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Abstract: In this study, several operational parameters of a solar energy system are 
predicted through using a multistage ANN model. To achieve the best design of this 
model, three different back-propagation learning algorithms, i.e. Levenberg-
Marquardt (LM), Pola-Riber Conjugate Gradient (CGP) and the Scaled Conjugate 
Gradient (SCG) are utilized. Further, to validate the ANN results, some experimental 
tests have been done in winter 2016 on a solar space heating system (SSHS) 
equipped with a parabolic trough collector (PTC). In the proposed model, ANN 
comprises three consecutive stages, while the outputs of each one are considered to 
be the inputs of the next. Results show that the maximum error rate in Stages 1, 2, 
and 3 has occurred in the LM algorithm with respectively 10, 6, and 10 neurons. 
Moreover, the best obtained determination coefficient of all stages belongs to the 
total system efficiency and has the value 0.999934 for LM-10. As a result, the 
multistage ANN model can simply forecast operational parameters of the solar 
energy systems with high accuracy. 
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1 INTRODUCTION 

In the past decades, worldwide energy crisis and 

environmental problems such as ozone destruction have 

caused the governments’ move to replace nearly-ending 

fossil fuels with renewable energies. On the other hand, 

Sunny hours in Iran average 2054 h yearly [1]. Therefore, 

application of solar energy as an environmentally 

friendly energy would be very effective. Solar collectors 

have domestic and industrial applications such as 

electricity generation systems, solar water heater 

systems and solar space heating and cooling systems. As 

40% of the world’s total energy consumption is related 

to building applications [2], utilizing domestic solar 

energy systems would bring many economic advantages. 

Determining the performance of solar heating systems 

experimentally, needs expensive devices, long time and 

lots of calculations. Thus, in order to save time and cost, 

the solar energy system’s performance should be 

predicted and evaluated prior to being manufactured and 

set up in an especial area. To this end, prediction through 

ANN constitutes a common technique in building 

energy applications, as many researchers have used 

single stage ANN with different algorithms to forecast 

the performance of energy systems. 

The heat consumption of a university with various ANN 

models and an adaptive neuro-fuzzy inference system 

was predicted by Jovanovic et al., who designed three 

different models of inputs for each ANN model type. 

Finally, three models were suggested to predict thermal 

energy consumption [3]. In order to forecast energy 

consumption in a building category through ANNs, a 

new method was presented by Ascione et al. [4]. The 

performance of building heating load was evaluated, 

using a dynamic ANN, by Sholahudin and Han. An 

apartment building was simulated through the Energy-

plus software, and different combinations of input 

parameters were studied so as to forecast the heating 

load using Taguchi method. This method can well 

decrease the number of ANN input parameters [5]. Deb 

et al. have accomplished an energy analysis of industrial 

buildings to calculate the cooling load energy. To predict 

{the} energy consumption of building for the next days, 

they have utilized five previous days’ data [6]. In 

addition, Argirioua et al. designed a controller for space 

heating systems in solar buildings using a feed-forward 

back-propagation ANN. They employed the 

environmental data as ANN inputs to study model 

capabilities. Consequently, the use of a common 

controller results in energy savings of about 15% in 

European weather conditions [7]. Kalogirou studied 

applications of ANN and genetic algorithms in detail for 

the simulation, modelling, and forecasting the solar 

energy system performance [8]. Furthermore, Boukelia 

et al. have optimized a solar parabolic trough collector 

using ANN with three algorithms for the economical 

purposes. The obtained parameters showed that the LM 

algorithm, with 38 neurons in a hidden layer, is the best 

model of ANN to predict the annual power generation 

[9]. In order to achieve maximum solar energy for 

domestic space heating and water heater, Hirvonen et al. 

have carried out an optimization by applying a multi-

objective neural network [10]. Yaïci et al. investigated 

the effect of the number of input variables (varying from 

seven to nine) on the precision of the ANN method. 

Although they concluded that the accuracy of the ANN 

model would decrease with fewer parameters, their 

models (with 20 neurons and eight outputs) were able to 

predict the performance of the solar energy system well 

[11]. Investigation on heat absorption and loss rates in 

solar collectors have been done by Liu et al. through 

applying an ANN model which portrayed high accuracy 

[12]. In spite of many researches in the previous 

literature on the application of ANNs in assessing the 

energy performance of buildings, the parameters were 

not predicted simultaneously. In fact, none of the studies 

succeeded to forecast all operational parameters of 

SSHS by using a multi-stage ANN; they only applied 

single-stage ANN models. In some researches of course, 

multi-stage ANN was applied to predict solar radiation 

in a few cities [13], [14]. However, there are few studies 

that exploit the multi-stage ANN to forecast the SSHS 

performance. 

In this study, first a space heating system has been 

designed and set up in Kerman province (with high 

radiation potential). To augment the system performance, 

the PTC is applied to the solar heating system. Since 

parabolic solar collectors have the ability of tracking sun, 

they seem to be stronger than flat plate collectors. To 

forecast operational parameters, a multistage ANN 

model is used, consisting of three single-stage ANNs. 

The model can simultaneously predict all parameters 

related to the SSHS such as useful energy of the collector, 

heat exchanger, radiator, delivered heat to the room, 

collector efficiency, heat exchanger efficiency, and the 

total efficiency. Comparison between the multistage 

ANN results and the experimental data show that 

multistage ANN is a reliable and fast method to calculate 

operational parameters. 

2 DESCRIPTION OF THE ANN MODEL 

ANN is a strong technique for analysing complicated 

engineering problems. ANN was designed to mirror the 

biological structure of the human brain. The type and 

size of ANN depends on the complication of the studied 

problem and the relations between neurons. As neurons 

can learn and communicate with different types of data, 

they are first trained in this method. Then, they will try 

to find logical relations between input and output data. 

Properties of ANN are determined by certain factors:    
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(1) weight coefficients that determine each input’s 

contribution to the output result, (2) hidden layer size; 

and (3) the type of algorithm that trains the ANN model. 

There are different algorithms to find relations between 

inputs and outputs, the most common of which is back-

propagation, and the most applicable to the energy field 

are LM, CGP, and SCG. The performance of ANN 

models is evaluated by a statistical analysis, Root mean 

square error (RMSE), mean percentage error (MPE), and 

the determination coefficient (R2) are defined as in 

‘‘Eqs. (1), (2) and (3)’’ [15].  
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yi is the output value, 
iy  denotes the average output 

value; Ei represents the experimental value, Ei refers to 

the average experimental value; and n is the total number 

of values. If there is only one system parameter to be 

estimated by ANN, and there are few inputs for 

validation, the single stage ANN can predict the target 

well. Nevertheless, if there are many types of data and 

several target parameters, the single stage ANN would 

have insufficient efficiency. The best advantage of 

multistage ANN compared to the single stage is the 

ability of sharing operational parameters for evaluating 

total efficiency. Multistage ANN can also predict 

important system parameters simultaneously. 

3 MATERIALS AND METHODS 

3.1. Description of Solar Heating System 

Here, the SSHS is used to heat a room of 10 m2 area. As 

illustrated in ‘‘Fig. 1,’’ original components of the SSHS 

are: a PTC, a counter-flow heat exchanger, an energy 

storage tank (17 L), and a radiator. The SSHS has two 

separate cycles: oil and water. The oil is pumped from 

its tank to the PTC’s absorber tube, where it absorbs 

thermal energy from solar radiation, and then enters the 

heat exchanger. Inside the heat exchanger, water coming 

from the storage tank receives heat from the hot oil, and 

again returns to the tank. Finally, warm water goes to the 

radiator and delivers heat to the room. 
 

 
Fig. 1 Schematic of solar heating system. 

 

3.2. Experimental Method  

Experiments with SSHS were carried out from 9 AM to 

3 PM on February 28, 2016 in Sirjan (city) at location 

29 28 N, 55 34 E, and altitude 1743m. The heating 

systems were installed on the roof of the building. Note 

that, to evaluate the SSHS performance, the heat transfer 

fluid temperature, solar radiation, and the ambient 

temperature were measured. Furthermore, the axis of 

PTC was set in north-south direction, in order to receive 

the maximum solar energy. The sensor locations for 

measuring these temperatures are shown in ‘‘Fig. 1.’’ 

Two four-channel data loggers were used to record the 

temperatures of the collector and heat exchanger fluids. 

The radiator temperature in turn was measured using a 

PT100 RTD class sensor. Lastly, the solar radiation was 

assessed through a pyranometer. The data collection was 

done every 15 minutes, a time interval that is necessary 

to reach the steady state conditions for a solar energy 

system [16]. Characteristics of the measurement devices 

are given in ‘‘Table 1’’. 
 

Table 1 Characteristics of measurement devices 

Instrument Accuracy Range Model 

Pyranometer 2-±1Wm 2-Up 2000Wm TES-1333 

Temperature 

meter 

±0.05% 

±0.2C 

-190C 

+790C 

TES-1317 

Temperature 

meter 
±0.05%±1 C -148C 

+1370C 

TES-1384 

4 THERMAL ANALYSIS OF SOLAR HEATING 

SYSTEM 

In space heating process, each system component has a 

key role in determining the total efficiency of the system. 

Therefore, in addition to collector, the heat exchanger, 

the energy storage tank, and the radiator should be 

considered heat-transfer blocks. The useful energy rate 

of the collector can be calculated by ‘‘Eq. 4.’’ 
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Besides, the thermal efficiency of the collector is given 

as follows [17]: 

 

c f f 2 1 c
η =m C (T -T )/(IA )

  

            (5) 

 

Where cA and I denote the collector surface area and the 

solar radiation, respectively. The collector’s useful 

energy is the sum of the absorbed energy over time [17]:  

 

2

1

t

c c

t

Q = Q dt                 (6) 

 

The received energy of the storage tank is given as: 

 

w w w w
Q =m C ΔT

                              
(7) 

 

Where wm , and wT are respectively: mass, heat capacity, 

and temperature of the tank water. Delivered thermal 

energy to the room would be defined as:  

 

R w w 11 10
Q =m C (T -T )

               
(8) 

 

Where 10T and 11T  are, respectively, the inlet and outlet 

water temperatures of the radiator. The maximum heat 

that cold water can receive from the hot oil is calculated 

as: 

 

w,H w w 6 5
Q =m C (T -T )

               
(9) 

 

While 5T
 
and 6T  respectively represent the inlet and 

outlet water temperatures of heat exchanger, where the 

hot oil transfers thermal energy, as in ‘‘Eq. 10,’’ to the 

cold water:  

 

o,H o o 3 4
Q =m C (T -T )

             
(10) 

 

While, 4T  and 3T
 
refer, respectively, to the inlet and 

outlet oil temperatures of heat exchanger.The efficiency 

coefficient of the heat exchanger is defined as in ‘‘Eq. 

11’’ [17]: 

 

H o,H o o 4 5
η =Q /[m C (T -T )]

             

(11) 

 

After all, the total efficiency of SSHS would be: 

 

t R c
η =Q /(IA )

                

 (4) 

 

5 RESULTS AND DISCUSSION 

5.1. Experimental Investigations 

Inlet and outlet fluid temperatures of collector and heat 

exchanger, along with the storage tank temperature, the 

ambient temperature and the solar radiation were all 

measured on February 26, 2016. As illustrated in ‘‘Fig. 

2’’, the average value of solar radiation is 690 Wm-2, 

decreasing in the afternoon hours. It was a sunny day and 

the maximum solar radiation of this day was 780 Wm-2. 
 

 
Fig. 2     Solar radiation values versus time. 

 

Figure 3 shows the outlet and inlet oil temperatures of 

the collector along with those of the heat exchanger. The 

maximum oil temperatures at the collector and the heat 

exchanger, are respectively 120°C and 112°C at 12:00. 

They increased with the rise of solar radiation up to 

12:00 noon, and were decreasing after that. 

 

 
Fig. 3 Temperatures of the collector and heat exchanger 

fluids. 
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Figure 4 portrays room and ambient temperatures during 

the time. Room temperature increases from 16.5°C to 

17.5°C at 11:45 pm, then, rapidly rises to 21.9°C at 

12:30 pm. The reason lies in the storage tank’s valve 

being closed up to 11:45, and being open afterwards, 

when the space heating system started to deliver thermal 

energy to the room. Thereafter, temperature maintains a 

nearly constant 22°C. 

 

 
Fig. 4 Room and ambient temperatures versus time. 

 

5.2. ANN Results  

The present study uses a multistage ANN model, 

comprising three stages, for predicting the operational 

parameters of the SSHS. Each stage, in turn, is a single-

stage ANN. Levenberg-Marquardt, Pola-Riber 

Conjugate Gradient, and the Scaled Conjugate Gradient 

algorithms are applied to all three stages. In Stage 1, six 

parameters constitute ANN inputs, i.e. ambient 

temperature, water temperature of the storage tank, 

outlet oil temperature of the collector, outlet oil 

temperature of the heat exchanger, water temperature of 

the heat exchanger, and the solar radiation.  
 

Table 2 RMSE and MPE of collector’s useful energy for all 

data 

QC    All data 

Algorithm hl R t
 2 MPE RMSE 

LM 4 0.990682 0.016878 0.028146 

LM 5 0.978132 0.026147 0.045182 

LM 6 0.982933 0.026653 0.034954 

LM 8 0.978044 0.025563 0.039592 

LM 9 0.967583 0.030795 0.051617 

LM 10 0.99519 0.008011 0.019779 

CGP 3 0.975158 0.027242 0.043552 

CGP 5 0.983787 0.023658 0.0346 

CGP 7 0.966363 0.040704 0.0499 

SCG 3 0.979362 0.028093 0.03949 

SCG 7 0.980447 0.026666 0.041562 

SCG 9 0.965782 0.03869 0.05204 

 

Accordingly, the useful energy of the collector, energy 

transferred by the heat exchanger oil, energy obtained by 

the heat exchanger water, and the delivered energy to the 

room are ANN outputs. Figure 5 shows the structure of 

the three-stage neural network. 

 

 
Fig. 5 Structure of the three-stages neural network. 

 

RMSE and MPE of collector’s useful energy are brought 

into Table 2 for all data. Maximum and minimum R2, 

MPE and RMSE values have been emboldened in all 

tables. Neural networks with LM, SCG and CGP are 

trained for 3, up to 10, the number of hidden layers are 

shown in the following Tables. 

According to Table 2, Maximum R2s for train and all 

data are respectively 0.999996 & 0.99519, with RMSEs 

0.000601 & 0.019779, and MPEs 0.00037 & 0.008011. 

Figure 6 shows the predicted and experimental useful 

energy of the collector. There is a good agreement 

between the two values for LM 10. The useful energy of 

the collector is accompanied by solar radiation 

increments, increasing from morning up to noon. It has 

its maximum value at 1:00 pm; thereafter decreasing in 

the afternoon. 
 

 
Fig. 6 Predicted and experimentally determined useful 

energy of the collector, versus time. 
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Statistical values of oil energy of the heat exchanger are 

presented in Table 3. Maximum R2s for train and all data 

are respectively 0.999382 & 0.934115, with RMSEs 

0.005523 & 0.037041, and MPEs 0.003354 & 0.037041. 

 

Table 3 RMSE and MPE for train data for the heat 

exchanger’s oil energy 

Qo,H    Train data 

Algorithms hl 𝑅𝑡𝑟
2  MPE RMSE 

LM 4 0.992987 0.014154 0.017408 

LM 5 0.994995 0.012382 0.015343 

LM 6 0.996004 0.011437 0.013866 

LM 7 0.99556 0.017204 0.02154 

LM 8 0.992202 0.03866 0.040865 

LM 9 0.991368 0.021845 0.031956 

LM 10 0.999382 0.003354 0.005523 

CGP 3 0.990327 0.020382 0.023246 

CGP 5 0.991228 0.013668 0.018263 

CGP 7 0.985119 0.027131 0.032373 

SCG 3 0.99281 0.015144 0.016666 

SCG 5 0.992972 0.014479 0.018451 

SCG 7 0.984103 0.024513 0.029226bb 

 
Figure 7 shows the experimental and predicted values of 

heat exchanger’s oil energy. The best statistical values 

are obtained with LM10. Obviously, there is a good 

agreement between predicted and experimentally 

measured oil energy of the heat exchanger at 12:00 pm. 

Oil energy reaches its maximum value 0.923 MJ at noon, 

with a curve clearly decreasing thereafter. 

 

 
Fig. 7    Comparison of the experimental and predicted 

values of oil energy of the heat exchanger. 

 

Statistical values of for the heat exchanger’s water 

energy are given in Table 4. Maximum R2s for train data 

are respectively 0.999934 & 0.994675, with RMSEs 

0.001492 & 0.01426, and MPEs 0.001018 & 0.006791. 

Table 4 RMSE and MPE for train data for the heat 

exchanger’s water energy  

Qw,H    Train data 

Algorithms hl 𝑅𝑡𝑟
2  MPE RMSE 

LM 4 0.994454 0.009821 0.012677 

LM 5 0.991638 0.012997 0.01652 

LM 6 0.991254 0.012291 0.016176 

LM 7 0.995953 0.023663 0.025336 

LM 8 0.991926 0.029786 0.033857 

LM 9 0.98475 0.015564 0.020089 

LM 10 0.999934 0.001018 0.001492 

CGP 3 0.957202 0.023067 0.035801 

CGP 5 0.975732 0.020185 0.026161 

CGP 10 0.956835 0.022621 0.033097 

SCG 3 0.976949 0.0186 0.02804 

SCG 7 0.971678 0.020666 0.029498 

SCG 9 0.967731 0.024027 0.029426 

 

The experimental and predicted values of the heat 

exchanger’s water energy are compared in ‘‘Fig. 

8’’which portrays their good agreement.  
 

 
Fig.8 Comparison of the predicted and experimentally 

determined water energy of heat exchanger. 

 
Table 5 RMSE and MPE for all data for delivered thermal 

energy to the room  

QR    All data 

Algorithms hl 𝑅𝑡
2 MPE RMSE 

LM 4 0.969572 0.036766 0.081187 

LM 5 0.970751 0.056953 0.090701 

LM 8 0.976451 0.038633 0.074012 

LM 9 0.965214 0.063492 0.08305 

LM 10 0.997388 0.01367 0.023342 

CGP 3 0.96862 0.058544 0.080134 

CGP 7 0.923301 0.076019 0.120092 

CGP 10 0.937576 0.08168 0.108787 

SCG 5 0.944698 0.071261 0.104587 

SCG 7 0.964516 0.054975 0.089082 

SCG 9 0.971509 0.056457 0.074738 
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Statistical values of delivered energy to the room are 

brought into Table 5. Maximum R2s for train and all data 

are respectively 0.999916 & 0.997388, with RMSEs 

0.005569 & 0.023342, and MPEs 0.004446 & 0.01367. 

Moreover, maximum RMSEs for train and all data have 

been ascertained, respectively, 0.077656 & 0.08168. 

As seen in Tables 2 to 5, the best R2 together with the 

minimum errors are gained for LM algorithm with 10 

hidden layers. Delivered thermal energy to the room is 

represented in ‘‘Fig. 9’’. There is less agreement 

between experimental and ANN data of QR, than other 

operational parameters. 

 

 
Fig. 9 Predicted and experimental values of delivered 

energy to the room. 

 

In stage 2, Qc, QR, Qo,H and Qw,H are input parameters, 

while c and Hx are supposed to be outputs. Table 6 

contains statistical values of c and used algorithm type 

for training neural network. Maximum R2s for train and 

all data are respectively 0.993323 & 0.986238, with 

RMSEs 0.005059 & 0.007646, and MPEs 0.002875 & 

0.005059. Further, maximum RMSEs for train and all 

data are, respectively, 0.015241 & 0.015827.  
 

Table 6 RMSE and MPE for all data for collector efficiency  

c    All data 

Algorithms hl 𝑅𝑡
2 MPE RMSE 

LM 6 0.986238 0.005059 0.007646 

LM 7 0.93826 0.01289 0.015951 

LM 8 0.828231 0.016944 0.026034 

LM 9 0.943682 0.00948 0.015422 

CGP 4 0.925404 0.014373 0.017484 

CGP 5 0.921454 0.015827 0.018745 

CGP 6 0.923747 0.01575 0.018537 

SCG 3 0.950104 0.01097 0.017662 

SCG 4 0.915077 0.01479 0.0188 

SCG 5 0.95371 0.011344 0.015797 

The minimum errors at stage 2 belong to the LM with 

six hidden layers. Predicted collector efficiency versus 

experimental collector efficiency is plotted in ‘‘Fig. 10’’.  

 

 
Fig. 10    Predicted collector efficiency versus experimentally 

determined collector efficiency. 

 

Table 7 contains statistical values of H. Maximum R2s 

for train and all data are found respectively 0.996766 & 

0.99243, with RMSEs 0.005962 & 0.008505, and MPEs 

0.004562 & 0.006524. In addition, maximum RMSEs 

for train and all data would respectively be 0.014023& 

0.012899. As seen in Tables 6 & 7, the best R2 together 

with minimum errors belong to LM algorithm with 6 

hidden layers.  

 
Table 7 RMSE and MPE for all data for the heat exchanger 

efficiency 

H    All data 

Algorithms hl 𝑅𝑡
2 MPE RMSE 

LM 6 0.99243 0.006524 0.008505 

LM 7 0.989895 0.006836 0.00867 

LM 9 0.979017 0.010731 0.013993 

CGP 4 0.949262 0.010342 0.016502 

CGP 5 0.925484 0.015138 0.020406 

CGP 6 0.942113 0.011134 0.017569 

SCG 3 0.95726 0.010115 0.015246 

SCG 5 0.934926 0.0156 0.018761 

SCG 7 0.936231 0.012899 0.019373 

 

Heat exchanger efficiency was forecasted by the LM, 

SCG, and CGP algorithms. As illustrated in ‘‘Fig. 11,’’ 

predicted and experimental values of heat exchanger 

efficiency are well-matched. Heat exchanger and 

collector efficiencies are inputs of ANN in Stage 3, 

while the total efficiency of the solar heating system is 

the target. In this stage, the same algorithms (LM, SCG, 

and CGP) have been utilized to predict the total 

efficiency of the system. 
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Fig. 11  Predicted and experimental heat exchanger 

efficiency. 

 

Statistical values for trained and all data are given in 

‘‘Tables 8 & 9’’. As emboldened, the maximum R2s for 

train and all data are 0.999672 & 0.991264, respectively; 

with RMSEs 0.001189 & 0.0056140, and MPEs 

0.0009470 & 0.003066. These values have also been 

acquired with LM-10. Maximums RMSEs and MPEs 

would of course be 0.015529 and 0.012885, respectively. 

 
Table 8 RMSE and MPE for train data for the total efficiency 

of system 

t    Train data 

Algorithms hl 𝑅𝑡
2 MPE RMSE 

LM 6 0.990823 0.004827 0.006154 

LM 9 0.986137 0.006157 0.007355 

LM 10 0.999672 0.000974 0.001189 

CGP 4 0.990918 0.004576 0.005777 

CGP 6 0.997722 0.002322 0.003116 

CGP 10 0.988777 0.0044 0.006866 

SCG 4 0.98072 0.005962 0.006792 

SCG 8 0.988821 0.004728 0.006167 

SCG 9 0.995496 0.003769 0.004396 

 
Table 9 RMSE and MPE for all data for the total efficiency  

t    All data 

Algorithms hl 𝑅𝑡𝑟
2  MPE RMSE 

LM 6 0.98358 0.005714 00007528 

LM 9 0.981516 0.006427 0.00795 

LM 10 0.991264 0.003066 0.005614 

CGP 4 0.979787 0.005607 0.008271 

CGP 6 0.984476 0.00431 0.007366 

CGP 10 0.979251 0.005915 0.008333 

SCG 4 0.97535 0.007274 0.00886 

SCG 8 0.971415 0.007101 0.009887 

SCG 9 0.97436 0.007243 0.01006 

 

Figures 12 and 13 show the predicted and experimental 

total efficiency of the system. The best R2s of total 

efficiency for all and the train data are 0.99126 and 

0.99967, respectively. Hence, the ANN predicted and 

experimental efficiencies prove to be well-matched.  

 
Fig. 12  Predicted and experimental total efficiency for all 

data.  

 

 
Fig. 13  Predicted and experimental total efficiency for 

train data. 

 

After three stages, the total efficiency of the system is 

obtained with high accuracy. In addition, other 

parameters are derived from stages 1 and 2 with 

acceptable accuracy. The difference between predicted 

and experimental efficiency is only 0.00023. 

6 CONCLUSION 

In this study, first a solar space heating system was set 

up with PTC. Then, in order to predict the energies of 

the system components, the collector and heat exchanger 

efficiencies, and the total efficiency of the solar heating 

system, a novel multistage ANN was used. LM, SCG, 

and CGP algorithms were used in the three stages of the 

ANN. In Stage 1, measured data with experimental tests 

as inputs were given to multistage ANN. In this Stage, 
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the designed neural network predicts the useful energy 

of the collector, energy transferred by the heat exchanger 

oil, energy obtained by the heat exchanger water, and the 

energy delivered to the room; with respective maximum 

RMSE{s} of 0.037041, 0.01423, 0.00444, and 0.01524. 

These errors are perfectly acceptable for energy systems. 

In Stage 2, energy values predicted by ANN are used as 

inputs, and the collector and heat exchanger efficiencies 

are taken as outputs. In Stage 3, by using the component 

efficiencies of the system as inputs, the total efficiency 

is evaluated, with maximum and minimum RMSE{s} of 

0.018955 and 0.001189, respectively. The mean 

predicted and experimental total efficiencies equalled 

26%. The best agreement on the predicted parameters 

with experimental data was given by LM (in Stage 1 

with 10, Stage 2 with 6, and Stage 3 with 10 hidden 

layers). The fastest and most accurate algorithm among 

the cited algorithms was therefore Levenberg-

Marquardt. Since the designed multistage ANN can 

forecast all parameters of the solar energy system with 

high accuracy, it can be used to simultaneously predict 

energy system performance parameters. This ANN 

could also be employed to validate ANN results with 

experimental data or analytical solutions.  

When there are many target parameters and lots of data 

for validation, using a multistage ANN can effectively 

simplify complicated calculations. Fortunately, it can be 

employed to save time and to predict all parameters 

simultaneously. 

NOMENCLATURE 

Area (m2) A 

Heat capacity (Jkg-1K-1) Cp 

Hidden layer size hl 

Solar radiation (Wm-2) I 

Mass flow rate (kgs-1) ṁ 
Energy Q 

Power Q̇ 

The inlet oil temperature of the collector 

(C) 

T1 

The outlet oil temperature of the collector 

(C) 

T2 

The inlet oil temperature of the heat 

exchanger (C) 

T3 

The outlet oil temperature of the heat 

exchanger (C) 

T4 

The inlet water temperature of the heat 

exchanger (C) 

T5 

The outlet water temperature of the heat 

exchanger (C) 

T6 

Temperature of the storage tank water (C) T7 

Ambient temperature (C) T8 

Room temperature (C) T9 

The inlet temperature of the radiator(C) T10 

The outlet temperature of the radiator(C) T11 

Efficiency η 

Ambient a 

Artificial neural network ANN 

Collector c 

Experimental exp 

Heat exchanger  H 

Input in 

Oil o 

Output out 

Radiator  R 

Storage tank st 

All data t 

Train tr 

Water W 
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