations of the moving platform and in other method, 

the mass of the pod is applied in the calculation of free 

vibration of the mechanism.  

In these two studies, the results of the mathematical 

model with the results of finite element are studied 

comparatively. A similar consideration is carried out by 

Pedrammehr and his colleagues for forced vibration of 

hexapod machine tool's table [21], [22]. Law et al [23] 

have modeled a parallel–series hybrid mechanism and 

have used it to consider the dependency of the 

mechanism dynamic behavior to the position. Based on 

their own model, they also have experimentally 

validated mechanism position dependency. Other areas 

related to vibrations of parallel mechanisms could be 

found in [24]- [28] references. 

In this paper, in order to determine the natural 

frequencies and vibration mode shapes, a parallel 

mechanism with 4 degrees of freedom (Dof) is 

considered using three methods of theoretical, FEM and 

experimental method. For this purpose the vibration 

model of a parallel mechanism has been presented and 

the relevant explicit equations have been derived. In this 

model, mass, inertia, stiffness and damping of various 

elements comprising the mechanism have been taken 

into consideration. Then the eigenvalue problem has 

been solved for the moving platform as the end effector. 

These theoretical results have been compared with the 

results of FEM (Ansys) simulation. Then experimental 

modal test was conducted to evaluate the accuracy of the 

results. Finally, Comparing the results, showed 

satisfactory of the results of theoretical, FEM and 

experimental modal analysis, this comparison is based 

on natural frequencies and mode shapes obtained from 

methods.  

2 VIBRATION MODEL OF THE MECHANISM 

A schematic view of the mechanism can be observed in 

Fig. 1. Parallel mechanism of this robot provides 4 

degrees of freedom which includes the displacement in 

x, y and z axis and rotation about x axis. The fourth 

degree of freedom (rotational motion) leads to increased 

maneuverability as well as its usefulness compared to 

that of mechanisms with three degrees of freedom. This 

mechanism is interconnected by two types of fraternal 

chain 2-PR (Pa) U-2-PR (Pa) R, two chains of PR (Pa) 

R and two chains of PR (Pa) U in which P, R, Pa and U 

represent sliding joint, hinge joint, and parallelogram or 

universal joint respectively. Two coordinate systems are 

used in order to define the motion of the mechanism. The 

global coordinate system, {O}, is fixed at the center of 

the stationary platform. The local coordinate system, 

{P}, is fixed to the geometry center of the platform and 

moves and rotates with it. The vector 𝑷 =
(𝑥0 𝑦0 𝑧0) defined in {O} specifies the position of 

frame {P}. The orientation of frame {P} and thus the 

platform is described by (𝜃𝑥). This rotation can be 

expressed in frame {W} with the aid of a rotation matrix, 

𝑹𝑷 (Appendix a).  

 

Fig. 1 2-PR(Pa)U-2-PR(Pa)R parallel mechanism with     

4 degrees of freedom 

 

A flexible model has been proposed by the authors for 

deriving the vibration equations of the presented 

mechanism. In this model, pods, the upper and lower 

joints and the saddles have been considered as flexible 

elements. The platform carrying the spindle and frame 

of mechanism during machining operations should be 

sufficiently stiff in order to resist undesirable 

deformations ensuing from the machining loads. These 

parts can, therefore, be considered rigid with negligible 

damping. It is assumed that the joints are well lubricated 

and can be considered frictionless with negligible 

rotational damping. It is noteworthy that the 

instantaneous position and orientation of the platform 

have profound impact on the stiffness and dynamic 

behavior of the mechanism and should be taken into 

consideration. The flexible model of the mechanism is 

shown in Fig. 2. In this figure, only one pod is depicted. 

The parameters shown in this figure are as follows: 𝑴𝑃 

and 𝑰𝑃 are the total mass and mass inertia matrices of the 

moving platform together with the spindle, 𝑴𝐿 and  𝑴𝑆 

are the mass of pods and saddles respectively (i=1-4 for 
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four pods); 𝑙𝑃𝑖, 𝑙𝐿𝑖 and 𝑙𝑆𝑖 are the displacements of the 

platform, pods and saddles along pod’s longitudinal 

axis, respectively. 𝐾𝑙𝐽𝑖 , 𝐾𝐿𝑖 , 𝐾𝑢𝐽𝑖 and 𝐾𝑆𝑖are the stiffness 

coefficients of the lower joints, pods, upper joints, and 

saddles, respectively. 𝐶𝑙𝐽𝑖 ,𝐶𝐿𝑖, 𝐶𝑢𝐽𝑖 and 𝐶𝑆𝑖are the 

damping coefficients. ∆𝑙𝑙𝐿𝑖  is the total deflection from 

the lower joint up to the mass center of pod along the 

latter's longitudinal axis; ∆𝑙𝑢𝐿𝑖 is the longitudinal 

deflection between the mass centers of the pod and 

saddle of the ith pod; and ∆𝑙𝑆𝑖 is the deflection of the 

saddle along the axis of the ith pod up to the surface of 

the foundation. 

 

 
Fig. 2 Vibration model of the mechanism 

3 VIBRATION EQUATION OF THE MECHANISM 

Free body diagrams of various structural elements of the 

mechanism is illustrated in Fig. 3. In this figure, �̈�𝑷 and 

�̈�𝑷 are the linear and angular accelerations of the 

platform's center corresponding to 𝑙�̈� defined in {O}, 

respectively, 𝑙�̈�, 𝑙�̈� and 𝑙�̈� are accelerations of the moving 

platform, pods and saddles along ith pod, respectively; 

and 𝑭𝑬𝒙𝒕 and 𝑴𝑬𝒙𝒕 are harmonic machining force and 

moment applied on the moving platform and expressed 

in {P}. 𝐹𝐾𝑆𝑖 and 𝐹𝐶𝑆𝑖 are the spring and damping forces 

of the saddle and can be expressed as follows: 
 

(1) 𝐹𝐾𝑆𝑖 = 𝐾𝑆𝑖 ∙ ∆𝑙𝑆𝑖  ,  𝐹𝐶𝑆𝑖 = 𝐶𝑆𝑖 ∙ ∆𝑙̇ 𝑆𝑖    

 

Where ∆𝑙̇ 𝑆𝑖, is the total variation of the velocity of the 

saddle. 

 

𝐹𝐾𝑢𝐿𝑖 and 𝐹𝐶𝑢𝐿𝑖 are the spring and damping forces of the 

upper joint and pods and calculated as follows: 

     (2) 𝐹𝐾𝑢𝐿𝑖 = 𝐾𝑢𝐿𝑖 ∙ ∆𝑙𝑢𝐿𝑖  ,  𝐹𝐶𝑢𝐿𝑖 = 𝐶𝑢𝐿𝑖 ∙ ∆𝑙̇ 𝑢𝐿𝑖   

 

 
Fig. 3 Free body diagrams of the mechanism's structural 

units 

 

∆𝑙̇ 𝑢𝐿𝑖 is the velocity variation of the upper joint and pods. 

𝐾𝑢𝐿𝑖 and 𝐶𝑢𝐿𝑖 are estimated as follows: 
 

(3) 
1 𝐾𝑢𝐿𝑖⁄ = 1 𝐾𝑢𝐽𝑖⁄ + 1 𝐾𝐿𝑖⁄    

1 𝐶𝑢𝐿𝑖⁄ = 1 𝐶𝑢𝐽𝑖⁄ + 1 𝐶𝐿𝑖⁄    

 

𝐹𝐾𝑙𝐿𝑖 and 𝐹𝐶𝑙𝐿𝑖  are the spring and damping forces of the 

lower joint and estimated as follows: 
 

(4) 𝐹𝐾𝑙𝐿𝑖 = 𝐾𝑙𝐿𝑖 ∙ ∆𝑙𝑙𝐿𝑖   ,  𝐹𝐶𝑙𝐿𝑖 = 𝐶𝑙𝐿𝑖 ∙ ∆𝑙̇ 𝑙𝐿𝑖    

 

∆𝑙̇ 𝑙𝐿𝑖 is the total variation of the velocity of lower joint. 

Newtonian vibration equation for the lumped mass of the 

platform can be written as follows: 
 

(5) 𝑀𝑃�̈�𝑷 + ∑ 𝒍𝒊𝒐𝐹𝐶𝑙𝐿𝑖 + ∑ 𝒍𝒊𝒐𝐹𝐾𝑙𝐿𝑖 = 𝑹𝑷𝑭𝑬𝒙𝒕  

 

Where 𝒍𝒊𝒐 is the unit vector along ith pod. The moment 

(Euler) vibration equation of the platform can be 

expressed as follows: 

(6) 
𝑹𝑷(𝑴𝑬𝒙𝒕 + 𝒓𝑻 × 𝑭𝑬𝒙𝒕) − ∑ 𝑹𝑷 ∙ 𝒃𝒊

𝑷 ×

𝒍𝒊𝒐𝐹𝐶𝑙𝐿𝑖 + ∑ 𝑹𝑷 ∙ 𝒃𝒊
𝑷 × 𝒍𝒊𝒐𝐹𝐾𝑙𝐿𝑖 = 𝑰𝑷�̈�𝑷  
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Where 𝒃𝒊
𝑷 , is the position vector of ith joint expressed 

in {P}. Using following definition: 

 (7) 𝒃𝒊 = 𝑹𝑷 ∙ 𝒃𝒊
𝑷   

Eq. 6 can be expressed as follows: 
 

(8) 𝑰𝑷�̈�𝑷 + ∑ 𝒃𝒊 × 𝒍𝒊𝒐𝐹𝐶𝑙𝐿𝑖 + ∑ 𝒃𝒊 ×
𝒍𝒊𝒐𝐹𝐾𝑙𝐿𝑖 = 𝑹𝑷(𝑴𝑬𝒙𝒕 + 𝒓𝑻 × 𝑭𝑬𝒙𝒕)  

 

Where 𝒓𝑻 is a vector indicating the position of the 

external forces relative to the platform's gravity center. 

Coupling Eqs. 5 and 8 yields: 
 

(9) 
[
𝑀𝑃𝑰𝟑×𝟑 𝟎

𝟎 𝑰𝑷
] {

�̈�𝑷

�̈�𝑷

} + 𝑱𝒙
𝑻𝑪𝒍𝑳 ∙ ∆�̇�𝒍𝑳 +

𝑱𝒙
𝑻𝑲𝒍𝑳 ∙ ∆𝒍𝒍𝑳 = [

𝑹𝑷𝑭𝑬𝒙𝒕

𝑹𝑷(𝑴𝑬𝒙𝒕 + 𝒓𝑻 × 𝑭𝑬𝒙𝒕)
]  

 

Where 𝑱𝒙
𝑻 is the transpose of the Jacobian matrix 

(Appendix a), 𝑲𝒍𝑳and 𝑪𝒍𝑳, 4×4 diagonal matrices, the 

diagonal elements of which are the stiffness and 

damping coefficients of the lower joints, respectively, 

and 𝑰𝟑×𝟑 is a 3×3 identity matrix. The machining load is 

denoted here by 𝑭𝑽 which can be written as follows: 

(10) 𝑭𝑽 = [
𝑹𝑷𝑭𝑬𝒙𝒕

𝑹𝑷(𝑴𝑬𝒙𝒕 + 𝒓𝑻 × 𝑭𝑬𝒙𝒕)
]  

If 𝑿𝑷 and 𝜽𝑷 denote small linear and rotational 

displacements of the platform's center corresponding to 

∆𝒍𝒍𝑳; and �̇�𝑷 and �̇�𝑷 are variations of linear and 

rotational speeds of the platform's center corresponding 

to ∆�̇�𝒍𝑳 expressed in Cartesian coordinates, then: 
 

(11) ∆𝒍𝒍𝑳 = 𝑱𝒙 {
𝑿𝑷

𝜽𝑷
}  ,  ∆�̇�𝒍𝑳 = 𝑱𝒙 {

�̇�𝑷

�̇�𝑷

}   

 

Substituting Eqs. 10 and 11 in Eq. 9 yields: 
 

(12) 
[
𝑀𝑃𝑰𝟑×𝟑 𝟎

𝟎 𝑰𝑷
] {

�̈�𝑷

�̈�𝑷

} + 𝑱𝒙
𝑻𝑪𝒍𝑳 𝑱𝒙 {

�̇�𝑷

�̇�𝑷

} +

𝑱𝒙
𝑻𝑲𝒍𝑳 𝑱𝒙 {

𝑿𝑷

𝜽𝑷
} = 𝑭𝑽  

 

Vibration equation for the lumped mass of the pod is 

obtained as follows: 

(13) 𝑀𝐿𝑖𝑙�̈�𝑖 − 𝐹𝐾𝑙𝐿𝑖 − 𝐹𝐶𝑙𝐿𝑖 + 𝐹𝐾𝑢𝐿𝑖 + 𝐹𝐶𝑢𝐿𝑖 =
0  

 

Substituting the spring and damping forces from Eqs. 2 

and 4: 
 

(14) 
𝑀𝐿𝑖𝑙�̈�𝑖 − 𝐾𝑙𝐿𝑖 ∙ ∆𝑙𝑙𝐿𝑖 − 𝐶𝑙𝐿𝑖 ∙ ∆𝑙̇ 𝑙𝐿𝑖 + 𝐾𝑢𝐿𝑖 ∙

∆𝑙𝑢𝐿𝑖 + 𝐶𝑢𝐿𝑖 ∙ ∆𝑙̇ 𝑢𝐿𝑖 = 0  

Considering similar definition as those expressed for the 

platform in Eq. 12: 
 

(15) 

𝑴𝑳 𝑱𝒙 {
�̈�𝑳

�̈�𝑳

} − 𝑲𝒍𝑳 𝑱𝒙 {
𝑿𝑷

𝜽𝑷
} −

𝑪𝒍𝑳 𝑱𝒙 {
�̇�𝑷

�̇�𝑷

} + 𝑲𝒖𝑳 𝑱𝒙 {
𝑿𝑳

𝜽𝑳
} +

𝑪𝒖𝑳 𝑱𝒙 {
�̇�𝑳

�̇�𝑳

} = 0  

 

Where 𝑴𝑳 is a 4×4 diagonal matrix, the elements of 

which represent the masses of the four pods; 𝑿𝑳 and 𝜽𝑳 

are small linear and rotational displacements of the 

platform's center corresponding to ∆𝒍𝒖𝑳, and �̇�𝑳 and �̇�𝑳 

are variations of linear and rotational speeds of the 

platform's center corresponding to ∆𝑙̇ 𝑢𝐿  expressed in 

Cartesian coordinates. Multiplying both sides of Eq. 17 

by 𝑱𝒙
−𝟏: 

 

(16) 
𝑴𝑳 {

�̈�𝑳

�̈�𝑳

} − 𝑲𝒍𝑳 {
𝑿𝑷

𝜽𝑷
} − 𝑪𝒍𝑳 {

�̇�𝑷

�̇�𝑷

} +

𝑲𝒖𝑳 {
𝑿𝑳

𝜽𝑳
} + 𝑪𝒖𝑳 {

�̇�𝑳

�̇�𝑳

} = 0  

 

Vibration equation for the lumped mass of the saddles 

can be expressed as follows: 
 

(17) 𝑀𝑆𝑖𝑙�̈�𝑖 + 𝐹𝐾𝑆𝑖 + 𝐹𝐶𝑆𝑖 − 𝐹𝐾𝑢𝐿𝑖 − 𝐹𝐶𝑢𝐿𝑖 = 0  

 

Similar manipulations as those performed for Eq. 16 

yield: 
 

(18) 
𝑴𝑺 {

�̈�𝑺

�̈�𝑺

} + 𝑲𝑺 {
𝑿𝑺

𝜽𝑺
} + 𝑪𝑺 {

�̇�𝑺

�̇�𝑺

} −

𝑲𝒖𝑳 {
𝑿𝑳

𝜽𝑳
} − 𝑪𝒖𝑳 {

�̇�𝑳

�̇�𝑳

} = 0  

 

Where 𝑴𝑺 is a 4×4 diagonal matrix the elements of 

which represent the masses of the four saddles; 𝑿𝑺 and 

𝜽𝑺, small linear and rotational displacements of the 

platform's center corresponding to ∆𝑙𝑆, and �̇�𝑺 and �̇�𝑺, 

variations of linear and rotational speeds of the 

platform's center corresponding to ∆𝑙̇ 𝑆 expressed in 

Cartesian coordinates. Coupling Eqs. 12, 16 and 18 

yields a system of vibration equations consisting of 

12×12 matrices, as follows: 
 

(19) 

𝑴𝑽[�̈�𝑷 �̈�𝑷 �̈�𝑳 �̈�𝑳 �̈�𝑺 �̈�𝑺]𝑻 +
𝑪𝑽[�̇�𝑷 �̇�𝑷 �̇�𝑳 �̇�𝑳 �̇�𝑺 �̇�𝑺]𝑻 +

𝑲𝑽[𝑿𝑷 𝜽𝑷 𝑿𝑳 𝜽𝑳 𝑿𝑺 𝜽𝑺]𝑻 =
[𝑭𝑽 𝟎 𝟎]𝑻  
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Where 𝑴𝑽, 𝑪𝑽 and 𝑲𝑽 are, respectively, the mass, 

damping and stiffness matrices of the mechanism 

structure. The total mass matrix, 𝑴𝑽, is obtained by 

coupling individual mass and inertia matrices, as 

follows: 
 

(20) 𝑴𝑽 = [
[
𝑀𝑃𝑰𝟑×𝟑 𝟎𝟑×𝟏

𝟎𝟏×𝟑 𝑰𝑷
] 𝟎𝟒×𝟒 𝟎𝟒×𝟒

𝟎𝟒×𝟒 𝑴𝑳 𝟎𝟒×𝟒

𝟎𝟒×𝟒 𝟎𝟒×𝟒 𝑴𝑺

]  

 

The total damping matrix, 𝑪𝑽, is also obtained by 

coupling individual damping matrices, as follows: 
 

(21) 𝑪𝑽 = [
𝑱𝒙

𝑻𝑪𝒍𝑳 𝑱𝒙 −𝑱𝒙
𝑻𝑪𝒍𝑳 𝑱𝒙 𝟎𝟒×𝟒

−𝑪𝒍𝑳 𝑪𝒖𝑳 + 𝑪𝒍𝑳 −𝑪𝒖𝑳

𝟎𝟒×𝟒 −𝑪𝒖𝑳 𝑪𝑺 + 𝑪𝒖𝑳

]  

 

Where 𝑪𝒍𝑳, 𝑪𝒖𝑳 and 𝑪𝑺 are 4×4 diagonal matrices the 

elements of which represent the damping coefficients of 

lower joints, pods and upper joints, and saddles. 

The total stiffness matrix, 𝑲𝑽, is obtained, similarly, as 

follows: 
 

(22) 

𝑲𝑽 =

[
𝑱𝒙

𝑻𝑲𝒍𝑳 𝑱𝒙 −𝑱𝒙
𝑻𝑲𝒍𝑳 𝑱𝒙 𝟎𝟒×𝟒

−𝑲𝒍𝑳 𝑲𝒖𝑳 + 𝑲𝒍𝑳 −𝑲𝒖𝑳

𝟎𝟒×𝟒 −𝑲𝒖𝑳 𝑲𝑺 + 𝑲𝒖𝑳

]  

 

Where 𝑲𝒍𝑳, 𝑲𝒖𝑳 and 𝑲𝑺 are 4×4 diagonal matrices the 

elements of which represent the stiffness coefficients of 

lower joints, pods and upper joints, and saddles. The 

vibration of the mechanism structure can, ultimately, be 

analyzed by Eq. 19 when its matrix coefficients are 

specified. 

4 NATURAL FREQUENCIES OF THE MECHANISM  

In order to obtain the natural frequencies of the 

mechanism, the external loads and the damping term are 

dropped from Eq. 19 giving the following characteristic 

equation for the mechanism: 
 

 (23) 
𝑴𝑽[�̈�𝑷 �̈�𝑷 �̈�𝑳 �̈�𝑳 �̈�𝑺 �̈�𝑺]𝑻 +

𝑲𝑽[𝑿𝑷 𝜽𝑷 𝑿𝑳 𝜽𝑳 𝑿𝑺 𝜽𝑺]𝑻 = 𝟎  
 

The natural frequencies of investigated structure 

regarding to Eq. 23 could be obtained by a code written 

in MATLAB environment. Another methods also, has 

been represented to verify the results of the constructed 

equations. 

5 STRUCTURAL MODELING AND MODAL 

ANALYSIS BY FEM 

Structural modeling was carried out according to its 

actual dimensions in Solid Works software. To achieve 

accurate simulation results, it is attempted to consider 

design details, precise measurements while modeling. 

Then to apply analysis, the presented model was inserted 

to finite element ANSYS workbench and the essential 

information, according to Table 1, such as material 

properties, boundary and contact conditions, type of 

elements and modal analysis method are defined. Type 

of mechanism meshing is depicted in Fig. 4. 

 
Table 1  The defined properties in ANSYS software 

Aluminum Alloy Material 

2770 kg/m3 Density 

0.33  Poisson's Ratio 

71 GPa Young's Modulus 

SOLID 187, SOLID 

186, CONTA174, 

CONTA175, 

TARGE170, 

COMBIN14 

Element type 

10721 Number of Elements 

20162 Number of Nodes  

Direct Analysis type 

0-1000 Hz Frequency type 

 

 

 

Fig. 4 The discretized model of parallel mechanism 
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6 EXPERIMENTAL MODAL ANALYSIS 

The experimental modal analysis is performed on real 

sample structure to analyze dynamic behavior of the 

system. In modal test the exerted force by the exciter and 

structure response are measured simultaneously. 

Experimental modal test is performed with roving 

accelerometer method using the equipment presented in 

Table 2, in this method, the force is applied at a certain 

point of structure and the response is taken by the 

accelerometer in different points of the structure (Fig. 5). 

By keeping the force in moving platform of the 

mechanism and getting the response in 26 different 

points of the moving platform, pods and rails as shown 

in Fig. 6, the modal test is carried out. Moreover, the 

force is applied only in one point, in X direction on the 

moving platform and the response is taken in X, Y and 

Z directions for each 26 points and corresponding 

responses are obtained for different points and 

directions. The results of the tests, using the PULSE 

Labshop software as a frequency response function 

(FRF) are obtained for different parts. In order to extract 

the natural frequencies and mode shapes related to the 

experimental modal test, the studied parallel mechanism 

structure is modeled in ME'scope software. Then the 

FRF for each test point is transmitted to the software. 
 

Table 2  Equipment of experimental modal analysis 

Multi Analyzer System B&K 3560 

Shaker B&K 4890 

Accelerometer B&K 4507 

Force Sensor B&K 8201 

 

 
Fig. 5  Modal test of parallel mechanism 

 

Fig. 6  Modal analysis model and points in ME'scope 

7 RESULTS 

Using Eq. 23 and by the aid of programs developed in 

MATLAB, The natural frequencies of the moving 

platform are estimated and given in Table 3. In order to 

verify the results, the natural frequencies of the 

mechanism for defined position (Appendix b) have also 

been obtained by FEM modal analysis.  

A distinguishing feature of the mechanism that can be 

inferred from the mode shapes is the distinct vibration 

modes, irrespective of few exceptions. Linear vibration 

along x, y and z axes prevails in the first, second and 

third modes. The forth mode are rotational, around x 

axis.  

Therefore, modal analysis performed experimental 

method in frequency range of zero to 1000 Hz, then 4 

first natural frequencies of the machine tool are 

obtained. In Fig. 7 comparison of the analytical, FEM 

and experimental results are illustrated. FEM simulation 

for the mode shapes of vibration are illustrated in Figs. 

8-11, respectively. 

 
Table 3  Natural frequencies obtained by analytical 

approach 

Mode No. Natural frequency ( Hz) 

1 102.42 

2 119.59 

3 384.02 

4 522.95 
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Fig. 7  Comparison of the analytical, FEM and 

experimental results 

 
Fig. 8  First mode shapes of vibration in X direction 

 

Fig. 9  Second mode shapes of vibration in Y direction 

 
Fig. 10  Third mode shapes of vibration in Z direction 

 

Fig. 11  Forth mode shapes of vibration around X direction 

8 CONCLUSION 

In this paper a parallel mechanism machine tool with 

4Dof was modeled and analyzed by three methods. The 

vibration equations of the parallel mechanism have been 

derived by analytical approaches. All the kinematic 

chains of the mechanism have been taken into 

consideration to achieve the coupled system of 

equations. Natural frequencies and mode shapes of the 

structure were extracted through FEM modal analysis. 

Moreover, experimental modal test was carried out on 

structure of mechanism and its vibrational 

characteristics were obtained.  
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A distinguishing feature of the mechanism is its distinct 

vibration modes. Linear vibration in horizontal plane 

prevails in the first and second modes. The third modes 

are mainly occurs vertically. The forth mode of vibration 

mainly occurs around X axis. The linear vibration of the 

moving table occurs in lower modes with frequencies 

changing in the range of 102 to 384 Hz. The frequencies 

of rotational or coupled modes of vibration are in          

522 Hz. It is obvious that more frequencies appear in 

practice as the mechanism elements are actually 

continuous masses.  

Finally, the natural frequencies and mode shapes 

obtained from analytical, experimental and FEM 

methods were compared. It is worth noting that all the 

frequencies obtained from analytical, experimental and 

FEM methods had little differences. 

9 APPENDIX 

a) 

The rotation matrix is obtained as follows: 

 

(A1) 𝑹𝒑 = [
1 0 0
0 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
0 − 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] 

 

The inverse Jacobian matrix can be expressed as: 

 

(A2) 𝑱𝒙 = [
l1
T (b1 × l1) ∙ î
⋮ ⋮

l4
T (b4 × l4) ∙ î

] 

 

b) Mechanism Specifications: 

Figure A1 depicts a schematic diagram of the kinematic 

parameters of the manipulator. The origin of global 

coordinate frame,{𝑶}, is placed at the beginning of each 

prismatic joint’s rail via vector 𝒂𝒊 and the position of the 

ith prismatic joint from the base point of the rail is 

displayed by vector 𝒅𝒊.  

The vector 𝒍𝒊 is in same direction and equal in magnitude 

to the links' lengths of the ith arm and, as shown in Fig. 

A1, 𝒄𝒊 is the vector attached to the ith connector 

beginning from the midpoint of the spherical joints and 

ending at the revolute axis of the connector. It should be 

noted that for 𝒊 = 𝟐, 𝟒, since there is no connector, then 

𝒄𝒊 = 𝟎.  

Furthermore, 𝒃𝒊 is a vector attached to the moving 

platform which connects the origin of the platform 

coordinate frame, {𝑷}, to the end of ith parallelograms. 

Geometric and inertia properties of the manipulator 

under study are mentioned in Table A1. 

 

 

 
Fig. A1.  Vector notation for kinematic modelling of the 

manipulator under study 

 

Table A1  Geometric and inertia properties of mechanism 

Parameter Value 

𝒍𝒊 𝑖 = 1,3,4 461 [mm] 

𝑖 = 2 561 [mm] 

𝒄𝒊 𝑖 = 1,3 30 [mm] 

𝑖 = 2,4 0 [mm] 

     𝑰𝑷 
[
4.5 0 0
0 2.6 −0.01
0 −0.01 2.6

] × 10−2 

[kg.m2] 

𝒎𝒔𝒂𝒅 𝑖 = 1, … ,4 1.2617 [kg] 

𝒎𝒍𝒊 𝑖 = 1,3,4 0.495 [kg] 

𝑖 = 2 0.590 [kg] 

𝑰𝒍𝒊 𝑖 = 1,3,4 diag (0.009;6.5;6.5)e-3 [kg.m2] 

𝑖 = 2  diag (0.01;11.5;11.5)e-3 

[kg.m2] 

𝒎𝒄𝒐𝒏 𝑖 = 1,3 0.1672 [kg] 

  𝒎𝑷 4.8041 [kg] 

𝒃𝒊 𝑖 = 1 [-53;-98.5;-25] [mm] 

𝑖 = 2 [0;97.50;-4] [mm] 

𝑖 = 3 [53;-98.5;-25] [mm] 

𝑖 = 4 [0;127.5;-4] [mm] 

𝒂𝒊 𝑖 = 1 [-185;-91;-42] [mm] 

𝑖 = 2 [29;-185;-42] [mm] 

𝑖 = 3 [243;-91;-42] [mm] 

𝑖 = 4 [29;243;-42] [mm] 

𝒅𝒊 𝑖 = 1 180 [mm] 

𝑖 = 2 180 [mm] 

𝑖 = 3 180 [mm] 

𝑖 = 4 157.7 [mm] 
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