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1 INTRODUCTION 

Nature-Inspired Algorithms are motivated by a variety 
of biological and natural processes. The popularity of 
the Nature-Inspired Algorithms is primarily caused by 
the ability of biological systems to effectively adjust to 
frequently changeable environment. Evolutionary 
computation, neural networks, ant colony optimization, 
particle swarm optimization, artificial immune systems, 
and bacteria foraging algorithm are the algorithms and 
concepts that were motivated by nature. Swarm 
behavior is one of the main characteristics of different 
colonies of social insects (bees, wasps, ants, etc.). This 
type of behavior is first and foremost characterized by 
autonomy, distributed functioning and self-organizing. 
Swarm Intelligence is the area of Artificial Intelligence 
that is based on study of actions of individuals in 
various decentralized systems [1]. When creating 
Swarm Intelligence models and techniques, researchers 
apply some principles of the natural swarm 
intelligence. 
The BCO meta-heuristic has recently been used as a 
toll for solving large and complex real-world problems. 
It has been shown that the BCO poses an ability to find 
high quality solutions of difficult combinatorial 
problems within a reasonable amount of computer time. 
The BCO is a stochastic, random-search technique. 
This technique uses an analogy between the way in 
which bees in nature search for a food, and the way in 
which optimization algorithms search for an optimum 
of (given) combinatorial optimization problems. The 
basic idea behind the BCO is to build the multi agent 
system (colony of artificial bees) able to effectively 
solve difficult combinatorial optimization problems. 
Artificial bees investigate through the search space 
looking for the feasible solutions. In order to find better 
and better solutions, autonomous artificial bees 
collaborate and exchange information. Using collective 
knowledge and sharing information among themselves, 
artificial bees concentrate on more promising areas, and 
slowly abandon solutions from the less promising 
areas. Step by step, artificial bees collectively generate 
and/or improve their solutions. The BCO search is 
running in iterations until some predefined stopping 
criteria is satisfied. 
Reference [2] shows the new methods of bee colony 
optimization that fuzzy logic is used for decision stage. 
The Fuzzy Bee System (FBS) capable of solving 
combinatorial optimization problems is characterized 
by uncertainty. In this paper, for solving optimization 
problems, during decision making stage (bees), BCO 
method and fuzzy logic is utilized. The work shows the 
proposed BCO can be effectively used to solve 
optimization problems for 2D structures considering 
Natural Frequency. 

This paper is organized as follows: in section 2, the bee 
colony optimization is described. In Section 3, 
topology optimization problems and material 
interpolation scheme is derived. In Section 4, various 
examples are studied and advantages of the BCO are 
discussed. At the end in Section 5, the conclusions are 
presented. 

2 THE BEECOLONY OPTIMIZATION: THENEW 
COMPUTATIONALPARADIGM 

Social insects (bees, wasps, ants, etc.) have lived on 
Earth for millions of years, building nests and more 
complex dwellings, organizing production and 
procuring food. The colonies of social insects are very 
flexible and can adapt well to the changing 
environment. This flexibility allows the colony of 
social insects to be robust and maintain its life in spite 
of considerable disturbances. 
The dynamics of the social insect population is a result 
of different actions and interactions of individual 
insects with each other, as well as with their 
environment. The interactions are executed via 
multitude of various chemical and/or physical signals. 
The final product of different actions and interactions 
represents social insect colony behavior. Interaction 
between individual insects in the colony of social 
insects has been well documented. These 
communication systems between individual insects 
contribute to the formation of the “collective 
intelligence” of the social insect colonies.  

2.1. BEES IN THE NATURE 
Self-organization of bees is based on a few relatively 
simple rules of individual insect’s behavior. The best 
example is the collection and processing of nectar, the 
practice of which is highly organized. Each bee decides 
to reach the nectar source by following a nest mate who 
has already discovered a patch of flowers. Each hive 
has a so-called dance floor area in which the bees that 
have discovered nectar sources dance, in that way 
trying to convince their nest mates to follow them. If a 
bee decides to leave the hive to get nectar, she follows 
one of the bee dancers to one of the nectar areas. Upon 
arrival, the foraging bee takes a load of nectar and 
returns to the hive relinquishing the nectar to a food 
store bee. After she relinquishes the food, the bee can 
(a) abandon the food source and become again 
uncommitted follower, (b) continue to forage at the 
food source without recruiting the nest mates, or (c) 
dance and thus recruit the nest mates before the return 
to the food source. The bee opts for one of the above 
alternatives with a certain probability. Within the dance 
area, the bee dancers “advertise” different food areas. 
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The mechanisms by which the bee decides to follow a 
specific dancer are not well understood, but it is 
considered that “the recruitment among bees is always 
a function of the quality of the food source” [3]. It is 
also noted that not all bees start foraging 
simultaneously. The experiments confirmed, “new bees 
begin foraging at a rate proportional to the difference 
between the eventual total and the number presently 
foraging”. In ref [4, 5], it is shown that who was the 
first in using the basic principles of collective bee 
intelligence in solving combinational optimization 
problems. They introduced the Bee System (BS) and 
tested it in the case of Traveling Salesman Problem. 
The Bee Colony Optimization (BCO) Meta heuristic 
that has been proposed in this paper represents further 
improvement and generalization of the Bee System, 
and the basic characteristics of the BCO Meta heuristic 
are described. 

2.2. THE BEE COLONY OPTIMIZATION META 
HEURISTIC 

Within the Bee Colony Optimization Meta heuristic 
(BCO), agents collaborate in order to solve difficult 
combinatorial optimization problem. All bees are 
located in the hive at the beginning of the search process. 
During the search process, bees communicate directly. 
Each bee makes a series of local moves, and in this 
way incrementally constructs a solution for the 
problem. Bees are adding solution components to the 
current partial solution until they create one or more 
feasible solutions. These arch process is composed of 
iterations. The first iteration is finished when bees 
create one or more feasible solutions for the first time. 
The best discovered solution during the first iteration is 
saved, and then the second iteration begins. Within the 
second iteration, bees again incrementally construct 
solutions of the problem, etc. There are one or more 
partial solutions at the end of each iteration. The 
analyst-decision maker prescribes the total number of 
iterations. 
When flying through the space our bees perform 
forward pass or backward pass. During forward pass, 
bees create various partial solutions. They do this via a 
combination of individual exploration and collective 
experience from the past. After that, they perform 
backward pass, i.e. they return to the hive. In the hive, 
all bees participate in a decision-making process. We 
assume that every bee can obtain the information about 
solutions’quality generated by all other bees. In this 
way, bees exchange information about quality of the 
partial solutions created. Bees compare all generated 
partial solutions. Based on the quality of the partial 
solutions generated, every bee decides whether to 

abandon the created partial solution and become again 
uncommitted follower, continue to expand the same 
partial solution without recruiting the nest mates, or 
dance and thus recruit the nest mates before returning 
to the created partial solution. Depending on the quality 
of the partial solutions generated, every bee possesses 
certain level of loyalty to the path leading to the 
previously discovered partial solution. During the 
second forward pass, bees expand previously created 
partial solutions, and after that perform again the 
backward pass and return to the hive. In the hive bees 
again participate in a decision-making process, perform 
third forward pass, etc. The iteration ends when one or 
more feasible solutions are created. 
Like Dynamic Programming, the BCO also solves 
combinatorial optimization problems in stages. Each of 
the defined stages in volves one optimizing variable. 
Let us denote by ST={st1,st2,…,stm} a finite set of pre-
selected stages, where ‘m’ is the number of stages. By 
‘B’ we denote the number of bees to participate in the 
search process and by ‘I’ the total number of iterations. 
These to f partial solutions at stages tj is denoted by Sj 
(j=1, 2, ..., m). The following is pseudo-code of the Bee 
Colony Optimization [2]: 

Bee Colony Optimization 

1. Initialization Determine the number of bees 
‘ B’, and the number of iterations ‘I’ Select the 
set of stages ST= {st1, st2, …, stm}. Find any 
feasible solution ‘x’ of the problem. This 
solution is the initial best solution. 

2. Set i=1Untili=I, repeat the following steps. 
3. Set j = 1 Until j = m, repeat the following 

steps. 
 
Forward pass: Allow bees to fly from the hive and to 
choose ‘B’ partial solutions from the set of partial 
solutions Sj at stages tj. 
Backward pass: Send all bees back to the hive. Allow 
bees to exchange information about quality of the 
partial solutions created and to decide whether to 
abandon the created partial solution and become again 
uncommitted follower, continue to expand the same 
partial solution without recruiting the nest mates, or 
dance and thus recruit the nest mates before returning 
to the created partial solution. 

Set, j:=j+1. 
4. If the best solution xi obtained during the ith 

iteration is better than the best known 
solution, update the best known solution (x = 
xi). 

5. Set, i:=i+1. 
 

Alternatively, forward and backward passes could be 
performed until some other stopping condition is 
satisfied. The possible stopping conditions could be 
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Lmin: the objective function value of the best 
discovered partial solution from the beginning of 
the search process 
Lmax: the objective function value of the worst 
discovered partial solution from the beginning of 
the search process 
 
The approximate reasoning algorithm to determine the 
partial solution badness consists of the rules of the 
following type: 

If the discovered partial solution is BAD 

Then loyalty is LOW 

Bees use approximate reasoning, and compare their 
discovered partial solutions with the best, and the worst 
discovered partial solution from the beginning of the 
search process. In this way, “historical facts” 
discovered by all members of the bee colony have 
significant influence on the future search directions [2]. 

2.3.3. Calculating the number of bees changing the path 

Every partial solution (partial path) that is being 
advertised in the dance area has two main attributes: 
(a) the objective function value, and (b) the number of 
bees that are advertising the partial solution (partial 
path). The latter number is a good indicator of bees’ 
collective knowledge. It shows how bee colony 
perceives specific partial solutions. The approximate 
reasoning algorithm to determine the advertised partial 
solution attractiveness consists of the rules of the 
following type: 
 

If the length of the advertised path is SHORT 
and the number of bees advertising the path 
is SMALL 

 
Then the advertised partial solution attractiveness 

is MEDIUM 
 

Path attractiveness calculated in this way can take 
values from the interval [0,1]. The higher the calculated 
value, the more attractive is advertised path. Bees are 
less or more loyal to “old” paths. At the same time, 
advertised paths are less, or more attractive to bees. Let 
us note paths pi and pj. We denote by nij the number of 
bees that will abandon path pi,  and join nest mates who 
will fly along path pj. The approximate reasoning 
algorithm to calculate the number of shifting bees 
consists of the rules of the following type: 
 

If bees’ loyalty to path pi is LOW and path 
pj‘s attractiveness is HIGH 

Then the number of shifting bees from path pi to 
path pj is HIGH 

In this way, the number of bees flying along specific 
path is changed before beginning of the new forward 
pass. Using collective knowledge and sharing 
information, bees concentrate on more promising 
search paths, and slowly abandon less promising ones 
[2]. 

3 TOPOLOGY OPTIMIZATION PROBLEMS AND 
MATERIAL INTERPOLATION SCHEME  

3.1. TOPOLOGY OPTIMIZATION PROBLEMS 
In the finite element analysis, the dynamic behavior of 
a continuum structure can be represented by the 
following general eigen value problem by Eq. (3). 
 
(K-߱ଶM) ݑ௜= 0                                                           (3) 

 
Where ‘K’ is the global stiffness matrix and ‘M’ is the 
global mass matrix, ‘i’ is the ith natural frequency and  
ui is the eigenvector corresponding to ωi. The natural 
frequency ωi and the corresponding eigenvector ui are 
related to each other by Rayleigh quotient, Eq. (4). 
 

ωi
2 = ௨೔

೅௄௨೔
௨೔

೅ெ௨೔
                                                                   (4) 

 
Here, we consider the topology optimization problems 
for maximization of the ith natural frequency of 
vibrating continuum structures. For a solid-void design, 
the optimization problem can be stated as Eq. (5). 
 
Maximize: ωi 
Subject to: V*-∑ ሺ ௜ܸݔ௜ሻே

௜ୀଵ   = 0                                    (5) 
xi൒  xmin or 1 
 
Where Vi is the volume of an individual element and 
V* is the prescribed structural volume. ‘N’ is the total 
number of elements in the structure. The binary design 
variable xi denotes the density of the ith element and 
small value xmin (e.g. 10-3) is used to denote a void 
element [9]. 

3.2. Material interpolation scheme 

To obtain the gradient information of the design 
variable, it is necessary to interpolate the material 
between xmin and 1. A popular material interpolation 
scheme is the so-called power-law penalization model 
(the SIMP model (solid isotropic material with 
penalization)). For a solid-void design, the material 
density and Young’s modulus are assumed to be 
functions of the design variable xi as Eq. (6). 
 
ρ (xi ) = (xi) ρ 1 

                                                                                    (6) 
E(xi) = (xi)P E 1 
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( 0൏x min൑ xi൑1) 

 
(Normally p൒3is used in the SIMPmodel for topology 
optimization problems [9]. Therefore, pൌ3 is used 
throughout this paper), where ρ 1 and E1 are the density 
and Young’s modulus of solid material.  

4 NUMERICAL EXAMPLES 

Example 1: 

The example presented in this section is two-
dimensional plane stress problem; with only in-plane 
vibration considered .The elements used here are of the 
four-nodded linear quadrilateral type. The two driving 
criteria are the minimization of the mean compliance 
and the maximization of the first mode of natural 
frequency, as shown in Fig. 2 (Reference [9] shows this 
example based on a rectangular plate model that was 
used by Xie and Steven in their study of ESO for 
dynamic problems). 
A rectangular aluminum plate of dimension 
0.15mൈ0.1m is fixed at two diagonal corners, with two 
horizontal loads (each 100 N) applied on the other two 
diagonal corners as shown in Fig. 2. These are included 
for the linear static stress analysis, but are removed for 
the frequency analysis. The physical data are as 
follows:  

Young’s modulus E =70 G Pa, Poisson’s ratio 
v=0.3, thickness t =0.01m, and density ρ =2700 
kg/m3. The domain is divided into 45ൈ30 
square elements (The first mode natural 
frequency, 2498.9 Hz and mean 
compliance,0.0001751 N.m). 

 

 

Fig. 2 Initial design domain of rectangular plate under 
loading with fixed supports [10] 

 
This example is multi objective (i.e.: minimization of 
the mean compliance and the maximization of the first 
mode of natural frequency). For this purpose, we use 
weighted sum method (WSM). Table 1 and figure 3 
shows the comparison between the first mode natural 

frequency and the mean compliance of the structure for 
a range of different weightings of the criteria and for a 
30% volume reduction (ws is weightings factor of 
stiffness and wf is weightings factor of frequency). As 
presented in Table 1, in addition to the fact that the 
initial frequency in the BCO method is more than the 
ECO method, nonetheless, the main compliance ‘c’ 
(dependent on the structure stiffness) of BCO method is 
also less than the ESO method, where this is an 
indication of ability of this method in solving such 
problems.  

 
Table 1 Results of solved problems, using ESO and BCO 

methods 
 

Weighting 
factor 

 

ESO BCO 

C(N.m) First 
Mode 

Natural 
frequency 

(Hz) 

C(N.m) First 
Mode 

Natural 
frequency 

(Hz) 
ws=0.2, 
wf=0.8 

0.000205 2950 0.00017721 3041.9 

ws=0.1, 
wf=0.9 

0.00025 2990 0.00017679 3031 

ws=0.3, 
wf=0.7 

0.0001977 2940 0.00017881 3024 

 
 

 
 

(A)     Ws=0.2             wf=0.8 (D) 
 

 

(B)         Ws=0.1             wf=0.9 (E) 

 
 

(C)           Ws=0.3         wf=0.7( F ) 

Fig. 3 Optimal designs of rectangular plate for different 
weighting criteria of stiffness and natural frequency; material 

removed, 30%. (A)-(C) [10], (D) – (F) BCO Method 
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Example 2 
Fig. 4 shows a plate supported at its two diagonal 
corners with a full design domain of dimensions0.15 ൈ 
0.1 m. The Young’s modulus E = 70 G Pa, Poisson’s 
ratio v= 0.3, thickness t = 0.01 m, and density r = 2,700 
kg/m3 are assumed. The design domain is divided into 
50 ൈ 50 rectangular elements. The prescribed weight is 
50% of the full design domain [11]. 
 

 
Fig. 4 Diagonally Supported Rectangular Plate [11] 
 
 

Table 2 Results of solving example 2 by ESO,BESO [11] 
and BCO method 

Method First Mode Natural Frequency 
(Hz) 

ESO 2845 

BESO 2667.6 

BCO 3395.98 

 

  
(A)                                                                        (B) 

Fig. 5 Optimal designs of rectangular plate for First 
natural frequency; material removed, 50% (A) [11], (B) BCO 

Method 
 
This example is not similar to the first example in 
solving multi-objective problems; the reason in 
choosing such a problem is to show the ability of BCO 
method in solving single objective problems as well. 
There are already examples of ways ESO and BESO 
has been solved in reference [11]. The results shown in 
Table 2 and Fig. 5, reveals the superiority of the BCO 
method over two other techniques.  

5 CONCLUSION  

The vibration of mechanical systems has been a major 
concern for scientists and engineers for several 
centuries. During this time, almost all new mechanical 
designs required some kind of vibration study. A multi 
criterion structural optimization design methodology 
has been developed which eliminates most of the costly 
trial-and-error testing currently required. 
In this study, we have demonstrated that a multiple 
criterion optimization algorithm based on a weighting 
method can be introduced into the BCO method so that 
can solve a wide range of stiffness and frequency 
optimization problems. 
In this paper, we use this method by using finite 
element method to solve two examples which had 
different objective functions. In the first multi-objective 
problem, the objective is to increase the initial 
frequency and increasing the structure stiffness, while 
in the second problem, the objective is merely 
increasing the initial frequency. As already mentioned, 
the BCO method could be successful in both examples 
and achieve better results than ESO and BESO 
methods. Therefore, we conclude that optimization 
method of BCO for solving such problems could be 
more reliable and efficient. 
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