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1 INTRODUCTION

The wheelset motion is considered to be stable if for a
slight lateral displacement or yaw angle the wheelset
moves back to its central position after a damped
oscillatory parasitic motion. Instability occurs if for
some small irregularities an excited vibration takes
place, so that the maximum amplitudes increase and the
parasitic motion is finally restricted by flange contact.
This motion is known as hunting, a common mode of
instability in rail vehicles, which is a significant
hindrance to high speed rail vehicle operations.

The hunting phenomenon begins as a self excited
lateral yaw oscillation of the wheelset when the vehicle
speed surpasses a certain critical speed. Therefore, the
term critical speed as used in this paper, refers to the
speed of the vehicle beyond which hunting appears as
an undamped motion of the wheelset constrained by the
wheel flange and the rail.

A history of vehicle stability implies a retrospective
view on 150 or even 200 years [1]. The kinematic
motion of a single wheelset with conical profiles has
been well understood at least since Stephenson [2]. H.
True et al, investigated Cooperrider’s mathematical
model of a railway bogie running on a straight track
due to its interesting nonlinear dynamics [3]. In their
article a detailed numerical investigation was made of
the dynamics in a speed range, where many solutions
existed, but only a couple of which were stable. M.
Ahmadian and S. Yang presented an analytical
investigation of Hopf bifurcation and hunting behavior
of a rail wheelset with nonlinear primary yaw dampers
and wheel-rail contact forces [4]. They demonstrated
that the nonlinearities in the primary suspension and
flange contact contribute significantly to the hunting
behavior, and both the critical speed and the nature of
bifurcation are affected by the nonlinear elements.

H. Yabuno et al, shown by using the center manifold
theory and the method of normal form, that the
nonlinear characteristics of the bifurcation in a
wheelset model with two degrees of freedom are
governed by a single parameter, hence each nonlinear
force need not to be detected when examining the
nonlinear characteristics [5]. Also, they proposed a
method of determining the governing parameter from
experimentally observed radiuses of the unstable limit
cycle. Next, they experimentally investigated the
variation of the parameter due to the presence of linear
spring suspensions in the lateral direction and discuss
the variation of the nonlinear characteristics of the
hunting motion, which depends on the lateral stiffness.
In this paper, effects of non-linear suspension on
dynamic behavior of a railway wheelset have been
studied. Nonlinear dynamic model of wheelset motion
has been derived. Four coordinates are used and two
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constrains have been found, therefore, two degrees of
freedom are remained. Contact forces between the
wheels and rails have been calculated using
Vermeulen-Johnson theory. Constant creep coefficients
have been taken into consideration. Lateral suspension
is dry friction which has been modeled by using
Kolesch theory. Runge-kutta method has been used for
solving the equations and results are presented to obtain
limit cycles due to hunting behavior of the wheelset.

2 MODELING

According to Figure 1, four coordinates, vertical (z)
and lateral (y) motions, and yaw (y) and roll (o)
rotations are considered. XYZ is a fixed coordinate

system, and xyz and Xx'y'z"are body coordinate

systems. X')'z’ coordinate is introduced due to rotation
of yaw around Z axis, and Xx)yz coordinate are due to
the rotation of roll around x axis. In this condition,

transformation matrix is:

X cosy —cosgsiny  sinysing | x

Y |=|siny coswcosep —singcosy ||y M

VA 0 sin @ cos @ z

There are also two coordinates to define the contacts of
wheelset that are shown in Figure 2. The left and right
contact forces are defined in the left and right contact
coordinates respectively, and the parameters defined in
these coordinates are demonstrated by subscripts ¢/ and
cr, respectively. It should be noticed that wheelset
moves in straight line with constant velocity V' and
contact surface between wheel and rail is assumed to be
a point contact.

Details of this contact points are shown in Figure 2.
Wheel moves with constant velocity, so speed of
rotation of its pitch rotation is constant. Thus angular
velocity of wheelset can be shown as three rotational
velocities.

-V
w; =—] ()

c

o =yK, o=¢1,

Therefore, the total angular velocity of the wheelset in
the body wheelset coordinate is defined as :

cf)=@1+a32+c?;5=¢§+

[cj/ sin¢+K] 3 + i cos¢ k
r

c

3
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Fig.1  Different Coordinates for explanation of wheelset
movement

According to Figure 2, two constraints can be defined
for this motion. The first constraint has defined
according to Figure 3, as:

L

: rclz rcrz
sing = “)

Fig.2  Position of wheel set on the rail

The second constraint is obtained by defining five
vectors (Figure 4). In these vectors, 7 is distance
between centre of track and contact point, 7, is the
displacement distance on the surface of wheel S due
to movement of wheelset and vector 7; is distance
between contact point and central of wheelset axel.
Vector 7, represents the centre of gravity of wheelset

and vector 7, is defined between end of 7; and centre

of gravity of wheelset. These vectors are defined in
x'y'z" coordinate.

Fig. 3  Roll constrain for wheelset's movement

F=Lj
7, = S(cos((o + ]/)3" +sin(p+ 7’)12’)

7, = L(— cosg | —sing 12')

i = Vi + (z'+7, )12'

The relations of these vectors are shown as below:
AT 4R 4T =T, (6)
From equation (6), two below equations are obtained:

y cosgp—z sing=L +S cos(¢+y)—r, sing—L cos @
y sing+z cosg+r, =S sin(@+y)+r, cosp—Lsing

With eliminating S from these two equations, the final
equation for second constraint is obtained:

z cosy =y siny—1, 0os( y+¢f) +Lsiny

+ig,oosy—Lsin(7/+¢) ®
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Fig. 4  Relation between#, , 7, , 75,7, and 7y

Matrices such as T, 7', U, and U' are
transformation matrices for transforming wheelset
coordinate to left contact surface coordinate, wheelset
coordinate to right contact surface coordinate, left
contact surface coordinate to wheelset coordinate, and
right contact surface to wheelset coordinate,
respectively. For calculating forces and contact
momentums, at first the velocity in contact point should
be calculated. For instance the velocity of left side
contact point is defined as from relative velocity
equation:

Va =Vg +oxry ©
Where
Ve =V I+yJ+zK (10)

e ([ W sing + J —ycosdry, qu .
Va = e lel
+(y —Pro )U21 "’(Z' +ory )U31

[ v sing + J —ycosgr,, JUU

+

Ja (n
+(y Telz )Uzz + (Z +r, Tely )U32

+

[ v sm¢+—] e~V cos gy, JUB i

+(y Prei )U23 (Z' + )Uss

cl
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Obtaining the velocity of the right side contact is
similar to the left one. Also rotational velocity in the
left side contact point is defined as :

ay :[(/ﬁ Uy, +( 74 sin¢+VJU21 +y c0s¢U3,]iC]
7,
12)

c

. o 14 . A
+[¢5U12 +[ 74 sm¢+r]U22 +y cos¢U32]Jcl

. .. 14 . n
+[¢U13 +[ v sm¢+r]U23 +y COS¢U33chl

c

Then, dynamical creep of the wheelset can be defined
as:

Ve

S = -
V.

6 -l (13)
D

fs - %

Creep coefficients are constant (fll 22, f12, £33) and

=—/fs6,

F; = _j‘llfy __f12§sp (14)
Mc,‘z = f‘12§y _f22§sp

creep forces are obtained as [

These forces are hypothesized as limit factors, and the
condition of limitation is defined as [6]
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1 2 12
p= WV Fl+F,

%[ﬁ—§+f—;jForﬂ <3
g= (15)
%Forﬂ >3

Also contact forces and momentums are defined as:

F, =éF,
F, =¢eF (16)
M, =eM;

In this article, the contact force due to nonlinear spring
is simulated using a spring with dead band, where the
mathematical model is :

Kr (v -9) y>3
Fr = 0 —-0<y <8 (17)
K7 (v +6) y <=8

In which, K, is the rail stiffness factor and O is the

clearance of the wheel flange. Figure 5, shows the
clearance of the flange as a dead band between the
wheel and the rail [4].

Wheel

Rail

Fig.5  Clearance and lateral distance between wheel and
rail [4]

For suspending in lateral direction, nonlinear
suspension has been used that commonly is utilized in
freight bogies (Y25). In this condition Kolsch method
may be used [7].

CO :Ch *Cg

K =Cgyy [I—O.S(Sign (y1<)+1)‘%

] (18)

According to the modified Euler equations, equations
of motion can be written as [8] :

Flus :ng +K

my=F,T,+F,T,+F, Tl’2+FcryT2’2

clx cly crx (19 1)
+Nc[]732 +Ncr]-'3'2 +mgSin¢_F;us _FT
mz=F,T;+F,T, +F, T, +FLryT2’3 (19-2)
+ NC[];3 + NchVS,3 + mgcos @

1. ¢+y’ sin(pcosgo(lzz —Iyy)—lyyl/)COSgDK =
r(’
rcly (Fclels + }Tcly T23 )_ Ve (FCIXEZ + F‘(fly T22 )
(19-3)

1 (F Tl 4 F T )= r (BT + FLT)

crx cry crx cry
+ NL‘I (rcly 7"33 - rclz T32 )+ Ncr (rcry T3,3 - rcrz T3’2 )
+ MUIT31 + Mch;]
1..(j7 cosp —y ¢sing)—1 yrpsing =
_rcly(F T, +FclyT21)_rciy(F T\ +F, Tzll) (19-4)

clx crx cry

' ’
_rclyTSINc/ _rcnfTNNcr +Mc/T}3 +MchS3

Where:

t, =—(r. +8siny)

tyy =L —Scosy (20)

r,, =—1. +Ssiny

crz

Tepy =—(L +8 cosy)

3 LATERAL SUSPENSION

For modeling some freight bogies (Y25), a special kind
of friction damper has been used. Figure 6, shows the
mechanical model of the element [9]. The model

contains two springs with stiffness Co and C g7 and a

dry friction part A . When a displacement is raised in
y direction, the first spring C,, will be deformed until

the maximum static friction force in the damper be
raised. Before this time, the element works similar to a
single spring with stiffness C, :

Cp=Co+C, 1)
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When the generated force by spring Co is more than

the maximum static friction force, the frictional part of
the element starts to slide and a dynamic friction force
is generated opposite to the direction of motion. The
total amount of friction force is defined as :

F}"n'ctian :ng +K (22)

In which

K =Cyy {1—0.5(1+sign(y'K))II§n} (23)

Two different models may be considered:

a- The damper force is constant and the maximum
amount of H is defined as:

b- H= Hy  Enommal (24)

c- The damper force is not constant, and is force
dependent as :

H =y (FPrelnad +ng +K) (25)

In which F}

article, the first condition of Kolesch theory is
considered.

ceload 18 Preload frictional force. In this

y

fricfion
q C

ey

Fig.6  Mechanical model for Kolesch friction damper

4  SIMULATION AND RESULTS

A wheelset with numerical values as presented in table
1 is considered. Equations (4), (8) and (19) have been
solved simultaneously, using Runge-Kuta numerical
method. Bifurcation diagram for this dynamical system
has been shown in Figure 7. In these conditions critical
velocity of wheelset is 33 m/s. Also behavior of
wheelset with respect to lateral displacement has been
shown in Figure 7.

© 2013 TAU, Majlesi Branch

Table 1 The values of wheelset's constants [4, 6, 7]
m 1800 [kg]
625.7 [kg.m?]

Ji 625.7 [kg.m?]
zz
I 133.92 [kg.m?]
yy
0.533 [m
7, [m]
¥ 0.05
L 0.7176 [m]
f 6.728x10°
11
f 1200
12
f 1000
22
f 6.728%10°
33
Y7 0.3
g 9.81 [m/s%]
K 1.617x10% [N/m]
T
S 0.00923 [m]
2.2x10° [N/m
C, [N/m]
C 4.3x10° [N/m]
g
H 50 [N]
n 2

Figure 8, shows the limit cycle of hunting phenomena.
With increasing the velocity, limit cycle will appear.
While velocity is smaller than critical velocity, there is
no limit cycle and wheelset will return to the
equilibrium or central position. Figures 9 and 10 show
these behaviors. It should be mentioned that initial
displacement was 8 millimeters.

3
1410

Max e

20 30 40 20 60 =0 a0
Velosiey im'sec)

Fig. 7  Bifurcation graph of wheel compared to velocity
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Fig. 8  Lateral displacement graph of wheelset at critical
velocity (hunting)
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Fig. 9  Limit cycle graph of wheelset at critical velocity
(hunting)
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Fig. 10 Lateral displacement graph of wheelset at v=20 m/s

Lateral THisplac ement jmj
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Fig. 11 Limit cycle graph of wheelset at v=20 m/s

5 CONCLUSION

In this paper, nonlinear characteristics of suspension
are investigated. While the stiffness of spring C <

=107500 N/m, critical velocity is equal to 15.7 m/s and
limit cycle in terms of velocity has been shown in Fig.
12.

Fig. 13 shows critical velocity when C ¢ =215000 N/m,
also Figure 14 shows limit cycle in terms of velocity
when C ¢ —537500 N/m and critical velocity is 36.5

m/s.
Figure 15 shows limit cycle in terms of velocity when

C ¢ —045000 N/m, and critical velocity is 40.1 m/s.

Laternl Velocity (misec)

-

<
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o5 ey & Velocity (msec)

00175

Fig. 12 Limit cycle for C, =107500 N/m
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Fig. 13 Limit cycle when C, =215000 N/m
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Fig. 14 Limit cycle when C, =537500 N/'m

As the results show, with increasing the C o critical

velocity is increased. But there is a limitation on the
value of C g+ The limitation is the frequency of

oscillation of wheelset, because with increasing the
stiffness C g’ the frequency of oscillation of wheelset

also is increased.

ams” T e a0
%

e Velocity (m sec)
0017 "4

Fig. 15 Limit cycle when C ¢ =645000 N/m

To analyse the variations of damper forces (H), three
different cases are considered and critical velocities has
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been investigated according to Figure 16. H depends on
kinetic friction coefficient of sliding surfaces of
suspension system, weight of the wheelset, and applied
load on the axle of the wheelset. Variation of the
kinetic friction coefficient is small. Variation of axle
load of the wheelset is more affected on value of H.
Therefore the empty wagon is more critical than the
full loaded wagon in view of velocity. Also the effect
of H is not analogous to the effect of stiffness C,, .

With increasing the values of H and C ¢ the critical

velocity of wheelset will rise, but the effect of H on the
critical velocity is too small, and the growth of
damping force (H) will not affect on critical velocity
like other parameters of suspension. Therefore,
increasing slipping dry friction coefficient or axial load
of wheelset will not change the critical velocity as an
important dynamical parameter of wheelset. Also when
velocity is more than critical velocity, the limit cycle
will appear and in this condition, there is an attractor in
the system.

-3
10*10

95|

gl N ; H=50(M) |
: : H=500(N)

H=1000{M) |4

Velocity (m/sec)
Fig. 16 Bifurcation graph for three different values of dry
friction damper force
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