کاربردهای نانوزیست مواد در ارتوپدی
محورهای موضوعی : کاربرد شیمی در محیط زیستسعیده ابراهیمی اصل 1 , بهزاد یثربی 2
1 - گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد اهر، اهر، ایران
2 - استادیار گروه مهندسی پزشکی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران
کلید واژه: ارتوپدی, نانوزیست مواد , مهندسی بافت , استخوان,
چکیده مقاله :
پیشرفتهای اخیر در نانوبیوتکنولوژی، انقلابی را در توانایی ما برای درک پیچیدگیهای بیولوژیکی و حل مشکلات در حوزه پزشکی همراه با توسعه تکنیکها و مواد بیومتریک ایجاد کرده است. اعتقاد بر این است که نانوکامپوزیت ها و مواد نانوساختار با ویژگیهای خاص ساختاری و فیزیکی و شیمیایی، نقشی محوری در تحقیقات ارتوپدی ایفا می کنند، زیرا خود استخوان نمونه¬ای معمولی از نانوکامپوزیت ها است. این مقاله به بررسی تحقیقات اخیر در استفاده از نانوزیست کامپوزیتها برای بهبود مواد مورد نیاز ارتوپدی میپردازد و کاربرد آنها را در مهندسی بافت استخوان و نیز به عنوان رابط های تاندون- استخوان بررسی میکند. تحقیقات اولیه پتانسیل نانوزیست مواد را برای کاربردهای ارتوپدی نشان می¬دهد. ولیکن با توجه به گستره قابل توجه کاربردی این مواد در این حوزه و نیاز به بررسی بالینی این کامپوزیت ها تحقیقات همچنان ضروری است. لذا بررسی های بیشتری در این حوزه و کاربردهای پزشکی این مواد پیشنهاد می شود.
Recent advances in nanobiotechnology have created a revolution in our ability to understand biological complexities and solve medical problems by developing sophisticated biometric techniques and materials. It is believed that nanocomposites and nanostructured materials with special structural, physical and chemical characteristics play a central role in orthopedic research because bone itself is a typical example of nanocomposites. This article reviewed resent researches on the use of nano-biomaterials to improve orthopedic materials and their application in bone tissue engineering and tendon-bone interfaces. Preliminary research supports the potential of nanobiomaterials for orthopedic applications. However, considering the significant range of applications of these materials in this field and the need for clinical examination of these composites, research is still necessary. Therefore, more investigations in this field and medical applications of these substances are suggested.
1) کرامت آذر، ز. فیضاله بیگی، ا. حاجب، س. "بررسی جایگاه مصالح هوشمند و خود ترمیم در معماری پایدار". اولین همایش ملی معماری، مرمت، شهرسازی و محیط زیست پایدار، همدان، دانشکده فنی شهید مفتح همدان، شهریور ۱۳۹۲.
2) عابدینی، ف؛ و همکاران. "بررسی و تحلیل چگونگی بهرهگیری از فناوری نانو در توسعه معماری پایدار". همایش ملی معماری پایدار و توسعه شهری، بوکان، اردیبهشت ۱۳۹۲.
3) Maryam A. Shetab Boushehri,, Dirk Dietrich, and Alf Lamprecht1 Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art 2020. 12(6).
4) Ibrahim. Kh, Khalid. S, Idrees. Kh, Nanoparticles: Properties, applications and toxicities .Arabian Journal of Chemistry. 2019. Volume 12, Issue 7 P. 908-931.
5) Ming-qi Recent Advances and Perspective of Nanotechnology-Based Implants for Orthopedic Applications. 2022; 10: 878257.
6) Stuart H. Ralston.، Bone structure and metabolism. Journal of Medicine. volume 41, issue 10 October 2013, Pages 581-585
7) Linda M. McManus and Richard N. MitchellPathobiology of Human Diseases , A Dynamic Encyclopedia of Disease Mechanisms, 2014.
8) Boese, C.K., et al., The femoral neck-shaft angle on plain radiographs: a systematicreview. Skeletal Radiology, 2016. 45(1): p. 19-28.
9) Reynolds, A., The fractured femur. Radiologic technology, 2013. 84(3): p. 273-291.
10) M. S. LeBoff,corresponding author S. L. Greenspan, K. L. Insogna, E. M. Lewiecki, K. G. Saag, A. J. Singer, and E. S. Siris The clinician’s guide to prevention and treatment of osteoporosis Osteoporos Int. 2022; 33(10): 2243.
11) Ray Marks , John P Allegrante , C Ronald MacKenzie , Joseph M Lane Hip fractures among the elderly: causes, consequences and control Ageing Research ReviewsVolume 2, Issue 1, January 2003, Pages 57-93.
12) Cristina Fondi and Alessandro Franchi Definition of bone necrosis by the pathologist Clinical Cases in Miner Bone Metabolism. 2007; 4(1): 21–26.
13) Sumit Murab, Teresa Hawk, Alexander Snyder, Sydney Herold, Meghana Totapally and Patrick W. Whitlock. Tissue Engineering Strategies for Treating Avascular Necrosis of the Femoral Head. Bioengineering 2021,8, 200
14) Van Arkel, R., et al., The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres: an experimental study. The bone & joint journal, 2015. 97(4): p. 484-491.
15) Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons Introduction - Biomaterials Science: An Evolving, Multidisciplinary Endeavor Biomaterials Science (Third Edition), 2013.
16) Tran N, Webster TJ. Nanotechnology for bone materials. Wiley Inter¬discip Rev Nanomed Nanobiotechnol. 2009;1(3):336–351.
17) Rinaldo Florencio-Silva, Gisela Rodrigues da Silva Sasso, Estela Sasso-Cerri, Manuel Jesus Simões, and Paulo Sérgio Cerri , Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells Biomed Res Int. 2015; 2015: 421746.
18) Lisha Zhu, Dan Luo, and Yan LiuEffect of the nano/microscale structure of biomaterial scaffolds on bone regeneration Int J Oral Sci. 2020; 12: 6.
19) Ganesan Balasundaram and Thomas J Webster A perspective on nanophase materials for orthopedic implant applications Journal of Materials Chemistry September 2006: 16(38):3737-3745.
20) اشرف نیا، سیدعلیرضا، و جمشیدیان، مصطفی. (1398). محاسبه انرژی سطح وابسته به اندازه نانوذرات و نانوحفرات کرویفلزی به روش دینامیک مولکولی. مهندسی مکانیک مدرس، 19(4 )، 1001-1007.
21) McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repairand regeneration. J Biomed Mater Res B Appl Biomater. 2012;101B(2):387–397.
22) Ducheyne P, Bianco P, Radin S, et al.. Bioactive materials:mechanisms and bioengineering considerations. In: Ducheyne P, Kokubo T, VanBlitterswijk CA, editors.Bone-bonding biomaterials. Liederdorp, the Netherlands:Reed Healthcare Communications, 1992; p 1–112.
23) Wolke JG, VanDijk K, Schaeken HG, et al.. Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. J Biomed Mater Res 1994; 28:1477–1484.19.
24) Feddes B, Wolke JG, Jansen JA.. Initial deposition of calcium phosphate ceramic on polystyrene and polytetra-flouroethylene by rf magnetron sputtering deposition. J Vac Sci Technol A 2003; 21:363–368.
25) McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repairand regeneration. J Biomed Mater Res B Appl Biomater. 2013;101(2):387–397.
26) Huang J, Jayasinghe SN, Best SM, et al. Novel deposition of nano-sized silicon substituted hydroxyapatite by electrostatic spraying. J Biomed Mater Res 2005; 16:1137–1142.
27) Huang J, Best SM, Bonfield W, et al..In vitro assessment of the biological response to nano-sized hydro-xyapatite. J Mater Sci Mater Med .2004;15:441–445.
28) Decher G.. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997; 277:1232–1237.
29) Decher G, Hong JD, Schmitt J.. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charges surfaces. Thin Solid Films 1992; 210: 831–835.
30) Webster TJ, Siegel RW, Bizios R.. Osteoblastadhesion on nanophaseceramics. Biomaterials 1999; 20:1221–1222.
31) Webster TJ, Ergun C, Doremus RH, et al.. Enhancedfunctions of osteoclastlike cells on nanophase ceramics.Biomaterials 2001. 22:1327–1333.
32) Webster TJ, Ergun C, Doremus RH, et al.. Enhancedfunctions of osteoblastson nanophase ceramics. Biomaterials. 2000.181-21:18.3.
33) Price RL, Gutwein LG, Kaledin L, et al.. Osteoblast function on nanophase alumina materials: influence of chemistry, phase and topography. J Biomed Mater Res 2003.67A:1284–1293.
34) Leeuwenburgh S, Wolke J, Schoonman J, et al..Electrostatic spraydeposition (ESD) of calcium phosphatecoatings. J Biomed Mater Res 2003. 66A:330–334.
35) Perla V, Webster TJ.. Better osteoblast adhesion onnanoparticulateselenium—a promising orthopedicimplant material. J Biomed Mater Res 2005. 75:356–364.
36) Luo, J., Zhu, S., Tong, Y., Zhang, Y., Li, Y., Cao, L., et al.. Cerium oxide nanoparticles promote osteoplastic precursor differentiation by activating the Wnt pathway. Biol. Trace Elem. Res. 2023. 201 (2), 865–873.
37) Tejido-Rastrilla, R., Ferraris, S., Goldmann, W. H., Grünewald, A., Detsch, R., Baldi, G., et al. 2019. Studies on cell compatibility, antibacterial behavior, and zeta potential of Ag-containing polydopamine-coated bioactive glass-ceramic. Materials 12 (3), 500
38) Holweg, P., Labmayr, V., Schwarze, U., Sommer, N. G., Ornig, M., and Leithner, A. Osteotomy after medial malleolus fracture fixed with magnesium screws ZX00-A case report. Trauma Case Rep. 2022. 42, 100706.
39) Wei Zhou , Xiaoxia Zhong , Xiaochen Wu , Luqi Yuan , Zhuncheng Zhao , Hui Wang , Yuxing Xia , Yuanyong Feng , Jie He , Wangtao ChenThe effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells Surface and Coatings TechnologyVolume 200, Issues 20–21, 22. 2006, P( 6155-6160)
40) افتخاری، هادی، جهاندیده، علیرضا، اصغری، احمد، اکبرزاده، ابوالفضل، و حصارکی، سعید. (1397). ارزیابی آسیب شناسی بافتی نانوکامپوزیت تری کلسیم فسفات در مقایسه با نانوکامپوزیت هیدروکسی آپاتیت بر روند التیام نقیصه ایجاد شده در استخوان ران خرگوش. پاتوبیولوژی مقایسه ای ایران، 15(4 (پیاپی 63) .
41) Kikuchi M, Itoh S, Ichinose S, et al.. Self-organizationmechanism in a bone-like hydroxyapatite/collagen nanocompositesynthesized in vitro and its biological reaction invivo. Biomaterials. 2001. 22:1705–1711.
42) Liao SS, Cui FZ, Zhu XD.. Osteoblasts adherence andmigration through three-dimensional porous mineralizedcollagen based composite: nHAC/PLA. J BioactCompatPolym. 2004.19:117–130.
43) Mistry AS, Mikos AG, Jansen JA.. In vitro cytotoxicityand in vivo biocompatibility of a poly(propylenefumarate)-based/alumoxanenanocomposite for bone tissueengineering. J Biomed Mater Res (in press). 2006.
44) Shi X, Hudson JL, Spicer PP, et al.. Rheologicalbehavior and mechanical characterization of injectablepoly(propylenefumarate)/single-walled carbon nanotubecomposites for bone tissue engineering. Nanotechnology. 2005.16:S531–S538.
45) Smith TA,Webster TJ.. Increased osteoblast function on PLGA composites containing nanophase titania. J Biomed Mater Res. 2005.74A:677–686
46) Elias KL, Price RL,Webster TJ.. Enhanced functions of osteoblasts on carbon nanofiber compacts. Biomaterials. 2002. 23:3279–3287.
47) Price RL, Webster TJ.. Increased osteoblast viability in the presence of smaller nano-dimensioned carbon fibers.Nanotechnology. 2004.15:892–900.
48) Horch RA, Shahid N, Mistry AS, et al.. Nanoreinforcementof poly(propylene fumarate)-based networks withsurface modifiedalumoxane nanoparticles for bone tissueengineering. Biomacromolecules. 2004.5:1990–1998.
49) رازی، امین، عامل فرزاد، سارا، بیرجندی نژاد، علی، پارسا، علی، پیوندی، محمدتقی، و حسینی حسن آبادی، مریم. (1397). سلول های بنیادی مزانشیمی و ارتوپدی. مجله جراحی استخوان و مفاصل ایران، 16، 2 (مسلسل 61) )، 178-184.
50) Horch RA, Shahid N, Mistry AS, et al.. Nanoreinfor cement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering Biomacromolecules. 2004. 5:1990–1998.
51) Shi X, Hudson JL, Spicer PP, et al.. Rheological behavior and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology. 2005. 16:S531–S538.
52) Xavier, J. R., Thakur, T., Desai, P., Jaiswal, M. K., Sears, N., Cosgriff-Hernandez, E.,et al.. Bioactive nanoengineered hydrogels for bone tissue engineering: A growth-factor-free approach. 2015. ACS Nano 9 (3), 3109–18. doi:10.1021/nn507488s
53) Nayak, T. R., Andersen, H., Makam, V. S., Khaw, C., Bae, S., Xu, X., et al.. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. 2011. ACS Nano 5 (6), 4670–4678. doi:10.1021/nn200500h
54) Tatavarty, R., Ding, H., Lu, G., Taylor, R. J., and Bi, X. (2014). Synergistic accelerationn the osteogenesis of human mesenchymal stem cells by graphene oxide–calcium phosphate nanocomposites. Chem. Commun. 50 (62), 8484–8487. doi:10.1039/c4cc02442g
55) Liu, C., Han, Z., and Czernuszka, J. (2009). Gradient collagen/nanohydroxyapatite composite scaffold: Development and characterization. Acta biomater. 5 (2), 661669.
56) Moffat, K. L., Kwei, A. S. P., Spalazzi, J. P., Doty, S. B., Levine, W. N., and Lu, H. H.. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng. Part A. 2009. 15 (1), 115–126. doi:10.1089/ten.tea.2008.0014
57) Xie, J., Li, X., Lipner, J., Manning, C. N., Schwartz, A. G., Thomopoulos, S., et al.. “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale. 2010. 2 (6), 923–926. doi:10.1039/c0nr00192a
58) Liu, M., Ishida, Y., Ebina, Y., Sasaki, T., Hikima, T., Takata, M., et al.. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.Nature. 2015. 517 (7532), 68–72. doi:10.1038/nature14060
59) Gaharwar, A. K., Peppas, N. A., and Khademhosseini, A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014a. 111 (3), 441–453. doi:10.1002/bit.25160
60) Carrow, J. K., and Gaharwar, A. K. Bioinspired polymeric nanocomposites for regenerative medicine.Macromol. Chem. Phys. 2015. 216 (3), 248–264. doi:10.1002/macp.201400427
61) Kerativitayanan, P., Carrow, J. K., and Gaharwar, A. K. Nanomaterials form engineering stem cell responses. Adv. Healthc. Mater. 2015. 4 (11), 1600–1627. doi:10.1002/adhm.201500272
62) George, J. Kuboki, Y. Miyata, T. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol Bioeng. 2006. 95(3):404-11.
63) Bhattarai N, Edmondson D, Veiseh O, et al..Electrospun chitosan-based nanofibers and their cellularcompatibility. Biomaterials. 2005. 26:6176–6184.
64) Bond, J. L., Dopirak, R.M., Higgins, J., Burns, J., and Snyder, S. J. Arthroscopic eplacement of massive, irreparable rotator cuff tears using a GraftJacket allograft:echnique and preliminary results. Arthrosc. J. Arthrosc. Relat. Surg. 2008. 24 (4), 403.1–e403.e8.
65) Harper, C. Permacol: Clinical experience with a new biomaterial. Hosp. Med. 2001. 62 (2), 90–95.
66) Ueno, T., Pickett, L. C., de la Fuente, S. G., Lawson, D. C., and Pappas, T. N. Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects. J. Gastrointest. Surg: official journal of the Society for Surgery of the Alimentary Tract. 2004. 8 (1), 109–112.
67) Derwin, K. A., Baker, A. R., Spragg, R. K., Leigh, D. R., and Iannotti, J. P. Commercial extracellularmatrix scaffolds for rotator cuff tendon repair: Biomechanical, biochemical, and cellular properties. JBJS. 2006.88 (12), 2665–2672.
68) Seidi, A., Ramalingam, M., Elloumi-Hannachi, I., Ostrovidov, S., and Khademhosseini, A. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta biomater. 2011.7(4), 1441–1451.
69) Butler, D. L., Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Shearn, J. T., Gooch, C., et al.. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J. Orthop. Res. 2008. 26 (1), 1–9.
70) Moffat, K. L., Kwei, A. S. P., Spalazzi, J. P., Doty, S. B., Levine, W. N., and Lu, H. H. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng. Part A. 2009. 15 (1), 115–126.