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Abstract: In this study, the main cutting parameters of high speed machining (HSM) 
including cutting speed, feed rate, depth of cut as well as deposition method were 
optimized using genetic algorithm considering the average surface roughness (Ra) 
of work piece and flank wear (Vb) of CVD and PVD coated tool criteria in high 
speed turning of hardened AISI 4140 Steel. Standard L18 orthogonal array has been 
used for the design of experiment (DOE) applying Taguchi approach. Multiple linear 
regression model applying Minitab, was used to determine the relationship and 
interaction between machining parameters and outputs. For genetic algorithm(GA) 
optimization, the average was applied as a functional output of design of 
experiments. The results of GA for smaller- the better quality characterization shows 
the optimum roughness of 1.107 mm and optimum flank wear of 0.461mm. The 
confirmation tests were carried out in order to validate the response of predicted 
optimum condition. The results of validation test show a good agreement between 
obtained optimum condition and the results of genetic algorithm. The analysis of 
variance was used in order to obtain the contribution of each factor on the output 
statistically. ANOVA results indicated that the cutting speed and cut depth are the 
most effective factors on the flank wear by 37.02 and 27.80 percent contribution 
respectively.  The most effective factors on surface roughness were feed rate and 
cutting speed by 82.49 and 10.50 percent contribution respectively. Stereoscopy and 
Scanning electron microscopy was used to evaluate the wear mechanism and 
topography of worn surface.  
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1 INTRODUCTION 

In recent years, the trend toward increasing the coating 

engineering has been increased with the need to apply 

higher cutting speed and feed rate. As the technology of 

cutting tools is rapidly improving, such development in 

coating is necessary to improve the wear resistance and 

performance of machining on low-machinability 

materials. Improvement in performance can be achieved 

by increasing the life of the cutting tools in terms of wear 

resistance [1] – [3]. In coating processes, the substrate is 

deposited by a hard, low-friction, chemically inert and 

thermal barrier layer (thickness of 1-30 m) [2]. These 

days the cemented carbides are the most common tool 

materials available in high production rate [3].  

Cemented carbide cutting tools are coated using two 

different methods: physical vapor deposition (PVD) and 

chemical vapor deposition (CVD) [1]. Flank wear 

(Fig.1) is the most common type of wear in cutting tools. 

The flank wear occurs in any cutting condition but is 

predominant in low and medium cutting speeds. Flank 

wear takes place due to abrasion, caused by hard 

constituents in the work piece and tool (two counter 

body) or by work hardened debris in tool-chip-work 

piece interface (three counter body). Crater wear 

(adhesion wear mode) is localized to the rake side of the 

insert. Cratering is due to a chemical reaction and 

temperature in the work piece - tool interface and 

improves by increasing the cutting speed and 

temperature. Deeper craters (severe adhesion wear) lead 

to weakening the cutting edge and may lead to fracture. 

In machining the sticky materials, such as low carbon 

steel, stainless steel and aluminium, adhesive wear is 

caused by local micro-welding of the chip to the insert. 

Lower cutting speed increases the formation of built-up 

edge but there is a stable BUE action mechanism in such 

conditions. Plastic deformation takes place when the 

cutting temperature is too high for a certain cutting 

parameters. In general, harder grades and thicker 

coatings improve resistance to plastic deformation wear 

[4]. In addition to wear mechanism, the work piece is the 

other restrictive criteria. Surface quality, provides 

considerable improvements in the tribologic 

characteristics, fatigue strength, corrosion resistance, 

performance and aesthetic look of the products. The 

surface roughness of work piece as a limiting factor in 

choosing the cutting parameters can be affected by tool 

wear. The parameters which affect the surface roughness 

and tool wear are mainly cutting tool material, coating 

material, cutting speed and feed rate. 

Obtaining minimum surface roughness and tool wear by 

the optimization of these parameters is very important 

from the cost reduction view point. For this reason, in 

recent years, a number of statistical models have been 

developed for the analysis and optimization of 

machining parameters such as response surface 

methodology (RSM), regression techniques, analysis of 

variance (ANOVA) and the Taguchi method. The 

Taguchi-based optimization technique has produced a 

unique and powerful optimization discipline that differs 

from traditional practices [5]. Kıvak [1] applied the 

Taguchi method and regression analysis for optimizing 

the surface roughness in milling of Hadfield steel with 

PVD and CVD coated inserts. The CVD TiCN/Al2O3-

coated carbide inserts showed better performance than 

PVD TiAlN-coated carbide inserts and could be 

suggested for milling of Hadfield steel in their study. 

Günayet al [6] also applied the Taguchi approach to 

determine the optimal cutting parameters for surface 

roughness in machining the alloyed white cast iron.  

The statistical analysis indicated that the parameters that 

have the biggest effect on Ra for Ni-Hard materials with 

50 HRC and 62 HRC, are the cutting speed and feed rate. 

Shahrom et al [7] applied the statistical method for 

studying the effect of lubrication condition on surface 

roughness in milling. Minimum quantity lubricant 

(MQL) and wet machining in milling processes of AISI 

1060 aluminium was investigated. The result 

significantly reduced the cost and environmental 

pollution in case of waste material. Chinchanikaret al [8] 

Investigated the effect of work piece hardness, cutting 

parameters and type of coating (coated tool) on the 

cutting force and chip morphology during turning of 

hardened AISI 4340 steel at different levels of hardness. 

The better tool life obtained by CVD coated tool in their 

study, was attributed to its thick coating and the 

protective Al2O3 oxide layer formed during cutting, 

which protected the tool against severe abrasion at 

elevated temperatures. 

 

 
Fig. 1 Modes of wear in cutting tools. 

 

According to literature, it seems important to do a 

constitutive study on a specific tribo-system (tool-work-

machine - coating types) in order to increase the 

machining performance by means of optimization base 

on accurate regression. In present research the genetic 

algorithm has been used to evaluate the optimum tool 

wear and work piece roughness in high speed machining 

(HSM). Design of Experiments using standard Taguchi 

method and considering main parameters - cutting 
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speed, feed rate, depth of cut as well as deposition 

method - has been done for this purpose. The optimum 

conditions for HSM was obtained using the capability of 

MATLAB in genetic algorithms coding. Multiple linear 

regression model applying Minitab, were used to 

determine the relationship and interaction between 

machining parameters and outputs. Scanning electron 

microscopy was used to evaluate the worn surface and 

the wear mechanisms. 

2 MATERIALS AND METHODS 

The AISI 4140 steel was selected for work piece 

materials. Its chemical composition is given in Table 1. 

The work piece with dimension of 70 mm × 350 mm 

were applied to heat treatment at 850ºC (austenite 

temperature) for 30 minutes and oil quenched followed 

by tempering at 200ºC for 1 hours and cooling to 

ambient temperature. The Turning experiments were 

carried out in dry cutting conditions using CNC lathe 

machine with Fagor processor model 8055 equipped 

with a maximum spindle speed of 4500 rpm and a 15 kW 

drive motor. The applied parameters and relevant levels 

are tabulated in table 2. The cutting experiments were 

conducted using two types of cemented carbide tool 

inserts: PVD-coated and CVD-coated tools, the 

properties of cutting tools and coating materials are 

given in Table 3. The orthogonal array L18 was selected 

for designing and conducting the experiments (table 4).  
 

Table 1 Chemical composition of workpiece materials 

Fe Cu Ni Mo Cr Mn Si C 

Balanc

e 

0.2

0 

0.0

8 

0.1

7 

0.9

4 

0.8

2 

0.2

6 

0.3

7 

 

The evaluation the worn surface and measurement of 

flank wear of inserts were done by stereoscope 

(OPTIKA model) coupled with camera (DINO model) 

and computer. Scanning electron microscopy was used 

to evaluate the topography of worn surfaces and wear 

mechanisms. The average surface roughness (Ra) of the 

workpiece was measured by a Hand-Held TR200 TIME 

Ltd. surface roughness tester; the cut-off and evaluation 

lengths were fixed at 0.8mm and 5mm respectively. 
 

Table 2 Variables parameters and their levels 

L3 L2 L 1  Symbol Factors 

- CVD PVD A ( Ct) Deposition 

method  

280 230 180 B (V) Cutting speed 

(m/min) 

0.20 0.15 0.10 C (f) Feed rate 

(mm/rev) 

0.9 0.6 0.3 D (d) depth of cut 

(mm) 

 

Table 3 Specification of coated tools 

Thicknes

s 

Coating method Symbol Grade 

4  µm Oxide PVD ×HC GC1125 

4  µm Ti(C,N)+

+Ti3O2Al

N 

CVD ×HC GC2025 

×Hardmetal-coated 

 
Table 4 Taguchi’s orthogonal array ( L18 ) 

Experiment 

no. 

Factor A Factor 

B 

Factor 

C 

Factor 

D 

1 1 1 1 1 

2 1 1 2 2 

3 1 1 3 3 

4 1 2 1 1 

5 1 2 2 2 

6 1 2 3 3 

7 1 3 1 2 

8 1 3 2 3 

9 1 3 3 1 

10 2 1 1 3 

11 2 1 2 1 

12 2 1 3 2 

13 2 2 1 2 

14 2 2 2 3 

15 2 2 3 1 

16 2 3 1 3 

17 2 3 2 1 

18 2 3 3 2 

3 RESULTS AND DISCUSSION 

3.1. Design of Experiment (DOE) 

Taguchi approach has been used for designing, 

conducting as well as evaluating the effect of main HSM 

parameters on the work piece roughness and flank wear 

of cutting tool. The standard Taguchi array (L18) and 

mean values of outputs according to Taguchi’s ‘‘the-

smaller-the-better’’ quality characterization is tabulated 

in table 5. Fig. 2 shows the stereoscopy image of flank 
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wear for tests E10 and E11. In this study. Figure 3 

illustrates the average effect of parameters on the flank 

wear of cutting edge. As shown the PVD coatings are 

less wear-resistant than tools with CVD coatings. One of 

the PVD coating features is the reduction of friction 

coefficient in this process [9]. In PVD coatings, the 

friction coefficient reduction exists even at high 

temperatures and leads to abrasion resistance in elevated 

temperatures [10]. As the cutting speed and depth of the 

load increase, the flank wear of the tool increases 

dramatically in higher levels of the cutting speed and cut 

depth in this study. More relevant details will be 

discussed in section of wear mechanisms. Nevertheless, 

In the case of changes in the feed rate, there was no 

certain increase or decrease trend. After a sharp decrease 

in flank wear from feed rate in level 2, the wear increases 

again by increasing the feed rate. Therefore, in order to 

minimize the flank wear, the feed level should be 

considered at an optimum level. 

 

 

 
 

 
 

Fig. 2 Flank wear width in E10 and E11. 

 

Table 5 Average flank wear and roughness (Ra) 

Test 

no. 

Ct  V F D Ra  

(µm) 

Vb(m

m) 

1 PVD 180 0.10 0.3 1.27 0.545 

2 PVD 180 0.15 0.6 1.42 0.550 

3 PVD 180 0.20 0.9 1.90 0.630 

4 PVD 230 0.10 0.3 1.25 0.655 

5 PVD 230 0.15 0.6 1.37 0.685 

6 PVD 230 0.20 0.6 1.64 0.760 

7 PVD 280 0.10 0.6 1.17 0.805 

8 PVD 280 0.15 0.9 1.37 0.865 

9 PVD 280 0.20 0.3 1.67 0.690 

10 CVD 180 0.10 0.9 1.25 0.955 

11 CVD 180 0.15 0.3 1.46 0.505 

12 CVD 180 0.20 0.6 1.77 0.570 

13 CVD 230 0.10 0.6 1.15 0.759 

14 CVD 230 0.15 0.9 1.31 0.850 

15 CVD 230 0.20 0.3 1.64 0.845 

16 CVD 280 0.10 0.9 1.12 1.102 

17 CVD 280 0.15 0.3 1.25 0.755 

18 CVD 280 0.20 0.6 1.47 0.930 

 

The surface roughness of work piece for the levels of 

factors in this study is shown in Fig. 4. Clearly, it can be 

seen that a tool with CVD coat creates less roughness 

compared to high speed machining with PVD coatings. 

As is predictable, the surface roughness decreases by 

increasing the cutting speed and selecting the lower 

levels of feed rate. As it was predictable, the surface 

roughness decreases by increasing the cutting speed and 

selecting the lower levels of feed rate. In case of cut 

depth, it seems that this parameter has not much effect 

on the surface quality. All in all, the machinist should 

consider the capability and vibration of tool-work piece-

machine in selecting the cut depth and feed rate [11]. 
 

 
Fig. 3 The average effect of parameters (mentioned in 

table2) on flank wear. 
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Fig. 4 The average effect of parameters on roughness. 

 

3.2. Mathematical Modeling 

The second order linear regression equations were used 

for the mathematical modeling for more accurate curve 

fitting of wear and roughness as below Eq. 1: 

 

Y = β0 + ∑ βi

p

i=1

xi + ∑ βii

p

i=1

xi
2  

+  ∑ ∑ βijxixj +

j≠ii

ε 

 

(1) 

The least square method is used, where all β coefficients 

are regression coefficients. Xi is the independent 

variable, p is number of variables, and y is the dependent 

variable. The Pearson correlation coefficient (Eq. 2) was 

used for further examination of the effect of parameters 

and their interactions. The closer the correlation 

coefficient is to values 1 and -1, the more suitable the 

linear relationship will be between parameters. If the 

coefficient is equal to zero or very close to zero, it will 

indicate lack of a linear relationship between two 

parameters [12]. 

 

R =
∑ (xi − x̅)(yi − y̅)n

i=1

√(∑ (xi − x̅)2 ∑ (yi − y̅)2n
i=1

n
i=1 )

         (2) 

 

Where, (xi, yi) is ordered pair of “i” observation. The 

results of Pearson correlation for wear and roughness 

(Tables 6) show that the effect of parameter B, C and D 

are in second order linear relation with wear rate because 

of larger correlation coefficient. Also in the case of 

roughness parameters B and C are as second order form.  

Moreover, interactions B×C, B×D and C×D, indicated 

in tables 7 and 8, have impressive effect on both of wear 

and roughness. Parameter D has no significant effect on 

roughness and so, it is considered as error of regression 

equation.   

 

Table 6 Pearson correlation for wear and roughness 

Wear 

(Roughness) 

B C D 

Linear 

Correlation 

0.60(0.316) -0.17(0.89) 0.53 (0) 

Quadratic 

correlation 

0.61 (0.324) 0.27(0.91) 0.55 

(0.08) 

 

Table 7 Pearson Correlation Coefficient for wear results 

Linear 

Correlation 

B×C B×D C×D 

wear 0.18 0.72 0.522 

roughness 0.55 -0.71 0.50 

 

As mentioned above, Equation 1 is summarized as Eq. 

3a and Eq.3b for wear and roughness respectively. 

 

Y = β0 + β1B + β2C + β3D + β4B2 + β5C2

+ β6D2 + β7BC + β8BD
+ β9CD 

(3a) 

 

Y = β0 + β1B + β2C + β3B2 + β4C2

+ β5BC + β6BD + β7CD 

(3b) 

 

Regression function is calculated after determining 

regression coefficients using the least squares error 

method and Minitab for flank wear and roughness 

respectively (Eq. 4 and 5). Tables 8 and 9 show the 

results of regression analysis. 

 

Vb = -0.06 + 0.00887 B - 8.96 C + 0.428 D 

- 0.000020 B*B + 31.1 C*C + 0.494 D*D                 (4)   

+ 0.0112 B*C + 0.00089 B*D - 5.74 C*D       

 

Ra = 1.946 - 0.00575 B - 1.46 C 

 + 0.000015 B*B + 29.9 C*C –                                  (5) 

 0.0156 B*C - 0.00096 B*D + 1.34 C*D 

 
Table 8  Regression analysis for average flank wear 

Term Coef T-Value P-Value VIF 

Constant -0.06 -0.06 0.954   

B 0.00887 1.13 0.293 289.25 

C -8.96 -1.46 0.182 175.09 

D 0.428 0.53 0.608 98.06 

B*B -0.00002 -1.22 0.257 265.86 

C*C 31.1 1.89 0.096 115.09 

D*D 0.494 1.09 0.306 45.24 

B*C 0.0112 0.9 0.394 55.84 

B*D 0.00089 0.43 0.676 42.42 

C*D -5.74 -2.55 0.034 23.23 
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Table 9  Regression analysis for average 

Term Coef T-Value P-Value VIF 

Constant 1.946 2.33 0.042 
 

B -0.00575 -0.89 0.392 272.78 

C -1.46 -0.31 0.765 149.04 

B*B 0.000015 1.12 0.288 262.35 

C*C 29.9 2.2 0.052 110.39 

B*C -0.0156 -1.54 0.154 51.92 

B*D -0.00096 -0.94 0.369 15.85 

C*D 1.34 0.87 0.404 19.11 

 

To make comment on the accuracy of a regression 

equation, its coefficient of determination (R2و Radj
2) is 

usually considered as a criterion. The mentioned values 

R2= 94.76% and 88.26% and Radj
2= 91.10% and 75.05% 

for flank wear and workpiece roughness show that the 

achieved regression equation is a suitable model for 

describing changes of outputs.  

3.3. Genetic Algorithm 
In fact, genetic algorithm is a method for finding an 

approximate solution of optimization problems using the 

concepts of biology such as inheritance. In this 

algorithm, the variables are binary coded. Then using 

computer simulation of conservation laws, the weaker 

characters are replaced by more appropriate characters. 

This process is repeated to gain the best results.  The 

process is iterated as long as the best response is 

achieved. The fundamental steps for analyzing 

optimization problems using genetic algorithm code 

writing are as follows: 

1- Defining variables as a chromosome with a constant 

length, selecting size of a chromosome, determining 

crossover probability (Pc) and Mutation probability (Pm) 

2- Defining a target function for assessing chromosomes 

3- Generating population of primary chromosomes 

randomly 

4- Assessing the selected population 

5- Copying the best members in a new generation 

6- Performing a crossover action for each pair of 

chromosomes (parents) and generating two new 

chromosomes (offspring) 

7- Performing a mutation action for the selected 

chromosomes and generating mutated offspring 

8- Creating a new generation (merging 5, 6, and 7) 

9- Assessing the new generation 

10- Returning to Step 5 in case termination condition is 

not satisfied [13].  
This research aims at achieving the minimum flank wear 

and surface roughness in HSM process. Genetic 

algorithm code writing in a MATLAB environment was 

used for this purpose. regression equations were used as 

a target function for algorithm implementation. The 

algorithm structure was established by selecting a 20 

binary population randomly with the string length of 64 

bits (for each 16-bit independent parameter) as the 

primary population and considering probabilities of 

crossover and mutation as 80 percent and 10 percent, 

respectively. A double point crossover method was used 

for generating two new offspring for each selected pair 

of chromosomes (parents). Figures 5 and 6 show 

changes of mean effect, which was calculated by the 

genetic algorithm. As the diagram shows, mean values 

of wear and roughness remains constant after about 5 

iterations and it converges on 0.461 and 1.107 

respectively. The results of optimization of GA is 

tabulated in table 10. 

 

 
Fig. 5 Plot of Number of Generation Vs S/N Ratio 

(Velocity). 

 

 
Fig. 6 Plot of Number of Generation Vs S/N Ratio 

(Velocity). 

 
Table 10  The Optimal condition predicted by GA 

 A B C D Ave. Test 
Roughness CVD 280 0.1 0.9 1.107 A2B3 

C1D3 
Flank wear CVD 180 0.15 0.3 0.461 A2B1 

C2D1 
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3.4. Verification Test 

A verification test was used for verifying the optimal 

results achieved by the genetic algorithm. The mean 

value of the optimal wear and roughness were 0.505mm 

and 1.12 m, respectively. In statistical issues, 

confidence interval is an approximate range for data, 

which is used for the reliability of an estimate. 

Confidence interval is obtained for the mean value of a 

set of data and observations, C.I.(m), with a certain 

confidence level using the following equation [14]. 

  

C. I. (m) = E(m) ± √
Fα(f1.f2)×Ve

ne
                                (6) 

 

Where Fα(f1. f2) is the variance ratio, which is obtained 

by Table F at the confidence level of 1-α. F1 is the mean 

degree of freedom, which is always equal to one, f2 is the 

error degree of freedom, ve is error variance, and ne  is 

number of equivalent responses. The result of 

confidence interval calculation for wear and roughness 

at the predicted levels are tabulated in tables 11 and 12. 

The results show that the optimal flank wear and 

roughness obtained from the test has good agreement 

with those predicted by the genetic algorithm. 

  
Table 11   Result of C.I for flank wear  

GA Experimental 

Flank wear 0.461 0.505 

C.I.(95%) 0.461±0.112 

 
,=102=1, f1f 

0.05α =,=0.005704e=2.25, MSen 

 

Table 12   Result of C.I for flank wear  
GA Experimental 

Roughness 1.107 1.12 

C.I.(95%) 1.107±0.085 
 

=2.25, e=10, n2=1, f1f

0.05α =,=0.003266eMS 

3.5. ANOVA 

ANOVA is one of the statistical applications, which 

examines the effect of variables on a response 

individually. In other words, ANOVA specifies 

contribution of the effect of each factor on output. 

Contribution percentage (P) for a specific factor is 

obtained from dividing total Net Square by sum of total 

squares. Tables 13 and 14 shows the ANOVA results 

based mean value of test output for “the smaller, the 

better” QC. With approximately 37.02 percent of 

contribution, cutting speed has the maximum effect on 

the flank wear. Cut depth and deposition method has 

27.8 and 14.91 percent respectively. Although the feed 

rate parameter has slight effect on flank wear, it has 

considerable effect on surface roughness of work piece 

with 82.49% contribution. the surface roughness is less 

affected by cutting speed, cut depth and even deposition 

method in selected levels. By pooling the share of 

deposition method and cut depth into the contribution of 

error, the total error hardly reaches 7 percent. 

 
Table 13   Result of ANOVA for flank wear 

 DF Contributio

n 

Adj MS F-

Valu

e 

P-

Valu

e 

A 1 14.91% 0.065522 11.49 0.007 

B 2 37.02% 0.081325 14.26 0.001 

C 2 7.29% 0.01601 2.81 0.108 

D 2 27.80% 0.061085 10.71 0.003 

Error 10 12.98% 0.005704 
  

Total 17 100.00% 
   

  

Table 14   Result of ANOVA for flank wear 

 DF Contributio

n 

Adj MS F-

Value 

P-

Valu

e 

A 1 2.62% 0.022756 6.97 0.025 

B 2 10.50% 0.045572 13.96 0.001 

C 2 82.49% 0.357872 109.5

9 

0 

D 2 0.62% 0.002672 0.82 0.469 

Erro

r 

10 3.76% 0.003266 
  

Tota

l 

17 100.00% 
   

3.6. Wear Mechanisms 

The wear behavior and wear mode strongly depends on 

tribo-system of tool-chip-work piece interface. The 

abrasive wear is determined by hardness of tool, carbide 

distribution in tool and work piece material, built up 

edge, cutting parameter as well as production method of 

cutting tools [4], [15]. 

At lower cutting speed where the temperature is not high 

enough, a stable built-up edge (BUE) protects the cutting 

edge against the abrasive and adhesive wear. However, 

the formation and rebound mechanism of BUE causes a 

sudden failure in cutting edges in chipping form at low 

cutting speed. The relative motion between tool and 

blank at such condition is stick–slip. At higher cutting 

speeds, this relative motion changes to slip so that the 

BUE will be unstable to play a wear particle (debris) 

role, causes three body abrasion wear. Fig. 7 shows the 

SEM topography of BUE in the cutting edge. The 

segregated carbides and hard partied from tool and blank 

have the same effects. As can be seen in V=180 m/min 

the abrasive wear is predominant wear mechanism. In 
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elevated cutting speed (280 m/min) with relatively 

higher tool-work interface temperature, the softened 

BUE and carbide do not have enough hardness or cold 

work ability to scratch the surface severely.  

 

 

 

Fig. 7 SEM topography of rake face: (a): V=180m/min 

and (b): V=280 m/min SEM topography of flank surface. 

 

Fig. 8 illustrates the rake face wear in tool-chip interface 

using SEM topography for cutting speeds of 180 and  

280 m/min. In the rake face, the presence of BUE as a 

thermal barrier layer protects the rake face against the 

tool-chip interface temperature. The wear mode in rake 

face in such condition is moderate adhesive (Fig. 8a). At 

a certain cutting speeds, the wear particles (debris) begin 

to soften, and therefore lose their abrasive role at flank 

wear. Softening and rebounding of the thermal barrier 

layer leads to heat transfer from cutting zoon to rake face 

that softens the rake face and forms a crater in rake face. 

Adhesion wear mechanism is identified by deep craters. 

The depth of crater always increases proportionally with 

cutting speed (Fig. 8b). 

 

 

Fig. 8 SEM topography of rake face: (a): V=180m/min 

and (b): V=280 m/min. 

4 CONCLUSIONS 

The wear behavior of tool and surface roughness of work 

piece in high speed machining of AISI4140 by CVD and 

PVD tools have been studied. A brief conclusion of 

findings is as below: 

1- The minimum amount of flank wear and surface 

roughness using the genetic algorithm is 0.461mm and 

1.107 m respectively. Therefore, the optimal amount of 

wear and roughness were obtained in 

(CVD/180/0.15/0.3) and (CVD/280/0.1/0.9) 

respectively. 

2- The validation test shows a good agreement with 

genetic algorithm optimization results. 

3- The evaluation of wear surfaces shows that the 

predominant wear mechanism is abrasion wear by 

presences of mild adhesive wear.  
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