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Abstract: In this paper, the static pull-in instability (SPIV) of beam-type micro-

electromechanical systems is theoretically investigated. Herein, modified strain gradient 

theory in conjunction with Euler–Bernoulli beam theory have been used for mathematical 

modeling of the size dependent instability of the micro beams. Considering the mid-plane 

stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-

dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, 

capable of capturing the size effect. Two common beam-type systems including double-

clamped and clamped-free cantilever have been investigated. By selecting a range of 

geometric parameters such as beam lengths, width, thickness, gaps and size effect, we 

identify the static pull-in instability voltage. Back propagation artificial neural network 

(ANN) with three functions have been used for modelling the static pull-in instability 

voltage of micro beam. Effect of the size dependency on the pull-in performance has been 

discussed for both micro-structures. The network has four inputs of length, width, gap and 

the ratio of height to scale parameter of beam as the independent process variables, and the 

output is static pull-in voltage of microbeam. The number of nodes in the hidden layer, 

learning ratio and momentum term are optimized using genetic algorithms (GAs). 

Numerical data, employed for training the network and capabilities of the model in 

predicting the pull-in instability behaviour has been verified. The output obtained from 

neural network model is compared with numerical results, and the amount of relative error 

has been calculated. Based on this verification error, it is shown that the back propagation 

neural network has the average error of 6.36% in predicting pull-in voltage of cantilever 

micro-beam. Resultant low relative error value of the ANN model indicates the usability of 

the BPN in this area. 
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1 INTRODUCTION 

Emerging revolution of nanotechnology gives the 

opportunity to develop high performance precise ultra-

small systems for engineering applications. Recently, 

micro/nano electromechanical systems 

(MEMS/NEMS) has found enormous applications in 

many science branches e.g. engineering, chemistry, 

optic, magnetic, electronics, etc. A beam-type 

MEMS/NEMS constructed from two conductive 

electrodes which one electrode is movable and the 

other one is fix (ground). Applying voltage between the 

electrodes leads to deformation of the movable 

electrode toward fixed electrode. When electrostatic 

force exceeds the elastic resistance of the beam, the 

instability occurs and movable electrode suddenly 

adheres to the ground. Instability characteristics of 

MEMS in micro-scales has been investigated by 

previous researchers during previous decade [1]. 

Parametric excitation occurs in a wide range of 

mechanics, due to time dependent excitations, 

especially periodic ones; some examples are columns 

made of nonlinear elastic material, beams with a 

harmonically variable length, parametrically excited 

pendulums and so forth. Investigating stability analysis 

on parametrically excited MEM systems is of great 

importance. In 1995 Gasparini et al. [2] studied on the 

transition between the stability and instability of a 

cantilevered beam exposed to a partially follower load. 

Applying voltage difference between an electrode and 

ground causes the electrode to deflect towards the 

ground. At a critical voltage, which is known as pull-in 

voltage, the electrode becomes unstable and pulls-in 

onto the substrate. The pull-in behavior of MEMS 

actuators has been studied for over two decades without 

considering the casimir force [3-5].  

Osterberg et al. [3], [4] investigated the pull-in 

parameters of the beam-type and circular MEMS 

actuators using the distributed parameter models. 

Sadeghian et al. [5] applied the generalized differential 

quadrature method to investigate the pull-in phenomena 

of micro-switches. A comprehensive literature review 

on investigating MEMS actuators can be found in Ref. 

[6]. Further information about modeling pull-in 

instability of MEMS has been presented in Ref. [7], [8]. 

The classical continuum mechanics theories are not 

capable of prediction and explanation of the size-

dependent behaviors which occur in micron- and sub-

micron-scale structures. However, some non-classical 

continuum theories such as higher-order gradient 

theories and the couple stress theory have been 

developed such that they are acceptably able to 

interpret the size-dependencies. In 1960s, some 

researchers such as Koiter [9], Mindlin [10] and Toupin 

[11] introduced the couple stress elasticity theory as a 

non-classic theory capable to predict the size effects 

with appearance of two higher-order material constants 

in the corresponding constitutive equations.  

In this theory, beside the classical stress components 

acting on elements of materials, the couple stress 

components, as higher-order stresses, are also available 

which tend to rotate the elements. Utilizing the couple 

stress theory, some researchers investigated the size 

effects in some problems [12]. Employing the 

equilibrium equation of moments of couples beside the 

classical equilibrium equations of forces and moments 

of forces, a modified couple stress theory was 

introduced by Yang, Chong, Lam, and Tong [13], with 

one higher-order material constant in the constitutive 

equations.  

Recently, size-dependent nonlinear Euler–Bernoulli 

and Timoshenko beams modeled on the basis of the 

modified couple stress theory have been developed by 

Xia et al. [14], and Asghari et al. [15], respectively. 

Rong et al. [16] present an analytical method for pull-in 

analysis of clamped–clamped multilayer beam.  

This paper investigates the pull-in instability of micro-

beams with a curved ground electrode under action of 

electric field force within the framework of von-

Karman nonlinearity and the Euler–Bernoulli beam 

theory. The static pull-in voltage instability of clamped-

clamped and cantilever micro-beam are obtained by 

using MAPLE commercial software. The effects of 

geometric parameters such as beam lengths, width, 

thickness, gaps and size effect are discussed in detail 

through a numerical study.  

The objective of this paper is to establish neural 

network model for estimating the pull-in instability 

voltage of cantilever beams. More specifically, back 

propagation neural network is used to construct the 

pull-in instability voltage. Effective parameters 

influencing pull-in voltage and their levels for training 

were selected through preliminary calculations carried 

out on instability pull-in voltage of micro-beam. 

Network trained by the same numerical data are then 

verified by some numerical calculations different from 

those used in training phase, and the best model was 

selected based on the criterion of having the least 

average values of verification errors. To the authors’ 

best knowledge, no previous studies which cover all 

these issues are available. To the authors’ best 

knowledge, no previous studies which cover all these 

issues are available. 

2 FUNDAMENTAL OF MODIFIED COUPLE 

STRESS THEORY   

In the modified couple stress theory, the strain energy 

density u  for a linear elastic isotropic material in 

infinitesimal deformation is written as [17]: 



Int  J   Advanced Design and Manufacturing Technology, Vol. 10/ No. 4/ December – 2017                                   47 

  

© 2017 IAU, Majlesi Branch 

 

)3,2,1,()(
2

1
 jimu ijijijij                            (1) 

 

Where: 

 

ijijmmij  2                                                 (2) 

 

))()((
2

1 T
ijijij uu                                              (3) 

 

ijij lm 22                                                               (4) 

 

))()((
2

1 T
ijijij                                              (5) 

 

In which ij , ij , ijm and ij denote the components of 

the symmetric part of stress tensor  , the strain tensor 

 , the deviatoric part of the couple stress tensor m and 

the symmetric part of the curvature tensor  , 

respectively. Also, u and   are the displacement vector 

and the rotation vector. The two Lame constants and 

the material length scale parameter are represented by 

 ,   and l , respectively. The Lame constants are 

written in terms of the Young’s modulus E and the 

Poisson’s ratio   as )21)(1/(   E  and 

).1(2/   E The components of the infinitesimal 

rotation vector i  
are related to the components of the 

displacement vector field iu  as [18]: 
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For an Euler–Bernoulli beam, the displacement field 

can be expressed as: 
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Where u is the axial displacement of the centroid of 

sections, and w denotes the lateral deflection of the 

beam. The parameter xw  / stands for the angle of 

rotation (about the y-axis) of the beam cross-sections. 

Assuming the above displacement field, after 

deformation, the cross sections remain plane and 

always perpendicular to the center line, without any 

change in their shapes. It is noted that parameter z 

represents the distance of a point on the section with 

respect the axis parallel to y-direction passing through 

the centroid. 

 

3 CONSTITUTIVE NONLINEAR EQUATION OF 

BEAM TYPE MEMS   

In this section, the governing equation and 

corresponding classical and non-classical boundary 

conditions of a nonlinear microbeam modeled on the 

basis of the couple stress theory are derived. The 

coordinate system and loading of an Euler–Bernoulli 

beam have been depicted in Fig. 1. In this figure, F(x,t) 

and G(x,t) refer to the intensity of the transverse 

distributed force and the axial body force, respectively, 

both as force per unit length.  

 

 

Fig. 1 An Euler–Bernoulli, loading and coordinate system 

 

By assuming small slopes in the beam after 

deformation, the axial strain, i.e. the ratio of the 

elongation of a material line element initially in the 

axial direction to its initial length, can be 

approximately expressed by the von-Karman strain as: 
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It is noted that finite deflection w is permissible and 

only it is needed that the slopes be very small. 

Hereafter, we use Eq. (8) for the axial strain, instead of 

the infinitesimal definition presented in Eq. (3). 

Substitution of Eqs. (7) and (8) into (3)-(5) yields the 

non-zero components. Also, combination of Eqs. (6) 

and (7) gives [19]: 
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Substitution of Eq. (9) into (5) yields the following 

expression for the only non-zero components of the 

symmetric curvature tensor: 
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It is assumed that the components of strains, rotations 

and their gradients are sufficiently small. By neglecting 

the Poisson’s effect, substitution of Eq. (8) into Eq. (2) 

gives the following expressions for the main 

components of the symmetric part of the stress tensor 

in terms of the kinematic parameters: 
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Where E denotes the elastic modulus. In order to write 

the non-zero components of the deviatoric part of the 
couple stress tensor in terms of the kinematic 

parameters, one can substitute Eq. (10) into       

Eq. (4) to get: 
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Where   and l are shear modulus and the material 

length scale parameter, respectively. To obtain the 

governing equations, the kinetic energy of the beam T, 

the beam strain energy due to bending and the change 

of the stretch with respect to the initial 

configuration bsU , and the increase in the stored energy 

with respect to the initial configuration due to the 

existence of initially axial load isU and finally the total 

potential energy isbs UUU  are considered as 

follows: 
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Where 0N , I and  are the axial load, area moment of 

inertia of section about y– axis and the mass density, 

respectively. The work done by the external loads 

acting on the beam is also expressed as (13c): 
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Where N̂  and V̂  represent the resultant axial and 

transverse forces in a section caused by the classical 

stress components acting on the section. The resultant 

axial and transverse forces are work conjugate to u and 

w, respectively. Also, hP̂  and hQ̂
 
are the higher-order 

resultants in a section, caused by higher-order stresses 

acting on the section. These two higher-order resultants 

are work conjugate to 
2)/(2/1/ xwxuxx  and 22 / xw  , respectively. 

The parameter M̂  is the resultant moment in a section 

caused by the classical and higher-order stress 

components. Now, the Hamilton principle can be 

applied to determine the governing equation: 
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Where  denotes the variation symbol. By applying 

Eqs. (13) and (14), the governing equilibrium micro 

beam is derived as: 
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If in Eq. (15), N=0, then the model of beam is called 

the linear equation (linear model) without the effect of 

geometric nonlinearity. The cross sectional area and 

length of beam are A and L respectively.  
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3.1 MODELING EXTERNAL FORCES  

In Eq. (15), the external force per unit length of the 

beam, fexternal, is the summation of the electrostatic 

Coulomb force per unit length (felec) and the 

intermolecular van der Waals (vdW) force per unit 

length of the nanostructures (fvdW). In this work, effect 

of vdW force on the size-dependent pull-in instability 

of micro-beams is not investigated. Considering 

fringing field correctness effect for narrow beam 

model, the electrostatic Coulomb attraction in Eq. (15) 

is written as the following [20]: 
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Where 21212
0 10854.8  mNC is the permittivity 

of vacuum, V is the applied voltage, g is the initial gap 

between the movable and the ground electrode and B is 

width of beam. For clamped-clamped beam, the 

boundary conditions at the ends are: 
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For cantilever beam, the boundary conditions at the 

ends are: 
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In the static case, we have 0
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Hence, Eq. (15) is reduced to:  
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A uniform micro-beam has a rectangular cross section 

with height h and width B, subjected to a given 

electrostatic force per unit length. Let us consider the 

following dimensionless parameters: 
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In the above equations, the non-dimensional parameter, 

  is defined as the size effect parameter. Also,   is 

non-dimensional voltage parameter. The normalized 

nonlinear governing equation of motion of the beam 

can be written as [21]: 
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4 ANNS  

Artificial NNs are non-linear mapping systems with a 

structure loosely based on principles observed in 

biological nervous systems. In greatly simplified terms 

as can be seen from Fig. 2(a), a typical real neuron has 

a branching dendritic tree that collects signals from 

many other neurons in a limited area; a cell body that 

integrates collected signals and generates a response 

signal (as well as manages metabolic functions); and a 

long branching axon that distributes the response 

through contacts with dendritic trees of many other 
neurons.  

 

 

Fig. 2  (a): A biological nervous systems and (b): an 

artificial neuron model 

 

The response of each neuron is a relatively simple non-

linear function of its inputs and is largely determined 

by the strengths of the connections from its inputs. In 

spite of the relative simplicity of the individual units, 

systems containing many neurons can generate 

complex and interesting behaviors [22]. An ANN 
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shown in Fig. 3 is very loosely based on these ideas. In 

the most general terms, a NN consists of large number 

of simple processors linked by weighted connections. 

By analogy, the processing nodes may be called 

neurons. Each node output depends only on 

information that is locally available at the node, either 

stored internally or arriving via the weighted 

connections. Each unit receives inputs from many other 

nodes and transmits its output to yet other nodes.  

 

 

Fig. 3 A layered feed-forward artificial NN 

 

By itself, a single processing element is not very 

powerful, it generates a scalar output with a single 

numerical value, which is a simple non-linear function 

of its inputs. The power of the system emerges from the 

combination of many units in an appropriate way. A 

network is specialized to implement different functions 

by varying the connection topology and the values of 

the connecting weights. Complex functions can be 

implemented by connecting units together with 

appropriate weights. In fact, it has been shown that a 

sufficiently large network with an appropriate structure 

and property chosen weights can approximate with 

arbitrary accuracy any function satisfying certain broad 

constraints. Usually, the processing units have 

responses like (see Fig. 2(b)): 

 

)(

i

iufy                                                             (24) 

Where, iu are the output signals of hidden layer to 

output layer, )( iuf  is a simple non-linear function 

such as the sigmoid, or logistic function. This unit 

computes a weighted linear combination of its inputs 

and passes this through the non-linearity to produce a 

scalar output. In general, it is a bounded non-decreasing 

non-linear function; the logistic function is a common 

choice. This model is, of course, a drastically 

simplified approximation of real nervous systems. The 

intent is to capture the major characteristics important 

in the information processing functions of real 

networks without varying too much about physical 

constraints imposed by biology. The impressive 

advantages of NNs are the capability of solving highly 

non-linear and complex problems and the efficiency of 

processing imprecise and noisy data. Mainly, there are 

three types of training condition for NNs, namely 

supervised training, graded training and self-

organization training. Supervised training, which is 

adopted in this study, can be applied as: 

(1) First, the dataset of the system, including input and 

output values, is established; 

(2) The dataset is normalized according to the 

algorithm; 

(3) Then, the algorithm is run; 

(4) Finally, the desired output values corresponding to 

the input are used in test phase [23]. 

5 BACK PROPAGATION NEURAL NETWORK  

Back propagation neural network (BPN), developed by 

Rumelhart [24], is the most prevalent of the supervised 

learning models of ANN. BPN used the gradient 

steepest descent method to correct the weight of the 

interconnectivity neuron. BPN easily solved the 

interaction of processing elements by adding hidden 

layers. In the learning process BPN, the 

interconnectivity of the weights is adjusted using an 

error convergence technique to obtain a desired output 

for a given input. In general, the error at the output 

layer in the BPN model propagates backward to the 

input layer through the hidden layer in the network to 

obtain the final desired output. The gradient descent 

method is utilized to calculate the weight of the 

network and adjusts the weight of interconnectives to 

minimize the output error [25].  

6 GENETIC ALGORITHMS  

Genetic algorithms have become popular following 

Holland’s work [26]. GAs consisting of continuous and 

binary forms are designed to efficiently search huge, 

non- linear, discrete and poorly understood search 

spaces, where expert knowledge is scarce or difficult to 

model and traditional optimization techniques has 

failed [27]. Typically, a simple GA consists of three 

operations: (1) parent selection, (2) crossover, and (3) 

mutation. In this research, Roulette wheel selection 

scheme has been applied among the selection operators 

[28]. Two-point crossover was used for each 

chromosome of the chromosome-pair having a 50% 

chance of selection, the two parents selected for 
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crossover exchange information lying between two 

randomly generated points within the binary string. In 

addition, that most of the successful applications of 

GAs [29] is greatly dependent on finding a suitable 

method for encoding the chromosome, the creation of a 

fitness function to rank the performance of a specific 

chromosome is also of paramount importance for the 

success of the training process. The genetic algorithm 

rates its own performance around that of the fitness 

function; consequently, if the fitness function does not 

adequately take account of the desired performance 

features, the genetic algorithm is unable to meet the 

deserved requirements of the user. The proposed 

chromosome includes five genes for learning ratio, two 

genes for momentum term and five genes pertain to the 

number of neurons of hidden layer. To sum up, GA was 

used to optimally search learning ratio, momentum 

term and the number of neurons in hidden layer. Tables 

1 and 2 explore, respectively, the parameters and 

variables of the GA exploited in the research. 

 
Table 1 The GA parameters 

Number of generation 100 

Population 30 

Chromosome length 12 

Selection operator Roulette 

Fitness normalization Rank 

Elitism 1 

Crossover Pc = 0.8, two-point, uniform 

Mutation Pm = 0.1, Gaussian, mean = 

0.0, std = 1.0 

 
Table 2 The GA variables 

Variable name Range Optimized value 

Number of the hidden- 

layer neurons 

4-15 8 

Learning ratio 0.1-1 0.85 

Momentum term 0-1 0.90 

7 RESULTS AND DISCUSSION  

When the applied voltage between the two electrodes 

increases beyond a critical value, the electric field force 

cannot be balanced by the elastic restoring force of the 

movable electrode and the system collapses onto the 

ground electrode. The voltage and deflection at this 

state are known as the pull-in voltage and pull-in 

deflection, which are of utmost importance in the 

design of MEMS devices. The pull-in voltage of 

cantilever and fixed-fixed beams is an important 
variable for analysis and design of micro-switches and 

other micro-devices. Typically, the pull-in voltage is a 

function of geometry variable such as length, width, 

and thickness of the beam and the gap between the 

beam and ground plane. To study the instability of the 

Nano-actuator, Eq. (23) is solved numerically and 

simulated. To highlight the differences between linear 

and nonlinear geometry model results of Euler-

Bernoulli microbeam, we first compare the pull-in 

voltage for a fixed-fixed and cantilever beams with a 

length of 100 m , a width of 50 m , a thickness of 

1 m  and two gap lengths.  

For a small gap length of 0.5 m , we observe that 

linear and nonlinear geometry model give identical 

results. However, for a large gap length of 2 m , we 

observe that pull-in voltage for fixed-fixed beam is 

significantly different. The difference in the pull-in 

voltage is even larger when a gap length of 4.5 m is 

considered. It is evident that pull-in voltage of fixed-

fixed beam is larger than fixed-free beam. The gap 

lengths used vary from 5 to 30 m . For gaps smaller 

than 15 m  and lengths larger than 350 m , we 

observe that the pull-in voltage obtained with linear and 

nonlinear geometry model are very close.  

However, for large gaps and for short beams, we 

observe that the difference in the pull-in voltage 

obtained with linear and nonlinear geometry model is 

not negligible. When the gap increases, the error in 

pull-in voltage with linear model increase significantly. 

Furthermore, contrary to the case of cantilever beams, 

the thickness has a significant effect on the error in 

pull-in voltages. Another observation is that the length 

of the beam has little effect on the error in pull-in 

voltage. This observation is also different from the case 

of cantilever beams. From the results, it is clear that the 

linear model is generally not valid for the fixed-fixed 

beams case, except when the gap is very small, such as 

the 0.5 m case. The results represent that the size 

effect increases the pull-in voltage of the Nano-

actuators. 

8 MODELING OF SPIV OF CANTILEVER BEAM 

USING BACK PROPAGATION ANN 

Modeling of pull-in instability of micro-beam with BP 

neural network is composed of two stages: training and 

testing of the networks with numerical data. The 

training data consisted of values for beam length (L), 

gap (g), width of beam (b) and (h/l), and the 

corresponding static pull-in instability voltage ( PIV ). 

Total 120 such data sets were used, of which 110 were 

selected randomly and used for training purposes whilst 

the remaining 10 data sets were presented to the trained 

networks as new application data for verification 

(testing) purposes. Thus, the networks were evaluated 

using data that had not been used for training. 

Training/Testing pattern vectors are formed, each 

formed with an input condition vector, and the 
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corresponding target vector. The network has four 

inputs of beam length (L), gap (g), width of beam (b) 

and (h/l) ratio and one output of static pull-in voltage 

( PIV ). Table 3 shows 10 numerical data sets which 

have been used for verifying or testing network 

capabilities in modeling the process.  

Therefore, the general network structure is supposed to 

be 4-n-1, which implies 4 neurons in the input layer, n 

neurons in the hidden layer, and 1 neuron in the output 

layer. Then, by varying the number of hidden neurons, 

different network configurations are trained, and their 

performances are checked. For training problem, equal 

learning rate and momentum constant of 9.0  

were used [26]. Also, error stopping criterion was set at 

E=0.01, which means training epochs continued until 

the mean square error fell beneath this value. The size 

of hidden layer(s) is one of the most important 

considerations when solving actual problems using 

multi-layer feed-forward network. However, it has been 

shown that BP neural network with one hidden layer 

can uniformly approximate any continuous function to 

any desired degree of accuracy given an adequate 

number of neurons in the hidden layer and the correct 

interconnection weights [25]. Therefore, one hidden 

layer was adopted for the BP model.  

 
Table 3 Beam geometry and pull-in voltage for verification 

analysis 

Test 

No. 
)( mL   )( mb   lh /  )( mg   

PIV (volt) 

1 75 0.5 4 0.5 0.179 

2 100 5 6 1 2.44 

3 125 10 8 1.5 7.31 

4 150 20 10 2 16.82 

5 175 25 12 2.5 26.78 

6 200 30 14 3 40.27 

7 225 35 16 3.5 53.84 

8 250 40 18 4 68.01 

9 275 45 20 4.5 84.53 

10 300 50 22 5 103.62 

 

To determine the number of neurons in the hidden 

layer, a procedure of trail and error approach needs to 

be done. As such, attempts have been made to study the 

network performance with a different number of hidden 

neurons. Hence, a number of candidate networks are 

constructed, each of trained separately, and the “best” 

network were selected based on the accuracy of the 

predictions in the testing phase. It should be noted that 

if the number of hidden neurons is too large, the ANN 

might be over-trained giving spurious values in the 

testing phase. If too few neurons are selected, the 

function mapping might not be accomplished due to 

under-training. Three functions, namely newelm, newff 

and newcf [30] have been used for creating BP 

networks. Then, by varying the number of hidden 

neurons, different network configurations are trained, 

and their performances are checked. The results are 

shown in Table 4. Both the required iteration numbers 

and mapping performances were examined for these 

networks. As the error criterion for all networks was 

the same, their performances are comparable. As a 

result, from Table 4, the best network structure of BP 

model is picked to have 8 neurons in the hidden layer 

with the average verification errors of 6.36% in 

predicting PIV by newelm function. Tables 5, 6 and 7 

show the comparison of calculated and predicted values 

for static pull-in voltage in verification cases. After 

1884 epochs, the MSE between the desired and actual 

outputs becomes less than 0.01. At the beginning of the 

training, the output from the network is far from the 

target value. However, the output slowly and gradually 

converges to the target value with more epochs and the 

network learns the input/output relation of the training 

samples. 

 
Table 4 The effects of different number of hidden neurons on 

the BP network performance 

No. of 

hidden 

neurons 

Epoch Average 

error in 

PIV  (%) 

with 

newelm 

function 

Average 

error in 

PIV  (%) 

with 

newcf 

function 

Average 

error in 

PIV  (%) 

with 

newff 

function 

4 18914 12.31 10.27 12.30 

5 4970 14.38 18.38 20.19 

6 1783 8.19 11.65 12.75 

7 3984 9.72 9.39 11.17 

8 1884 6.36 8.28 10.14 

9 2770 13.39 11.86 19.98 

10 2683 11.67 16.40 15.48 

 

 

Table 5 Comparison of PIV calculated and predicted by the 

BP neural network model with newelm function 

Test 

 No. 

 

PIV (volt) 

Calculated BP model (newelm) Error (%) 

1 0.179 0.190 6.56 

2 2.44 2.61 7.28 

3 7.31 7.32 0.16 

4 16.82 19.21 14.24 

5 26.78 28.22 5.39 

6 40.27 42.17 4.74 

7 53.84 57.13 6.12 

8 68.01 71.60 5.29 

9 84.53 89.39 5.76 

10 103.62 112.03 8.12 
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Table 6 Comparison of PIV calculated and predicted by the 

BP neural network model with newff function 

Test 

 No. 

 

PIV (volt) 

Calculated BP model (newff) Error (%) 

1 0.179 0.191 7.12 

2 2.44 2.52 3.39 

3 7.31 7.54 3.16 

4 16.82 18.29 8.75 

5 26.78 28.16 5.19 

6 40.27 46.03 14.31 

7 53.84 57.49 6.79 

8 68.01 78.39 15.27 

9 84.53 86.71 2.59 

10 103.62 120.53 16.32 

 

Table 7 Comparison of PIV calculated and predicted by the 

BP neural network model with newcf function 

Test 

 No. 

 

PIV (volt) 

Calculated BP model (newcf) Error (%) 

1 0.179 0.193 8.29 

2 2.44 2.59 6.28 

3 7.31 7.70 5.39 

4 16.82 19.21 14.24 

5 26.78 28.76 7.41 

6 40.27 43.99 9.25 

7 53.84 57.96 7.67 

8 68.01 82.14 20.78 

9 84.53 92.51 9.45 

10 103.62 116.74 12.67 

CONCLUSIONS  

The primary contributions of the paper are summarized 

as follows. 

1. The BP neural network is capable of constructing 

model using only numerical data, describing the static 

pull-in instability behavior. 

2. The results show that newelm function is more 

accurate than newff and newcf functions. Also the 

Levenberg-Marquardt training is faster than other 

training methods. 

3. For cantilever beams, length has a significant effect 

on the error in pull-in voltages, while for fixed-fixed 

beams, the length has little effect on the error. On the 

other hand, for fixed-fixed beams, thickness has 

significant effect on the error in pull-in voltage, while 

for cantilever beams it has little effect.  

4. The static pull-in instability voltage of clamped–

clamped and cantilever beam are compared. For both 

clamped–clamped and cantilever beams, the pull-in 

voltage in nonlinear geometry beam model is bigger 

than linear model.   

5. For both fixed-fixed and cantilever beams by 

increasing of gap length, the pull-in voltage is 

significantly increased. 

6. For both fixed-fixed and cantilever beams by 

increasing of thickness of beams, the pull-in voltage is 

significantly increased. 

7. For both fixed-fixed and cantilever beams by 

increasing of length of beams, the pull-in voltage is 

significantly decreased. 

8. By using modified couple stress theory, it is found 

that the dimensionless pull-in voltage of MEMS 

increases linearly due to the size effect. This 

emphasizes the importance of size effect consideration 

in design and analysis of MEMS. 

9. When the ratio of h/l increases, the pull-in voltage 

predicted by modified couple stress theory and ANN is 

constant approximately.  

The conclusion above indicates that the geometry of 

beam has significant influences on the electro-static 

characteristics of micro-beams that can be designed to 

tailor for the desired performance in different MEMS 

applications. 
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