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Abstract 
This short note points out an improvement on the robust stability analysis for electrically driven 
robots given in the paper. In the paper, the author presents a FAT-based direct adaptive control 
scheme for electrically driven robots in presence of nonlinearities associated with actuator input 
constraints. However, he offers not suitable stability analysis for the closed-loop system. In other 
words, it does not consider the role of saturation function in both control design and stability 
analysis. 
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1. Introduction 
As pointed out in the paper [1], the FAT-based adaptive control scheme has a simpler structure and 
less computational burden compared with neuro-fuzzy control approaches to design a model-free 
controller. These advantages have been previously mentioned in [2-5]. The considerable point is 
that the respectable author does not give suitable stability analysis for the overall control system. 
The stability analysis is in a decentralized form without considering the role of actuator 
nonlinearities. The objective of this paper is to modify the previous results on the robust stability 
analysis of the work proposed by [1]. The overall closed-loop system composed by full actuated 
robotic manipulator for both n degrees of freedom and the proposed controller is proved to be 
robust, and BIBO stable, while the joint position/velocity tracking errors are asymptotically stable 
in agreement with Lyapunov’s direct method. 
This paper is organized as follows. Section 2 briefly presents modeling of the robotic system 
including the permanent magnet DC motors subjected to actuator saturation. In Section 3, direct 
adaptive controller proposed by [1] is reviewed considering to actuator input constraint. The 
stability analysis is also presented in this section. Finally, concluding remarks are drawn in section 
4. In what follows, we shall use the following notation. We denote by x  the Euclidean norm of a 

vector nx∈ℜ . We use the notation ( )λ �  and ( )λ �  to indicate the smallest and largest Eigen values, 

respectively, of a positive definite bounded matrix. We say that ( ) :[0, ] nx T⋅ → ℜ  is in 2[0, ]L T  if

2

0

T

x dt < ∞∫ , ( )x ⋅  is in [0, )L∞ ∞  if x < ∞  for all [0, )t ∈ ∞ . 
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2. Dynamic Modeling 
Consider an n-link manipulator driven by geared permanent magnet DC motors with voltages being 
inputs to amplifiers as [1]. 

    ( ) ( , ) ( ) l+ + =D q q C q q q G q τ&& & &  (1) 

    
1 1

l m
− −+ + =Jr q Br q rτ τ&& &  (2) 

    
1 ( )a a b t−+ + =RI LI k r q v& &  (3) 

 
Where, the parameters are defined exactly similar to the research [1]. Following the same procedure 
as [1], we define a second-order nonlinear differential equation of integrated actuator and 
manipulator, called "available model" as 

( ) ( )q f t v t= +&&  (4) 

 
where the presented variables q&&, and ( )v t are the i th element of the vector q&& , and ( )tv , 

respectively; and ( )f t is referred as the lumped uncertainty. For practical situation, the actuator 

input is subjected to some constraints, called motor saturation limits. This occurs usually between 
output of the controller and the PWM module [6-7]. For the development in this paper, we assume 
that the relation between the actual actuator input v( )t  and control signal produced by the controller 

u( )t is given by 

    v( )=sat(u( ))t t  
(5) 

Wheresat(u( ))t ∈ ℜ  is the saturation function. According to [8-9], the hard saturation function can be 

divided into a linear function u( )t  and a dead-zone function maxdzn(u( ), )t u . Thus, the control input 

applied to the system through the actuator is expressed as follows: 

    maxsat(u( ))=u( ) dzn(u( ), )t t t u−  (6) 

Now, substituting (5) into (4), and using (6), it follows that 

    maxu( ) dzn(u( ), ) ( )q t t u f t= − +&&  (7) 

Remark 1: The control input given by equation (5) indicates that the motor voltage is bounded, that 
is 

    maxv( ) ut ≤  (8) 

Where maxu  is a positive constant representing the maximum permitted voltage of the motor. As a 

result, the variablesaI , aI& , andq& are upper bounded. Proof is the same as [9] in the scalar form. 
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3. Revisiting [1] Considering Actuator Voltage Input Constraint 
Following the same notation as [1], using function approximation technique, we propose a control 
law in the form of 

    
ˆu( ) ( )T

ct P t vϕ= +  (9) 

WhereP̂  is the estimation of weighting vector P  used into a function approximator ( )TP tϕ  which 

approximates the following function based on the universal approximation theorem 

    1 2( ) ( )T
m dP t q k e k e f tϕ ε+ = + + −&& &  (10) 

Where ( ) Ntϕ ∈ℜ denotes basis functions' vector fixed by the designer, the number N represents the 

number of basis functions used, mε  is reconstruction error; dq  is the desired joint position, 1k , and 

2k  are positive scalar gains which are selected as control design parameters, and e  is the joint 

position tracking error expressed by 

    de q q= −  (11) 

 
In order to obtain the adaptive control law, we form the tracking system from (7), (9), and (10) as 

    1 2 max( ) dzn(u( ), )T
m ce k e k e P t v t uϕ ε+ + = + − +%&& &  (12) 

 

Where ˆP P P= −% . IntroducingA , B , and E as 

    1 2

0 1 0
,     ,     

1

e
A B E

k k e

     
= = =     − −      &

 

(13) 

 
The error equation (12) can then be written in the following state space form 

    max( ( ) dzn(u( ), ))T
m cE AE B P t v t uϕ ε= + + − +& %  (14) 

 
3.1 Stability analysis 
Before stating the stability analysis, the following lemma is given. First, we present the following 
two assumptions, which are requiring in determining the sufficient conditions on the control 
parameters. 
 
Assumption 1: The desired trajectory and its time derivative are in L∞ space, ( , )d dq q L∞∈& . 

 
Assumption2: The reconstruction errormε is bounded, i.e. mε ε<  with knownε .  

 
Now, we are ready to present the following lemma. 
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Lemma 1. dzn(u( ))t  satisfies the following inequality: 

    

max
maxdzn(u( ), )

(1 )

u
t u

δ
δ

≤
−

 
(15) 

Whereδ  is a constant which always has a value smaller than 1.  

Proof: Suppose that u( )t  exists within[ max{u( )}, max{u( )}]t t− , and δ  is maxmax 1
u( )

u

t

 
− 

 
. Then,  

    maxdzn(u( ), ) u( )t u tδ≤  (16) 

Is satisfied by Figure 1. This result, together (9), (10) and (12) gives 

    max maxdzn(u( ), ) ( ) dzn(u( ), )t u q f t t uδ δ≤ +−&&  (17) 

Now, according to (4), (5), and (8), we have: 

    

max
maxdzn(u( ), )

(1 )

u
t u

δ
δ

≤
−   

This completes the proof 
 
To carry out the stability analysis of the closed-loop system formed by dynamic Equation (14), the 
following positive definite function is proposed: 

    
0

1 1
( , )

2 2
T TV E P E P E P P

γ
= +% % %

 
(18) 

Whereγ  is a positive gain related to the adaption laws; 0P , and Q  are the unique symmetric, 

positive definite matrices satisfying the matrix Lyapunov equation 

    0 0
TA A QP P+ = −  (19) 

It must be noted that, (18) is not a Lyapunov function since it does not include all the system states. 
Now, differentiating (18) along the trajectory of the uncertain system (14), rearranging with some 
manipulation, this leads to 

    
0 0 max 0 0

1 1
( , ) dzn(u( ), ) ( )

2
ˆT T T T T T T

m cV E E QE P B E P B t u P t B P E E BvEP P P Pε ϕ
γ

= − + + + − −& %
&% %

 
(20) 

 
 
 
 
 
 
 
 

Figure1. The linear bound of dead-zone function 
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If the update law is given by 

    0
ˆ ( ) TP t B P Eγϕ=&  

(21) 

Thus, we have 

    
( )2

0 0 max
1

( , ) ( ) dzn(u( ), )
2

T T
c mV E Q E E Bv E B t uP P Pλ ε≤ − − + +& %

 
(22) 

Now, according to Lemma 1 and assumption 2 we have 

    

2 max
0 0

1
( , ) ( )

2 (1 )
T T

c
u

V E Q E E Bv E BP P P
δλ ε

δ
 

≤ − − +  − 
+& %

 

(23) 

In order to make ( , ) 0V E P ≤& % , the robust control term cv  should be determined so that the inequality 

    

max
0 0 0

(1 )
T T

c
u

E B E BvP P
δε

δ
 

− ≤ − 
+  

(24) 

Is satisfied. Toward this end, cv is selected as 

    0( )T
cv sign E BPρ=  (25) 

Where 

    

max

(1 )

uδε ρ
δ

<
−

+  
(26) 

As a result, (23) can be reduced to 

    

21
( , ) ( )

2
V E P Q Eλ≤ −& %  

(27) 

So far, we have proved that E  and P%  are uniformly bounded, i.e. ,E LP ∞∈% . Since, it is easy to have 

    
0

0 0

1

2
TE QEdt Vdt V V

∞ ∞

∞≤ − = − < ∞∫ ∫ &  

(28) 

We may conclude 2E L∈ . Therefore, boundedness of E&  can be obtained by observing (14), since 

the right hand side of Equation (14) is bounded. This will further give convergence of E  to zero 
asymptotically. Since de q q= −  and de q q= −& & &  thus boundedness of e , and e&  follows boundedness of 

q , and q&  according to assumption 1. Extending this result to all joints implies the boundedness of 

system states q , and q& . This result, together with remark 1 implies that the robotic system has the 

Bounded Input-Bounded Output (BIBO) stability, since all of system’s states are bounded. 
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4. Conclusions 
This paper improves stability results of the robust adaptive controller proposed by [1] considering 
actuator voltage input constraint. It is shown that the joint position and velocity tracking errors are 
asymptotically stable in agreements with Lyapunov direct method, while the other signals in the 
system remain bounded.  
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