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1 INTRODUCTION

Rectangular plates are commonly used in structural
components in many branches of modern technology
namely mechanical, aerospace, electronic, marine,
optical, nuclear and structural engineering. Thus, the
knowledge of their free vibration and buckling load are
very important to the structural designers.

Numerous works concerning vibration of such plates
have been published so far mostly based on thin plate
theory without initial stress. An excellent reference
source in this connection may be found in the well-
known work of Leissa [1] and his subsequent articles
(1977-1987) [2-7] published in vibration Digest from
time to time.

His remarkable works on the free vibration of thin
rectangular plate [8] also present comprehensive and
accurate analytical results for sixth distinct case
without in-plane stresses that have exact solution. Liew
et al. [9], [10] investigated the free vibration of
rectangular plates, respectively, using two dimensional
polynomials and one-dimensional Gram-Schmidt
polynomials as the admissible functions of the plate in
Rayliegh-Ritz method.

The buckling loads [11] of plates which are subjected
to edge loads acting in their mid plane are areas of
research which have received a great deal of attention
in the past century, but they were obtained using an
approximate method. Exact solution for Mindlin
rectangular plate is another work for plates, also exact
solutions for vibration and buckling rectangular plate
by in-plane stress is one of comprehensive and accurate
analytical results for SS-C-SS-C case [12], [13]. The
exact characteristic equation for rectangular thin plates
having two opposite sides simply supported can be
found in the original work of Leissa [8]. There is not
such an equation about thin plates that has been
initially stressed in the literature. To fill this apparent
void, the present work is carried out to provide the
exact characteristic equations for the six cases having
two opposite sides simply supported subjected to in-
plane loads through the thickness of that, in forms of
axial and biaxial. The considered six cases are namely
S-Cc-S-C, S-S-S-C, S-$-s-8, S-c-S-f, s-s-s-f and s-f-s-f
boundary conditions.

The current paper acts as the first work dealing with
free vibration and buckling the thin rectangular plates
for six cases that have initially in-plane stresses (in
forms of axial and biaxial) by exact solution. Accurate
free vibration frequencies and buckling loads are
presented for some important cases for some of initially
stressed loading and aspect ratio.
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2 GOVERNING EQUATIONS AND THEIR
DIMENSIONLESS FORMS

Consider a flat, isotropic, rectangular thin plate of
length @, width b, modulus of elasticity E, Poisson's
ratio V, shear modulus G =E/2(1+v)and density

per unit area O, oriented so that its mid-plane surface
contains the X, and X, axis of a Cartesian co-ordinate
system (XI 5 Xy, X5 )

The displacements along the X, and X, axes are
denoted by U, and U,, respectively while the
displacement in the direction perpendicular to the
undeformed middle surface is denoted by U,. In the

classic Kirchhoff's plate theory, the displacement
components are assumed to be given by:

U ==X3, (1a)
1b

U, ==X3¥3, (16)
1

U, =¥, (1)

Where /; is transverse deflection along the X,

direction. Using the small deflection, the strain
components may be expressed as:

& ==XV (2a)
2b

&, ==X3¥5 5 (25)
2

Ep =—XW5 20)
(2d)

E3 =63 =653=0

Based on the strain-displacement relations given in
equation (2, a, b, ¢, d) and assuming a stress
distribution in accordance with Hook's low, as well as
neglecting the stress strain relations involving

&3, &, and &4 the resultant bending moments and

twisting moment all per unit length in terms of ¥/, are

obtained by integrating the stresses and moment of the
stresses through the thickness of the plane. These are
given by:
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My, =D (w3 +V v30,)

(3a)
My =-DWs11 +¥;322) (3b)
M, =—D(1—V)l//3’12) (¢)

Where D is the flexural rigidity. The governing
differential equations based on the Navier for plate [14-
15] can be:

My +My,, -Q; =0 (4a)

M +My,-Q,=0 (4b)

o* (4c)
Q1 +Qa2+P :patiy;}

Where P is the transverse force per unit area due to
components of the in-plane loads, in addition P will

be expressed as:

P=Nyys; +Noys, (52)

]

N,=&EN

S A

N =&N

LI

o
TTTTTTTT

O Y A '

Fig.1 A rectangular thin plate subjected to in-plane edge
loads

The plate is subjected to in-plane edge loads per unit
length N, in the X, direction and N, in the X,
direction, as shown in Fig. 1. The two edges of the
plate parallel to the X, -axis are assumed to be simply

supported while the other two edges may have any
combinations of clamped, free or simply supported
boundary conditions as shown in Fig. 2.

Case 2 Case 3
5 ” E
5| s s s
F 7 3 X
Case 4 Case 5 Case 6

Fig. 2 Boundary conditions of thin plates analyzed

Assuming the free harmonic motion, the governing
differential equations for free vibration of the plate

under investigation can be presented in terms of /. In

addition, by substituting the stress resultants from
expressions (3a)-(3c) into equations (4a)-(4c) will
result in:

D (‘//3,11 TW¥32 ),1 +Q; =0 (6a)
D (%,11 R ),2 +Q, =0 (6b)
Qu+Qn +N w3 +Nyws,y, = P’y (6¢)

Also transverse shearing forces are:
V,=-D (‘//3,111 +(2-V )'%/3,112) (7a)

V,=-D ('//3,222 +(2-V )‘/’3,211) (7b)

For generality and convenience, the coordinates are
normalized with respect to the plate planar dimensions
and the following non-dimensional terms are
introduced.

X X
X, ==L X,=22 p=2
1T Ty Ty
(8a,b,c,d,e)
. W -7 a
= 5 9V = 9V T
Y3 a V.V =V, 2)b
- = - a 8
(M117M22,M12):(M11,M22aM12)E ( f)
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(~ =(N,N,)

s

Where [ is the frequency parameter. Substitution of

(8g,h)

the dimensionless stress resultants (8a)-(8h) into the
equations (6a)-(6¢) leads to:

(‘/73,11 Jrnz'ﬁs,zz)1 +Q, =0 (9a)
n(l/73,11 ‘”‘2‘/73,22)2 +Q, =0 (©b)
i (9¢)

Q1 +Q,, +N iy + N °N iy 5, = B2y,

In order to solve the three coupled partial differential
equations (9a)-(9c¢), it will be more convenient to have

a single equation on the transverse deflection /5. This
can be obtained by differentiating equations (9a) and
(9b) with respect to X, and X,, respectively, then
multiplying the latter by 77, summing them up and
noting equation (9¢), we obtain:

(311 +’72‘/73,22),1| _’72 311 +772‘/73,22),22
- . . (10)
NG5+ NG5 5, = 87,

The solution of the equation (10) can be assumed to be:

wy =W, +W, = fZ(Xl)gl(X2)+ fz(xl)gz(xz) (11)

Substituting the above solution into equation (10)
yields:

f1f,1111 —N~lf;¢+n4 91,202 _nN, 91,22
g g
12 1 1 1 (12a)
+2n2—f1’”g -p*=0
0, b2
faim N~lf211+n4 92,2222_nzN~2 92,2
fa f, 9, 9, (12b)
f
Lop? tan -0
.0, 92008

Inspection of equations (12a) and (12b) suggest that the
functions f,(X,) and g;(X,)(i=1,2) should be

characterized by the equations:
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fon =24t . g2 =147, (13a,b)

2 2 .
Where 4" and A, are separation constants to be

obtained. By examining the boundary conditions it can
be easily shown that a solution to the equations

fi = u’f is not suitable for satisfying the

boundary conditions when two opposite edges at X;=0
and X,=1 are simply supported. Hence, the following
solutions to equations (12a) and (12b) can be selected.

f,(x,) =4 sinu;x, +b; cosu;x, (14)
9,(x;) =€ sin 4x, +d, cos 4,x, (15)
9, (x,) =€, sin ,x, +d, cos L, (16)

As it was discussed in an earlier paper by Hashemi and
Arsanjani [12-16], no loss of generality may arise due
to selection of any possible set of solutions. The
derivation, therefore, may be maintained based on the
set of selected solutions as:

f,(X,) =4 sinu;x, +b; cosu; X, (17)
9,(x,) =€ sin 4x, +d, cos 4X, (18)
g, (x,) =€, sin X, +d, cos ,X, (19)

Which in turn suggest that:

finn= - ’f; (20a)
G122 = _/7-1291 (20b)
9222 = /1229 2 (20¢)

May be solved by representing the three dimensionless
functions, 1/73 in terms of the two dimensionless

potentials W, , and W, as:

w3 =W, +W, 21

It may also be noted that, as W, =f,(X,)g,(X,) and
W, =f,(X,)g,(X,), the relationship between A, 4

and ¢,; for the set of selected solutions may be

expressed as:
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2 2 2,2 2 2 2,2
af =u+n AT, ay =, A (22a,b)

Substituting now from equations (20a, b, c) into
equations (12a) and (12b) gives:

af‘ +N~20‘12 +(N~1 _Nz)ﬂlz -p*=0 (23)

ay +N,a; +(N| =N y)u; -2 =0 (24)

3 TWO OPPOSITE EDGES SIMPLY SUPPORTED

For the sake of definiteness, the dimensionless
boundary conditions will be given below for an edge
parallel to the X,-normalized axis (for example, the

boundaries X, =0 or X, =1)
For a simply supported edge:

M,, = (ViFs,, + 117 ,) = 0.7, =0 (25a,b)
For a free edge:

M, = (Vs + 17 2,) =0 (26a)
V, =-N,nv;, (26b)
For a clamped edge:

V,=ny;, =0 (27a)
v,=0 (27b)

Corresponding boundary conditions for the edges
X, =0and X, =1 are obtained by interchanging

subscripts 1 and 2 in equation (25a)-(27b). On the
assumption of a simply-supported edge at both X, =0

and X, =1, equations (17)-(19) may be written as:

W, = [A sin(4 X, )+ A, cos(4, X, )]

sin(,uX1 ) (282)
W, =[A, sinh(4,X, )+ A, cosh(4,X, )]
sin(uX ) (28b)

Where pg=mz;m=12,.... Introducing equation

(28a,b) in equations (21) and substituting the results
into the two appropriate boundary conditions along the

edges X, =0 and X, =1 lead to a characteristic

determinant of the two order for each m. Expanding the
determinant and collecting terms yields a characteristic
equation. The characteristic equations for the six cases
are listed below. In addition, the six different boundary
conditions given in the characteristic equations are
shown in Fig. 2.

Casel. S-C-S-C

=244, + 4, A, cos A, cosh 4, +

> : 2 . (29)
A, cos A, sinh A, — 4,"sin 4, cosh 4, =0
Case2. S-C-S-S
A, sinh A, cos A, — 4, sin 4, cosh A4, =0 (30)
Case3. S-S-S-S:
sin A, sinh 4, =0 (31)
Case4. S-C-S-F
N (A sin A sinh 4, +
PR sin 4, sinh 4, (322)
A,cos A, coshd, + A))=0
Where
A =1V (N, =248 + v =17 27 ) + (32b)

& (N, + 28 — v =11°2))
1P QN + 4l =2l v+ A2 = Ay
A =42, (2N, 1Py +4utv +2utv?

- N2’72ﬂ~12 _2772ﬂz/7'12 + Nznzlzz (32¢)
+2’72,U2/122 +2’74ﬂ*12/122)

A =N’ v A, +2u'vA, A,

— 1 VA + NP A A + 207 1P A A
w1 A0, + NG vA A, + 1 A,

(32d)
_/14‘/211]’2 - N2772/7'1ﬂ'23 _2772#2/74&23
+2u*vA, A,
Case 5. S-S-S-F

B,7Cos4,Sinh A, + B,nCosh4,Sin4, =0 (33a)

Where
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B, = VA, (=N, + £* (-2 +Vv)

P41+ A,0)+ (33b)
A2 (N +20° 1+ 2%)
B, = 4’ vA,(N, + u* (2-v)
P A7+ A0+

A2, (N +20° 0 =1* A,0)

(33¢)

Case 6. S-F-S-F

-n(C, +C, cos’ A, —sin” A, +
C,cos A, coshd, +C,sin 4, sinh 4,)=0

Where

c N’} +2n U 7 —vn QU 2 + N ,n 4 34b
Ut 20U —vn U 2 N LN (340)
2

VU2 +n?a}
T (34¢)
VU?+n?4;
C,;=N,UV 4 +n?4?) (34d)
C,=20V 4 -UV 24 +2n,U%4° +
n*4>+CC,N UV 22, -CC,N UV 24, (340)

-CC,N,n**+2CCUV 4,° +
2C.C,N,UY 4, +CC,n*L°%)

equation of each individual case. Upon testing the
different integer values of M (usually m=1,23 or

m = 4 ) the lowest value of the solved equation should

be selected. Having obtained N_, the frequency

cr?
parameters g~ may be determined by substituting
corresponding Ncr together with any desired values of
&, and &, between -1 to 0 into the characteristic

equations of each individual case.

5 BUCKLING AND VIBRATION RESULTS

4 VIBRATION AND BUCKLING CRITERIA

In order to investigate the exact vibration as well as
obtaining the exact critical buckling load parameter of
plates for all six combinations of edge conditions as
illustrated in Fig. 2, we assume:

N =&N, - N, =&N, (35a.b)
For given values of & ,&,,n and V the characteristic
equations given for individual cases are functions of g,
m and ﬁcr. Depending on selection of £ and ¢,

which may be either (-1, 0), (0,-1) or (-1,-1), the critical
buckling load parameter N may be determined by

setting p=0 in the corresponding characteristic

© 2013 TAU, Majlesi Branch

Table 1 presents the non-dimensional buckling load
parameter chr for SCSC, SSSC, SSSS, SCSF, SSSF

and SFSF three combinations of NN1 and ﬁzratio,

namely:

aN, =N,N, =0 (& =-1,¢& =0)
b)N, =0,N, =—N (& =0, =-1)
ON, =N, =-N (£ =¢ =-1)

are considered. These combinations in-plane loading
cover the case of a biaxial in-plane loading in the X,

and the X, directions.

In this part the exact results of critical buckling for a
rectangular plate with at least two opposite sides with
simply supported condition are presented. To study the
effect of the boundary conditions on the buckling of
thin plates, the critical buckling parameters listed in
table 1 have been arranged. According to the results
presented in this table, it is clear that the lowest critical
buckling parameters correspond to plates subject to less
edge restraints.

A rise in the number of supported edges entails the
critical buckling parameters increase. It can be seen
that the lowest and highest values of critical buckling
parameters correspond to S-F-S-F and S-C-S-C cases
respectively. Thus, higher constraints at the edges
increase the flexural rigidity of the plate, resulting in a
higher critical buckling response rate.

In order to study the effects of aspect ratio, according
to the table 1 for a stiffly condition, as the aspect ratio
77 enhances, the critical buckling parameters also

increase. Also by increasing 77, for highly constrained

plates critical buckling parameters happens in higher
value of m. In addition, regarding to table 1, when
(&,,£,) = (=1,0), critical buckling parameters have had
higher values than the state of (&£,&,)=(-1,—1). The

maximum value of buckling parameter happens in the

case (5,6,) = (0,-1).
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It means that, when the buckling load is in X1-direction
critical buckling parameters are more than other cases
and for in-plane loading condition in X2-direction (i.e.
the direction that has the simply supported condition)
the values of critical buckling parameter is higher than
the condition in which all sides are exposed to in-plane
loading.

Table 1 Buckling load parameters, N =N_a’/D
(ﬁ] =¢ NNCN ﬁz =¢, ﬁcr ), for rectangular thin plates

n=0.4 n=0.5
Case (§1 agz) Nor m N, m
S-C-S- (-1,0) 149196 1 18.9775 1
C (0,-1) 44.6340 1 47.8394 1
(-1,-1) 12.5665 1 146174 1
3-S-S- (-1,0) 13.9892 1 16.9094 1
C (0,-1) 411222 1 418144 1
(-1,-1) 11.9065 1 13.2373 1
3-S-S- (-1,0) 13.2805 1 154213 1
S (0,-1) 40.8053 1 394784 1
(-1,-1) 11.4487 1 12.3370 1
S-C-S- (-1,0) 10.5183 1 11.0127 1
F (0,-1) 22.8011 1 228029 1
(-1,-1) 9.7607 1 9.8706 1
3-S-S- (-1,0) 10.3888 1 10.7474 1
F (0,-1) 22.7995 1 227999 1
(-1,-1) 9.7176 1 9.7954 1
S-F-S- (-1,0) 9.6516 1 9.6046 1
F (0,-1) 227400 1 223118 1
(-1,-1) 9.4574 1 9.4006 1

n=l1 n=2 n=25
NCT NCI’ NCI’

75.9099 275.2280 431.6794

66.5526 179.5020 267.6430

37.7996 150.9920 231.8530

56.6536 221.3000 334.5290

47.8394 102.5100 147.2170

m
3
1
1
3
1
26.2798 85.0810 1 130.1790
39.4784 1579140 2 255.0330
1
1
1
1
1
1
1
1
1
1
1

m
2
1
1
1
1
1
1

394784 1 61.6850 83.0040
1
1
1
1
1
1
1
1
1
1

19.7392 49.3480 71.5546
16.3096 52.7423
23.6093 25.9190
11.2865 18.1064
13.8332 26.3770
23.3497 20.1630
10.4138 11.7435
9.3989 9.1682
20.1625 15.6134
9.2004 9.0583

85.4476
30.1830
23.5115
35.8145
18.1680
12.2142
9.1137
14.9785
9.0331

e i il e e i e e LY e e R R R R DS Y E N

Other results may be obtained from table 1 as well.
For example, when (&,&,)=(-1,0), the effect of

increasing 77 on the increment of critical buckling

parameter, in the highest edge restrained case is faster
than the lower edge restrained (for example in s-c-s-c

N, =12.5665 and 7n=25
Iqa =231.8530 and in s-c-s-f case 7=04

~ ~

N, =10.5183 and 75=25 N, =854476

Moreover in freely boundary conditions, buckling
happens in smaller values of m. The table 1 indicates
that when (&,&,) = (-1,-1), effect of 77 in buckling
parameters value’s growth is more considerable than
when (&£,&£,)=(-1,0). In the case (&£,&,)=(0,—-1)
by increasing 77, buckling parameters values possess a

case 1n=04

slower increasing rate.

Based on the presented results, the lowest frequency
parameters correspond to plates subject to less edge
restraints. As the number of supported edges rises, the
frequency parameters also increase, and it
demonstrates that the lowest and highest values of
frequency parameters correspond to S-F-S-F and S-C-
S-C cases respectively. Thus higher constraints at the
edges increase the flexural rigidity of the plate,
resulting in a higher frequency response rate.

6 COMPARISION WITH PUBLISHED WORKS

In this section, the results of table (2) are compared
with the values of critical buckling for a plate with
scsc condition.

Table 2 Comparison of non-dimensional critical buckling
loads &r/ﬂz for s-c-s-c case

METHOD 04 M 05 M 06 M 1 M
REF[11] 932 1 759 1 696 1 759 2
2
2

REF[13]  93.247 1 75910 1 69.632 1 45910
PRESENT  93.2475 1 7591 1 69.6322 1 75.9099

In tables (3) and (4), frequency values with s-s-s-f and
s-f-s-f boundaries are compared for a case without any
in-plane load.

Table 3 Comparison study of frequency parameters
B= wa’. | p/ L for rectangular thin plate with s-s-s-f
boundaries

HEAMETH s s 6 g
/B OD

REF 10.12 13.05 18.83 27.55 39.33 39.61 42.69
81 59 70 90 80 77 18 64
PRrESE 10.12 13.05 18.83 27.55 39.33 39.61 42.69
NT 59 70 90 80 77 18 64
REF 10.67 18.29 33.69 40.13 48.40 57.59 64.72
[8] 12 95 74 07 82 29 81
PRESE 10.67 18.29 33.69 40.13 48.40 57.59 64.72
NT 12 95 74 07 82 29 81
REF 11.68 27.76 41.19 59.06 61.86 90.29 94.48
1 8] 45 02 87 56 06 31 37

REF[9 11.69 27.76 41.19 59.06 61.86 90.29 94.48

0.4

2/3
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] 25 02 87 56 17 31 17
PRESE 11.68 27.75 41.19 59.06 61.86 90.29 94.48

NT 45 63 67 55 06 41 37
REF 13.71 43.57 47.85 81.47 92.69 124.5 13289

15 [8] 11 23 71 89 25 635 74
™ PRESE 13.71 43.57 47.85 81.47 92.69 124.5 13289
NT 11 23 71 89 25 635 74
REerF 18.80 50.54 100.2 110.2 147.6 169.1 203.7
[8] 09 05 321 259 317 026 304
PRESE 18.80 50.54 100.2 110.2 147.6 169.1 203.7
NT 09 05 321 259 317 026 304

2.5

Table 4 Comparison study of frequency parameters
S =awa’\/p/D forrectangular thin plate with s-f -s-f
boundaries

HEA METH oy 5y s 7
/B oD

REF 9.76 11.03 15.06 21.70 31.17 39.238 40.503
04 [81 00 68 26 64 71 7 5
“* PRESE 9.76 11.03 15.06 21.70 31.17 39.238 40.503
NT 00 68 26 64 71 7 5
REF 9.69 12.98 22.95 39.10 40.35 42.684 54.240
8] 8 13 35 52 60 7 0
PRESE 9.69 12.98 22.95 39.10 40.35 42.684 54.240
NT 83 13 35 52 60 7 0
REF 9.63 16.13 36.72 38.94 46.73 70.740 75.283
[8] 14 48 97 50 81 1 4
REF[9 9.64 16.14 36.72 38.94 46.73 70.739 75.283
L1 06 17 97 74 95 4 4
REF[1 9.63 16.13 36.72 38.94 46.73 70.735 75.285

2/3

0] 27 68 48 55 26 5 3
PRESE 9.63 16.13 36.72 38.94 46.73 70.740 75.283
NT 14 48 56 50 81 1 4

REF 9.55 21.61 38.72 54.84 65.79 87.626 103.96
15 [8] 82 92 14 43 22 2 65
"~ PRESE 9.55 21.61 38.72 54.84 65.79 87.626 103.96
NT 82 92 14 43 22 2 65
REF 9.48 33.62 38.36 75.20 86.96 130.35 155.32
25 [8] 41 28 29 37 84 76 11
" PRESE 9.48 33.62 38.36 75.20 86.96 130.35 155.32
NT 41 28 29 37 84 76 11

results for buckling case clearly show the effect of the
boundary condition, aspect ratios and different initial
stresses on the plate responses. Also accurate frequency
parameters are presented for different aspect ratios and
different initial stresses for each case. These frequency
parameters may be considered as an exact database for
each of considered case and may contribute to people
desiring to investigate the accuracy of an approximate
method on some of these problems. The effect of
boundary condition, variation of aspect ratios and
different initial stresses on the frequency values are
examined and discussed in detail. In addition, contour
plots at any desired frequency parameters are
graphically displayed.

Finally, in comparison with previously published
works, the wvalidity of the presented results are
confirmed. Eigen frequency and critical loads that were
given are dimensionless and as a result independent of
material property and dimensions of plate.
Consequently by considering material property and
dimensions of plate, Eigen frequencies and critical
loads are usable. The exact results should provide
engineers and researchers who work on plate’s
vibration with a useful reference source. ultimately, its
noticeable that the mentioned example is considered as
a model for airplane descending at the runway , in this
case, the impact caused by loading(impact loads)
besides the runway (the sheet placed on the elastic base
of Pasternak under single and dual-axis stress) are
modelled with different boundary conditions.

8 NOMENCLATURE

7 CONCLUSION

The present work investigated free vibrations of thin
plates based on the Kirchhoff's plate theory. The
foregoing work has shown how an exact procedure may
be followed to analyze the buckling and free vibration
of rectangular plates with initial stresses in forms of
one-axial and biaxial. The exact -characteristic
equations are derived for the six cases having two
opposite sides simply supported. The considered cases
are s-c-s-C, S-S-S-C, S-s-s-S, s-c-s-f, s-s-s-f and s-f-s-f
plates.

The obtained results are all for buckling load and
frequency parameter based on exact solution. The
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