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1 INTRODUCTION 

Rectangular plates are commonly used in structural 
components in many branches of modern technology 
namely mechanical, aerospace, electronic, marine, 
optical, nuclear and structural engineering. Thus, the 
knowledge of their free vibration and buckling load are 
very important to the structural designers.  
Numerous works concerning vibration of such plates 
have been published so far mostly based on thin plate 
theory without initial stress. An excellent reference 
source in this connection may be found in the well-
known work of Leissa [1] and his subsequent articles 
(1977-1987) [2-7] published in vibration Digest from 
time to time.  
His remarkable works on the free vibration of thin 
rectangular plate [8] also present comprehensive and 
accurate analytical results for sixth distinct case 
without in-plane stresses that have exact solution. Liew 
et al. [9], [10] investigated the free vibration of 
rectangular plates, respectively, using two dimensional 
polynomials and one-dimensional Gram-Schmidt 
polynomials as the admissible functions of the plate in 
Rayliegh-Ritz method. 
The buckling loads [11] of plates which are subjected 
to edge loads acting in their mid plane are areas of 
research which have received a great deal of attention 
in the past century, but they were obtained using an 
approximate method. Exact solution for Mindlin 
rectangular plate is another work for plates, also exact 
solutions for vibration and buckling rectangular plate 
by in-plane stress is one of comprehensive and accurate 
analytical results for SS-C-SS-C case [12], [13]. The 
exact characteristic equation for rectangular thin plates 
having two opposite sides simply supported can be 
found in the original work of Leissa [8]. There is not 
such an equation about thin plates that has been 
initially stressed in the literature. To fill this apparent 
void, the present work is carried out to provide the 
exact characteristic equations for the six cases having 
two opposite sides simply supported subjected to in-
plane loads through the thickness of that, in forms of 
axial and biaxial. The considered six cases are namely 
s-c-s-c, s-s-s-c, s-s-s-s, s-c-s-f, s-s-s-f and s-f-s-f 
boundary conditions.  
The current paper acts as the first work dealing with 
free vibration and buckling the thin rectangular plates 
for six cases that have initially in-plane stresses (in 
forms of axial and biaxial) by exact solution. Accurate 
free vibration frequencies and buckling loads are 
presented for some important cases for some of initially 
stressed loading and aspect ratio.   

2 GOVERNING EQUATIONS AND THEIR 
DIMENSIONLESS FORMS 

Consider a flat, isotropic, rectangular thin plate of 
length a , width b , modulus of elasticity E , Poisson's 
ratio ν , shear modulus )1(2/ ν+= EG and density 
per unit area ρ , oriented so that its mid-plane surface 

contains the 1x  and 2x  axis of a Cartesian co-ordinate 

system ( )321 ,, xxx . 

The displacements along the 1x  and 2x  axes are 

denoted by 1u  and 2u , respectively while the 
displacement in the direction perpendicular to the 
undeformed middle surface is denoted by 3u . In the 
classic Kirchhoff's plate theory, the displacement 
components are assumed to be given by: 
 

1,331 ψxu −=
 (1a) 

 

2,332 ψxu −=  (1b) 

 

33 ψ=u  (1c) 

 
Where 3ψ  is transverse deflection along the 3x  
direction. Using the small deflection, the strain 
components may be expressed as:  
 

11,331 ψε x−=
   

(2a) 

 

22,332 ψε x−=
   

(2b) 

 

12,3312 ψε x−=
   

(2c) 

 
0332313 === εεε     (2d) 

 
Based on the strain-displacement relations given in 
equation (2, a, b, c, d) and assuming a stress 
distribution in accordance with Hook's low, as well as 
neglecting the stress strain relations involving 

2313, εε and 33ε  the resultant bending moments and 

twisting moment all per unit length in terms of 3ψ  are 
obtained by integrating the stresses and moment of the 
stresses through the thickness of the plane. These are 
given by: 
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11 3,11 3,22( )M D Vψ ψ= +     
(3a) 

  
22 3,11 3,22( )M D ψ ψ= − +    (3b) 

  
))1( 12,312 ψVDM −−=     

(3c) 

 
Where D is the flexural rigidity. The governing 
differential equations based on the Navier for plate [14-
15] can be:  

 
 11,1 12,2 1 0M M Q+ − =    (4a) 
 

12,1 22,2 2 0M M Q+ − =      (4b) 

 
2

3
1,1 2,2 2Q Q p

t
ψ

ρ
∂

+ + =
∂

    
(4c) 

 
Where p  is the transverse force per unit area due to 
components of the in-plane loads, in addition p  will 
be expressed as: 
 

1 3,11 2 3,22p N Nψ ψ= +     (5a) 

 

 
Fig. 1 A rectangular thin plate subjected to in-plane edge 

loads 
 

The plate is subjected to in-plane edge loads per unit 
length 1N  in the 1x  direction and 2N  in the 2x  
direction, as shown in Fig. 1. The two edges of the 
plate parallel to the 2x -axis are assumed to be simply 
supported while the other two edges may have any 
combinations of clamped, free or simply supported 
boundary conditions as shown in Fig. 2.  
 

   
Case 1 Case 2 Case 3 

   
Case 4 Case 5 Case 6 

Fig. 2   Boundary conditions of thin plates analyzed 
 
Assuming the free harmonic motion, the governing 
differential equations for free vibration of the plate 
under investigation can be presented in terms of 3ψ . In 
addition, by substituting the stress resultants from 
expressions (3a)-(3c) into equations (4a)-(4c) will 
result in: 
 

( )3,11 3,22 1,1
0D Qψ ψ+ + =                                        (6a) 

 
( )3,11 3,22 2,2

0D Qψ ψ+ + =                                      (6b) 

 
2

11 22 1 3,11 1 3,22 3Q Q N Nψ ψ ρω ψ+ + + =                    (6c) 
 
Also transverse shearing forces are: 
 

( )1 3,111 3,112(2 )V D Vψ ψ= − + −                                (7a) 
 

( )1 3,222 3,211(2 )V D Vψ ψ= − + −                              (7b) 
    
For generality and convenience, the coordinates are 
normalized with respect to the plate planar dimensions 
and the following non-dimensional terms are 
introduced. 
 

1
1

x
X

a
= , 2

2
x

X
b

=   , a
b

η =    

 
3

3 a
ψ

ψ =   , 1 2 1 2( , ) ( , ) aV V V V
b

=  

(8a,b,c,d,e) 

 

( )11 22 12 11 22 12( , , ) , , aM M M M M M
D

=  (8f) 
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( ) ( )
2

1 2 1 2, , aN N N N
D

=   

D
a ρωβ 2=  

 
 

(8g,h) 

 
Where β  is the frequency parameter. Substitution of 
the dimensionless stress resultants (8a)-(8h) into the 
equations (6a)-(6c) leads to: 
 
 ( )2

3,11 3,22 1,1
0n Qψ ψ+ + =  (9a) 

  

( )2
3,11 3,22 2,2

0n n Qψ ψ+ + =                    (9b) 

 
2 2

11 2,2 1 3,11 2 3,22 3Q Q N N N Bψ ψ ψ+ + + =   (9c) 

 
In order to solve the three coupled partial differential 
equations (9a)-(9c), it will be more convenient to have 
a single equation on the transverse deflection 3ψ . This 
can be obtained by differentiating equations (9a) and 
(9b) with respect to 1X  and 2X , respectively, then 
multiplying the latter by η , summing them up and 
noting equation (9c), we obtain: 
 

2 2 2
3,11 3,22 ,11 3,11 3,22 ,22

2 2
1 3,11 2 3,22 3

( ) ( )

N N

ψ η ψ η ψ η ψ

ψ η ψ β ψ

+ − +

+ + =
     (10) 

   
The solution of the equation (10) can be assumed to be: 

)()()()( 22122112213 xgxfxgxfWW +=+=ψ   (11) 
 
 
Substituting the above solution into equation (10) 
yields: 
 

1,1111 1,11 1,2222 1,224 2
1 2

12 1 1 1

1,112 2
1,22

1 1
2 0

f f g g
N n n N

f f g g
f

n g
f g

β

− + −

+ − =

 (12a) 

2,1111 2,11 2,2222 2,224 2
1 2

22 2 2 2

2,112 2
2,22

2 2
2 0

f f g g
N n n N

f f g g
f

n g
f g

β

− + −

+ − =

 (12b) 
 

 
Inspection of equations (12a) and (12b) suggest that the 
functions ( )1Xfi  and ( ) ( )2,1 2 =iXgi  should be 
characterized by the equations: 
 

2 2
,11 ,22,i i i i i if f g gμ λ= ± = ±     (13a,b) 

 
Where 2

iμ and 2
iλ are separation constants to be 

obtained. By examining the boundary conditions it can 
be easily shown that a solution to the equations 

iii ff 2
11, μ=  is not suitable for satisfying the 

boundary conditions when two opposite edges at X1=0 
and X1=1 are simply supported. Hence, the following 
solutions to equations (12a) and (12b) can be selected. 
 

1 1 1( ) sin cosi i i i if x a u x b u x= +
                             

(14) 
 

1 1 1 1 1 1 1 1( ) sin cosg x c x d xλ λ= +                               (15) 
 

2 1 2 2 1 2 2 1( ) sin cosg x c x d xλ λ= +                             (16) 
 
As it was discussed in an earlier paper by Hashemi and 
Arsanjani [12-16], no loss of generality may arise due 
to selection of any possible set of solutions. The 
derivation, therefore, may be maintained based on the 
set of selected solutions as: 

2 2 2( ) sin cosi i i i if x a u x b u x= +
                          

(17)  
 

1 2 1 1 2 1 1 2( ) sin cosg x c x d xλ λ= +                            (18) 
 

2 2 2 2 2 2 2 2( ) sin cosg x c x d xλ λ= +                         (19)  
 
Which in turn suggest that:  
 

2
,11i i if fμ= −                                                           (20a) 

 
2

1,22 1 1g gλ= −                                                 (20b) 
 

2
2,22 2 2g gλ=                                                            (20c) 

 
May be solved by representing the three dimensionless 
functions, 3

~ψ  in terms of the two dimensionless 

potentials 1W , and 2W  as: 
 

3 1 2W Wψ = +  (21) 

 
It may also be noted that, as ( ) ( )1 1 1 1 2W f X g X=  and 

( ) ( )2 2 1 2 2W f X g X= , the relationship between iλ , iμ  

and iα  for the set of selected solutions may be 
expressed as: 
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2 2 2 2 2 2 2 2
1 1 1 2 2 2    ,    α μ η λ α μ η λ= + = −  (22a,b) 

Substituting now from equations (20a, b, c) into 
equations (12a) and (12b) gives: 
 

4 2 2 2
1 2 1 1 2 1( ) 0N N Nα α μ β+ + − − =      (23) 

 
4 2 2 2
2 2 2 1 2 2( ) 0N N Nα α μ β+ + − − =      

 
(24) 

3 TWO OPPOSITE EDGES SIMPLY SUPPORTED 

For the sake of definiteness, the dimensionless 
boundary conditions will be given below for an edge 
parallel to the 2X -normalized axis (for example, the 
boundaries 10 11 == XorX ) 
For a simply supported edge: 
 

0)~~(~
22,3

2
11,322 =+= ψηψνM , 0~

3 =ψ                 (25a,b) 
 
For a free edge: 
 

0)~~(~
22,3

2
11,322 =+= ψηψνM                                 (26a) 

 

2,322
~~~ ψηNV −=               

(26b) 
 
For a clamped edge: 
 

0~~
2,32 == ψηψ                      (27a) 

 
0~

3 =ψ                                                           (27b) 
 
 
Corresponding boundary conditions for the edges 

02 =X and 12 =X  are obtained by interchanging 
subscripts 1 and 2 in equation (25a)-(27b). On the 
assumption of a simply-supported edge at both 01 =X  
and 11 =X , equations (17)-(19) may be written as: 
 

( ) ( )[ ]
( )1

2122111

sin
cossin

X
XAXAW

μ
λλ +=      (28a) 

 
( ) ( )[ ]

( )1

2242232

sin
coshsinh

X
XAXAW

μ
λλ +=     

 
 
(28b) 

 
Where ,...2,1; == mmπμ . Introducing equation 
(28a,b) in equations (21) and substituting the results 
into the two appropriate boundary conditions along the 

edges  02 =X  and 12 =X  lead to a characteristic 
determinant of the two order for each m. Expanding the 
determinant and collecting terms yields a characteristic 
equation. The characteristic equations for the six cases 
are listed below. In addition, the six different boundary 
conditions given in the characteristic equations are 
shown in Fig. 2. 
Case1. S-C-S-C 
 

0coshsinsinhcos

coshcos2

21
2

121
2

1

212121

=−

++−

λλλλλλ

λλλλλλ
  (29) 

 
Case2. S-C-S-S 
 

0coshsincossinh 212121 =− λλλλλλ                (30)  
 
Case3. S-S-S-S: 
 

0sinhsin 21 =λλ      (31) 
 
Case4. S-C-S-F 
 

0)coshcos

sinhsin(

3212

211
2

=+

+

AA

An

λλ

λλ
λ                                   (32a) 

 
Where 
 

2
2

22
1

222
2

2
2

2
1

2

2
2

222
2

2
2

2
1

222
2

2
1

2
1

242(

))2(

)2((

ληληνμμλλη

ληνμμλ

ληνμμλνμ

−+−++

−−+

+−+−−=

N

N

NA
 

(32b) 

)22

2

242(

2
2

2
1

42
2

22

2
2

2
2

2
1

222
1

2
2

2442
2212

λληλμη

ληλμηλη

νμνμνμλλ

++

+−−

++−=

NN

NA
     (32c) 

21
4

3
21

223
21

2
221

24

5
21

4
21

2
22

5
1

4

2
3

1
22

2
3

1
2

221
24

21
4

21
2

23

2

2

2

2

λνλμ

λλμηλληλλνμ

λληλνλμλλη

λλμηλληλλνμ

λνλμλνλμ

+

−−−

+++

++−

+=

N

N

N

NA

        
(32d) 

Case 5. S-S-S-F 
 

211 λλη SinhCosB 0122 =+ λλη SinCoshB            (33a) 
 
Where  
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)2(

))(

)2((

2
2

4222
22

2
1

2
2

2
1

2

2
21

2
1

λημηηλλ

λλη

νμνλμ

++

++−

+−+−=

N

NB
                         (33b) 

 

)2(

))(

)2((

2
2

4222
22

2
1

2
2

2
1

2

2
22

2
2

λημηηλλ

λλη

νμνλμ

−+

++−

−+=

N

NB
                             (33c) 

 
Case 6. S-F-S-F 
 

0)sinhsincoshcos
sincos(

214213

1
2

1
2

21

=+
+−+−

λλλλ
λλ

CC
CCn  

 
Where 

3 3 2 2
1 1 1 2 1

1 3 3 2 2
2 2 2 2 2

2
2

n n U vn U N n
C

n n U vn U N n
λ λ λ λ
λ λ λ λ

+ − +
=

+ − +
             (34b) 

2 2 2
1

2 2 2 2
2

VU n
C

VU n
λ
λ

+
=

+
                                                 (34c) 

2 2 3
3 2 1 1( )C N U V nλ λ= + (34d) 

4 4 2 2 3
4 1 1 2 1
4 5 2 2 4 2

1 1 2 2 2 1 2 2 2
2 3 4 3

1 2 2 2 1 2 2
4 4 5

1 2 2 2 1 2 2

2 2

2

2 )

C U V U V n U

n C C N U V C C N U V

C C N n C C U V

C C N U V C C n

λ λ λ

λ λ λ

λ λ

λ λ

= − + +

+ −

− + +

+

               (34c) 

4 VIBRATION AND BUCKLING CRITERIA 

In order to investigate the exact vibration as well as 
obtaining the exact critical buckling load parameter of 
plates for all six combinations of edge conditions as 
illustrated in Fig. 2, we assume: 
 

crNN ~~
11 ξ=   ,  

crNN ~~
22 ξ=  (35a,b) 

 
For given values of ηξξ  , , 21  and ν  the characteristic 
equations given for individual cases are functions ofβ , 
m  and crN~ . Depending on selection of 1ξ  and 2ξ  
which may be either (-1, 0), (0,-1) or (-1,-1), the critical 
buckling load parameter 

crN~  may be determined by 
setting 0=β  in the corresponding characteristic 

equation of each individual case. Upon testing the 
different integer values of m (usually 3,2,1=m  or 

4=m  ) the lowest value of the solved equation should 
be selected. Having obtained crN~ , the frequency 
parameters 

mnβ  may be determined by substituting 

corresponding crN~  together with any desired values of 

1ξ  and 2ξ  between -1 to 0 into the characteristic 
equations of each individual case. 

5 BUCKLING AND VIBRATION RESULTS 

Table 1 presents the non-dimensional buckling load 
parameter crN~ for SCSC, SSSC, SSSS,  SCSF, SSSF 

and SFSF three combinations of 1
~N  and 2

~N ratio, 
namely: 

 

)1(~~~)

)1,0(~~,0~)

)0,1(0~,~~)

1121

1121

1121

−==−==

−==−==

=−===

ξξ

ξξ

ξξ

NNNc

NNNb

NNNa
 

 
are considered. These combinations in-plane loading 
cover the case of a biaxial in-plane loading in the 1x  

and the 2x directions. 
In this part the exact results of critical buckling for a 
rectangular plate with at least two opposite sides with 
simply supported condition are presented. To study the 
effect of the boundary conditions on the buckling of 
thin plates, the critical buckling parameters listed in 
table 1 have been arranged. According to the results 
presented in this table, it is clear that the lowest critical 
buckling parameters correspond to plates subject to less 
edge restraints.  
A rise in the number of supported edges entails the 
critical buckling parameters increase. It can be seen 
that the lowest and highest values of critical buckling 
parameters correspond to S-F-S-F and S-C-S-C cases 
respectively. Thus, higher constraints at the edges 
increase the flexural rigidity of the plate, resulting in a 
higher critical buckling response rate. 
In order to study the effects of aspect ratio, according 
to the table 1 for a stiffly condition, as the aspect ratio 
η  enhances, the critical buckling parameters also 
increase. Also by increasing η , for highly constrained 
plates critical buckling parameters happens in higher 
value of m. In addition, regarding to table 1, when 

)0,1(),( 21 −=ξξ , critical buckling parameters have had 
higher values than the state of )1,1(),( 21 −−=ξξ . The 
maximum value of buckling parameter happens in the 
case )1,0(),( 21 −=ξξ .  
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It means that, when the buckling load is in X1-direction 
critical buckling parameters are more than other cases 
and for in-plane loading condition in X2-direction (i.e. 
the direction that has the simply supported condition) 
the values of critical buckling parameter is higher than 
the condition in which all sides are exposed to in-plane 
loading. 
 

Table 1  Buckling load parameters, DaNN crcr /~ 2=  

( )crcr NNNN ~~,~~
2211 ξξ == , for rectangular thin plates 

5.0=η 4.0=η  ),( 21 ξξ  Case 
m  crN~m  crN~  
1  18.9775 1 14.9196 (-1,0)  S-C-S-

C  1  47.8394 1  44.6340 (0,-1)  
1  14.6174 1  12.5665 (-1,-1)  
1  16.9094 1 13.9892 (-1,0)  S-S-S-

C  1  41.8144 1  41.1222 (0,-1)  
1  13.2373 1  11.9065 (-1,-1)  
1  15.4213 1 13.2805 (-1,0)  S-S-S-

S  1  39.4784 1  40.8053 (0,-1)  
1  12.3370 1  11.4487 (-1,-1)  
1  11.0127 1 10.5183 (-1,0)  S-C-S-

F  1  22.8029 1  22.8011 (0,-1)  
1  9.8706 1  9.7607 (-1,-1)  
1  10.7474 1 10.3888 (-1,0)  S-S-S-

F  1  22.7999 1 22.7995 (0,-1)  
1  9.7954 1  9.7176 (-1,-1)  
1  9.6046 1 9.6516 (-1,0)  S-F-S-

F  1  22.3118 1 22.7400 (0,-1)  
1  9.4006 1  9.4574 (-1,-1)  

5.2=η  2=η  1=η  
m  crN~m  crN~  m  crN~  
4  431.6794 3  275.2280 2  75.9099 
1  267.6430 1  179.5020 1  66.5526 
2  231.8530 1  150.9920 1  37.7996 
3  334.5290 3  221.3000 1  56.6536 
1  147.2170 1  102.5100 1  47.8394 
1  130.1790 1  85.0810 1  26.2798 
3  255.0330 2  157.9140 1  39.4784 
1  83.0040 1  61.6850 1  39.4784 
1  71.5546 1  49.3480 1  19.7392 
2  85.4476 1  52.7423 1  16.3096 
1  30.1830 1  25.9190 1  23.6093 
1  23.5115 1  18.1064 1  11.2865 
1  35.8145 1  26.3770 1  13.8332 
1  18.1680 1  20.1630 1  23.3497 
1  12.2142 1  11.7435 1  10.4138 
1  9.1137 1  9.1682 1  9.3989 
1  14.9785 1  15.6134 1  20.1625 
1  9.0331 1  9.0583 1  9.2004 

 
Other results may be obtained from table 1 as well. 
For example, when )0,1(),( 21 −=ξξ , the effect of 
increasing η  on the increment of critical buckling 
parameter, in the highest edge restrained case is faster 
than the lower edge restrained (for example in s-c-s-c 

case 4.0=η  5665.12~ =aN  and 5.2=η  

8530.231~ =aN  and in s-c-s-f case 4.0=η  

5183.10~ =aN  and 5.2=η  4476.85~ =aN  
Moreover in freely boundary conditions, buckling 
happens in smaller values of m. The table 1 indicates 
that when )1,1(),( 21 −−=ξξ , effect of η  in buckling 
parameters value’s growth is more considerable than 
when )0,1(),( 21 −=ξξ . In the case )1,0(),( 21 −=ξξ  
by increasing η , buckling parameters values possess a 
slower increasing rate.  
Based on the presented results, the lowest frequency 
parameters correspond to plates subject to less edge 
restraints. As the number of supported edges rises, the 
frequency parameters also increase, and it 
demonstrates that the lowest and highest values of 
frequency parameters correspond to S-F-S-F and S-C-
S-C cases respectively. Thus higher constraints at the 
edges increase the flexural rigidity of the plate, 
resulting in a higher frequency response rate. 

6 COMPARISION WITH PUBLISHED WORKS 

In this section, the results of table (2) are compared 
with the values of critical buckling for a plate with 
scsc condition. 
 

Table 2  Comparison of non-dimensional critical buckling 
loads 2/~ ηcrN   for s-c-s-c case 

M  1  M0.6  M0.5  M0.4  METHOD  
2  75.9  1 69.6  1 75.9  193.2  REF[11]  
2  45.910 1 69.632 1 75.910193.247 REF[13]  
2  75.90991 69.63221 75.91 193.2475PRESENT  

 
In tables (3) and (4), frequency values with s-s-s-f and 
s-f-s-f boundaries are compared for a case without any 
in-plane load. 
 

Table 3  Comparison study of frequency parameters 
La /2 ρωβ =  for rectangular thin plate with s-s-s-f 

boundaries 
Η=A
/B 

METH
OD 1 2 3 4 5 6 7 

0.4

REF 
[8] 

10.12
59 

13.05
70 

18.83
90 

27.55
80 

39.33
77 

39.61
18 

42.69
64 

PRESE
NT 

10.12
59 

13.05
70 

18.83
90 

27.55
80 

39.33
77 

39.61
18 

42.69
64 

2/3

REF 
[8] 

10.67
12 

18.29
95 

33.69
74 

40.13
07 

48.40
82 

57.59
29 

64.72
81 

PRESE
NT 

10.67
12 

18.29
95 

33.69
74 

40.13
07 

48.40
82 

57.59
29 

64.72
81 

1 
REF 
[8] 

11.68
45 

27.76
02 

41.19
87 

59.06
56 

61.86
06 

90.29
31 

94.48
37 

REF[9 11.69 27.76 41.19 59.06 61.86 90.29 94.48
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]  25 02 87 56 17 31 17 
PRESE

NT 
11.68

45 
27.75

63 
41.19

67 
59.06

55 
61.86

06 
90.29

41 
94.48

37 

1.5

REF 
[8] 

13.71
11 

43.57
23 

47.85
71 

81.47
89 

92.69
25 

124.5
635 

13289
74 

PRESE
NT 

13.71
11 

43.57
23 

47.85
71 

81.47
89 

92.69
25 

124.5
635 

13289
74 

2.5

REF 
[8] 

18.80
09 

50.54
05 

100.2
321 

110.2
259 

147.6
317 

169.1
026 

203.7
304 

PRESE
NT 

18.80
09 

50.54
05 

100.2
321 

110.2
259 

147.6
317 

169.1
026 

203.7
304 

 
 

Table 4  Comparison study of frequency parameters 
Da /2 ρωβ =  for rectangular thin plate with s-f -s-f 

boundaries 
Η=A
/B  

METH
OD 1 2 3 4 5 6 7 

0.4

REF 
[8] 

9.76
00 

11.03
68 

15.06
26 

21.70
64 

31.17
71 

39.238
7 

40.503
5 

PRESE
NT 

9.76
00 

11.03
68 

15.06
26 

21.70
64 

31.17
71 

39.238
7 

40.503
5 

2/3

REF 
[8] 

9.69
83 

12.98
13 

22.95
35 

39.10
52 

40.35
60 

42.684
7 

54.240
0 

PRESE
NT 

9.69
83 

12.98
13 

22.95
35 

39.10
52 

40.35
60 

42.684
7 

54.240
0 

1 

REF 
[8] 

9.63
14 

16.13
48 

36.72
97 

38.94
50 

46.73
81 

70.740
1 

75.283
4 

REF[9
]  

9.64
06 

16.14
17 

36.72
97 

38.94
74 

46.73
95 

70.739
4 

75.283
4 

REF[1
0]  

9.63
27 

16.13
68 

36.72
48 

38.94
55 

46.73
26 

70.735
5 

75.285
3 

PRESE
NT 

9.63
14 

16.13
48 

36.72
56 

38.94
50 

46.73
81 

70.740
1 

75.283
4 

1.5

REF 
[8] 

9.55
82 

21.61
92 

38.72
14 

54.84
43 

65.79
22 

87.626
2 

103.96
65 

PRESE
NT 

9.55
82 

21.61
92 

38.72
14 

54.84
43 

65.79
22 

87.626
2 

103.96
65 

2.5

REF 
[8] 

9.48
41 

33.62
28 

38.36
29 

75.20
37 

86.96
84 

130.35
76 

155.32
11 

PRESE
NT 

9.48
41 

33.62
28 

38.36
29 

75.20
37 

86.96
84 

130.35
76 

155.32
11 

7 CONCLUSION 

The present work investigated free vibrations of thin 
plates based on the Kirchhoff's plate theory. The 
foregoing work has shown how an exact procedure may 
be followed to analyze the buckling and free vibration 
of rectangular plates with initial stresses in forms of 
one-axial and biaxial. The exact characteristic 
equations are derived for the six cases having two 
opposite sides simply supported. The considered cases 
are s-c-s-c, s-s-s-c, s-s-s-s, s-c-s-f, s-s-s-f and s-f-s-f 
plates. 
The obtained results are all for buckling load and 
frequency parameter based on exact solution. The 

results for buckling case clearly show the effect of the 
boundary condition, aspect ratios and different initial 
stresses on the plate responses. Also accurate frequency 
parameters are presented for different aspect ratios and 
different initial stresses for each case. These frequency 
parameters may be considered as an exact database for 
each of considered case and may contribute to people 
desiring to investigate the accuracy of an approximate 
method on some of these problems. The effect of 
boundary condition, variation of aspect ratios and 
different initial stresses on the frequency values are 
examined and discussed in detail. In addition, contour 
plots at any desired frequency parameters are 
graphically displayed. 
Finally, in comparison with previously published 
works, the validity of the presented results are 
confirmed. Eigen frequency and critical loads that were 
given are dimensionless and as a result independent of 
material property and dimensions of plate. 
Consequently by considering material property and 
dimensions of plate, Eigen frequencies and critical 
loads are usable. The exact results should provide 
engineers and researchers who work on plate’s 
vibration with a useful reference source. ultimately, its 
noticeable that the mentioned example is considered as 
a model for airplane descending at the runway , in this 
case, the impact caused by loading(impact loads) 
besides the runway (the sheet placed on the elastic base 
of Pasternak under single and dual-axis stress) are 
modelled with different boundary conditions. 

8 NOMENCLATURE 

ε Strain 
Ss Simply Support 
M Bending Moments 
C Clamp 
β Frequency Parameter 
P Transverse Force Per Unit Area 
E Modulus Of Elasticity 
Υ Poisson's Ratio 
G Shear Modulus 
ψ Transverse Deflection 
F Free 
D Flexural Rigidity 
X Direction. 
B Width Of Rectangular Thin Plate 
A Length Of Rectangular Thin Plate 
ρ Density 
U  Displacements 
N  Plane Edge Loads Per Unit Length 

crN~  Critical Buckling Load Parameter 
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