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Abstract  

In this paper bending and buckling characteristics of third-order shear, and deformation nanoplates 

were investigated using the modified couple stress theory and Navier type solution. It can be useful 

for designing and manufacturing micro-electromechanical and nano-electromechanical systems. The 

modified couple stress theory was applied to provide the possibility of considering the effects of small 

scales that have only one material length scale parameter. In this theory, the strain energy density is 

a function of the strain tensor components, curvature tensor, stress tensor, and the symmetric part of 

the couple stress tensor. After obtaining the strain energy, external work, and buckling equations, the 

Hamilton principle is employed to derive the governing equations. Furthermore, by applying 

boundary and loading conditions in the governing equations, the bending and buckling of a third-

order shear deformation nanoplate with simply-supported bearings are obtained and the Navier’s 

solution is used to solve the equations. The results indicate that the third-order nanoplate subjected to 

sinusoidal loading yields smaller values of dimensionless bending than it does while subjected to 

uniform surface traction. It was also found that by increasing the length to thickness ratio, the value 

of the dimensionless bending of nanoplate decreases but by increasing the aspect ratio of the plate, 

this value increases. Furthermore, it was shown that the critical buckling load of the third-order 

nanoplate under uniaxial loading increases by increasing the ratio of the length scale parameter to the 

thickness of the nanoplate but it decreases by increasing the length to thickness ratio of the nanoplate. 
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1. Introduction 

Performing experiments on the atomic and molecular scales are the safest approach for the study of 

materials on small scales that causes a real dimensions investigation on the structures. To determine 

the mechanical properties of nanostructures in this method, various mechanical loads are applied to 

nanostructures using atomic Force Microscopy (AFM) and the plate responses are measured. The 

difficulties of controlling the test conditions at this scale, high economic costs, and time-consuming 

processes are some setbacks of this approach. Therefore, it is only used to validate other simple and 
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low-cost methods. 

Atomic simulation is another approach for studying small-scale structures. In this method, the 

behaviors of atoms and molecules are examined by considering the intermolecular and interatomic 

effects on their motions, which ultimately involves the total deformation of the body. In the case of 

large deformations and multi atomic scales, the computational costs of this approach become 

unbearable, so it is only used for small deformation problems. 

Given the limitations of the aforementioned methods for the study of small scales, the literature was 

directed toward finding more efficient solutions which are reliable and less costly, and time-

consuming. Modeling small-scale structures using continuum mechanics is one of these solutions. 

There are a variety of size-dependent continuum theories that consider size effects and are suitable 

for this problem. Some of these theories are; the micromorphic theory, microstructural theory, 

micropolar theory, Kurt's theory, non-local theory, modified couple stress theory, and strain gradient 

elasticity.  

Thanh et al, [1] studied the size-dependent thermal bending and buckling responses of composite 

laminate microplate-based on a new modified couple stress theory and isogeometric analysis. The 

influences of fiber orientation, thickness ratio, boundary conditions, and the variation in material 

length scale parameter were also investigated. 

Sladek et al, [2] studied the FGM micro/nano-plates within modified couple stress elasticity. The 

boundary restrictions on the bottom and top surfaces of the plate together with the derivation of 

governing equations and physical boundary conditions on the plate edges were investigated and 

discussed in detail 

Al-Shewailiah et al, [3] studied the static bending of functionally graded single-walled carbon 

nanotube in conjunction with modified couple stress theory. The characteristics which were 

investigated, include length, material parameter ratio, and the volume fraction of material, porosity 

and carbon nanotube, SWCNT distribution types, boundary conditions, and aspect ratio 

(length/thickness). By observing the static behavior of FG-micro beams it was found that the modified 

couple stress theory (MCST) yields more accurate results than classical beams.  

Yang et al, [4] studied the axisymmetric bending and vibration of circular nanoplates with surface 

tractions. They investigated the effect of the material's surface properties on deflection and natural 

frequencies. 

Aghababaei and Reddy, [5] employed the non-local third-order shear deformation plate theory to 

study the bending and vibration of plates. They presented Eringen’s analytical solution for bending 

and free vibration of a simply supported rectangular plate using non-local linear elasticity theory to 

illustrate the effect of non-local theory on deflection and natural frequency of the plates. 

Jung et al, [6] studied the buckling of S-FGM nanoplates embedded in Pasternak elastic medium 

using a modified couple stress theory. The effects of the power-law index, small-scale coefficient, 

aspect ratio, side-to-thickness ratio, loading types, and elastic medium parameter on the buckling load 

of S-FGM nanoplates were also investigated. 

Shafiei et al, [7] employed the modified couple stress theory to study the stability and vibration of 

single and multi-layered graphene sheets. The effects of different parameters such as loading 

schemes, nanoplate dimensions, and boundary conditions were investigated. 
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Wu et al. [8] studied a unified size-dependent plate theory for static bending and vibration analyses 

of micro and nano-scale plates based on the consistent couple stress theory. They observed that the 

material length scale parameter effects on static bending and free vibration behaviors of the 

FGMP/MLGS are significant. 

Haghshenas and Shahrajabian [9] studied the Mechanical Properties of PA6/NBR/clay/CaCO3 

Hybrid Nanocomposites. They evaluated mechanical properties by tensile, flexural, and Charpy 

impact tests. The results showed that adding the NBR reduces the tensile strength, tensile modulus, 

flexural strength, and flexural modulus and increases the impact strength. 

Graphene is an intelligent material that exhibits excellent properties used for various industrial 

applications such as High-speed electronics, Data storage, LCD smart windows, OLED displays, 

Supercapacitors, Solar cells/photovoltaic cells, Thermoelectric applications, Shape memory 

materials, Self-healing materials, and Electrorheology materials[10]. 

Nanoelectromechanical systems (NEMS) are the logical miniaturization step of so-called 

microelectromechanical systems (MEMS). Due to the special properties of integrating electrical and 

mechanical functionality on the nanoscale, NEMS will play an important role in the future of 

computing and sensing fields. When the size of the resonator reaches about 100 nm, NEMS can be 

operated at a high frequency, which can be up to 1 GHz, and provide extreme sensitivity. At present, 

Si and GaAs are widely used in NEMS, which have a high Young’s modulus (>~100 GPa) and can 

be easily fabricated into complicated planar structures. However, Si and GaAs cannot satisfy the 

needs of NEMS.  

So, it is of great significance to acquire materials with low density and high Young’s modulus for the 

fabrication of NEMS. Among the nanomaterials, carbon-based nanomaterials such as diamond, 

carbon nanotube, and graphene have high ratios of Young’s modulus to density, and graphene is of 

great attention for its special properties such as portable quality, ultra hardness, excellent Young’s 

modulus, high thermal conductivity, and the high surface area-to-volume ratio[11]. Therefore 

graphene nanoplates can be substituted for silicon as a load-bearing material.  

Accordingly, the study of the critical buckling and bending load of nanoplates can be useful for 

designing and manufacturing micro-electromechanical and nano-electromechanical systems. 

In this paper, a third-order shear deformation nanoplate model is developed for bending and buckling 

analysis of a graphene nanoplate based on the modified couple stress theory. The results are presented 

in figures and tables and are discussed in detail. 

 

2. Methods 

2.1 Modified couple stress theory 

Yang et al. [12] proposed a modified couple stress model by modifying the theory proposed by Toppin 

[13], Mindlin and Thursten [14], Quitter [15], and Mindlin [16] in 1964. The modified couple stress 

theory consists of only one material length scale parameter for the projection of the size effect, 

whereas the classical couple stress theory needs two material length scale parameters. In the modified 

theory the strain energy density for a body bounded by the volume V and the area Ω [17], is expressed 

as follows: 

   𝑈 =
1

2
∫  
𝑉
(𝜎𝑖𝑗ℇ𝑖𝑗 +𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉    𝑖, 𝑗 = 1,2,3 (1) 
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Where: 

ℇ𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

(2) 

𝜒𝑖𝑗 =
1

2
(𝜃𝑖,𝑗 + 𝜃𝑗,𝑖) 

(3) 

Where χij and εij  are symmetric parts of the curvature tensor and strain tensors, respectively. Also, ui 

and θi are defined as displacement and rotation vectors, respectively. 

 

𝜃 =
1

2
 𝐶𝑢𝑟𝑙 𝒖 

(4) 

σij, the stress tensor, and mi,j, the deviatory part of the couple stress tensor, is defined as:     

𝜎𝑖𝑗 = 𝜆ℇ𝑘𝑘𝛿𝑖𝑗 + 2𝜇ℇ𝑖𝑗 (5) 

𝑚𝑖,𝑗 = 2𝜇 𝑙2𝜒𝑖𝑗 (6) 

 

Where λ and μ are the lame constants, δij is the Kronecker delta and l is the material length scale 

parameter. From Eq. (3) and (6) it can be seen that χ
ij
and 𝑚𝑖𝑗 are symmetric. 

2.2 Third-order plate model 

The displacement equations for the third-order plate are defined as follows: 

𝑢1(𝑥, 𝑦, 𝑧) = 𝑧 𝜑𝑥(𝑥, 𝑦) – 
4

3
(
1

ℎ
)
2

 𝑧3 (
𝜕𝑤(𝑥,𝑦)

𝜕𝑥
+𝜑𝑥(𝑥, 𝑦)) 

(7) 

𝑢2(𝑥, 𝑦, 𝑧) = 𝑧𝜑𝑦(𝑥, 𝑦) – 
4

3
(
1

ℎ
)
2

 𝑧3(
𝜕𝑤(𝑥,𝑦)

𝜕𝑦
+ 𝜑𝑦(𝑥, 𝑦)) 

𝑢3(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦) 

Where  φ
x 

 and φy are the rotations of the normal vector around the x and y-axis respectively, and w 

is the midpoint displacement of the plate in the z-axis direction. The strain and stress tensors, the 

symmetric part of the curvature tensor, and the rotational vector for the nth-order plate are obtained 

as follows: 

ℇ𝑥𝑥 = 𝑧
𝜕𝜑𝑥
𝜕𝑥

− 
4

3
(
1

ℎ
)
2

 𝑧3 (
𝜕2𝑤

𝜕𝑥2
+
𝜕𝜑𝑥
𝜕𝑥

) 
(8) 

ℇ𝑦𝑦 = 𝑧
𝜕𝜑𝑦

𝜕𝑦
−
4

3
(
1

ℎ
)
2

 𝑧3 (
𝜕2𝑤

𝜕𝑦2
+
𝜕𝜑𝑦

𝜕𝑦
) 

(9) 

ℇ𝑧𝑧 = 0 (10) 

ℇ𝑥𝑦 = ℇ𝑦𝑥 =
1

2
𝑧 (
𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
) −

2

3
(
1

ℎ
)
2

 𝑧3 (
𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦

𝜕𝑥
+ 2

𝜕2𝑤

𝜕𝑥𝜕𝑦
) 

(11) 

ℇ𝑥𝑧 = ℇ𝑧𝑥 = (
1

2
− 2 (

𝑧

ℎ
)
2

) (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥) 

(12) 

ℇ𝑦𝑧 = ℇ𝑧𝑦 = (
1

2
− 2 (

𝑧

ℎ
)
2

) (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦) 

(13) 
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𝜃𝑥 =
𝜕𝑤

𝜕𝑦
− (

1

2
− 2(

𝑧

ℎ
)
2

) (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦)  

       (14) 

𝜃𝑦 = −
𝜕𝑤

𝜕𝑥
+ (

1

2
− 2(

𝑧

ℎ
)
2

) (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥)  

       (15) 

𝜃𝑧 =
1

2
(𝑧 −

4

3
(
1

ℎ
)
2

 𝑧3) (
𝜕 𝜑𝑦

𝜕𝑥
−
𝜕𝜑𝑥

𝜕𝑦
)  

       (16) 

𝑥𝑥𝑥 =
𝜕2𝑤

𝜕𝑥 𝜕𝑦
− (

1

2
− 2 (

𝑧

ℎ
)
2

) (
𝜕2𝑤

𝜕𝑥 𝜕𝑦
+
𝜕𝜑𝑦

𝜕𝑥
)  

(17) 

𝑥𝑦𝑦 = −
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ (

1

2
− 2 (

𝑧

ℎ
)
2

) (
𝜕𝜑𝑥
𝜕𝑦

+
𝜕2𝑤

𝜕𝑥𝜕𝑦
) 

(18) 

𝑥𝑧𝑧 = (
1

2
− 2 (

𝑧

ℎ
)
2

) (
𝜕𝜑𝑦

𝜕𝑥
−
𝜕𝜑𝑥
𝜕𝑦

) 
(19) 

𝑥𝑥𝑦 =
1

2
(
𝜕2𝑤

𝜕𝑦2
−
𝜕2𝑤

𝜕𝑥2
) + (

1

4
− (

𝑧

ℎ
)
2

) (
𝜕2𝑤

𝜕𝑥2
+ 
𝜕𝜑𝑥
𝜕𝑥

−
𝜕2𝑤

𝜕𝑦2
−
𝜕𝜑𝑦

𝜕𝑦
) 

(20) 

𝑥𝑥𝑧 =
1

4
 (𝑧 −

4

3
(
1

ℎ
)
2

 𝑧3)(
𝜕2𝜑𝑦

𝜕𝑥2
−
𝜕2𝜑𝑥
𝜕𝑦 𝜕𝑥

) + 2𝑧 (
1

ℎ
)
2

(
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦) 

 (21) 

𝑥𝑦𝑧 = −2𝑧 (
1

ℎ
)
2

(
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥) +

1

4
(𝑧 −

4

3
(
1

ℎ
)
2

 𝑧3)(
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
−
𝜕2𝜑𝑥
𝜕𝑦2

) 
(22) 

                 

𝜎𝑥𝑥 = (𝜆 + 2𝜇)ℇ𝑥𝑥  + 𝜆ℇ𝑦𝑦   (23) 

𝜎𝑦𝑦 = 𝜆ℇ𝑥𝑥  + (𝜆 + 2𝜇)ℇ𝑦𝑦   (24) 

𝜎𝑧𝑧 = 𝜆(ℇ𝑥𝑥 + ℇ𝑦𝑦)   (25) 

𝜎𝑦𝑥 = 𝜎𝑥𝑦 = 2𝜇 ℇ𝑥𝑦   (26) 

𝜎𝑥𝑧 = 𝜎𝑧𝑥 = 2𝜇 ℇ𝑥𝑧   (27) 

𝜎𝑦𝑧 = 𝜎𝑧𝑦 = 2𝜇 ℇ𝑦𝑧   (28) 

 

The variation of strain energy is expressed as follows: 

𝛿𝑈 = ∫  
𝑉

𝜎𝑥𝑥 𝛿 ℇ𝑥𝑥 + 𝜎𝑦𝑦 𝛿ℇ𝑦𝑦 + 2𝜎𝑥𝑦 𝛿 ℇ𝑥𝑦 + 

2𝜎𝑥𝑧 𝛿 ℇ𝑥𝑧 + 2𝜎𝑦𝑧 𝛿 ℇ𝑦𝑧 +𝑚𝑥𝑥 𝛿 𝑥𝑥𝑥 +𝑚𝑦𝑦 𝛿𝑥𝑦𝑦 +𝑚𝑧𝑧 𝛿𝑥𝑧𝑧 

+2𝑚𝑥𝑦 𝛿𝑥𝑥𝑦 + 2𝑚𝑥𝑧 𝛿𝑥𝑥𝑧 + 2𝑚𝑦𝑧 𝛿 𝑥𝑦𝑧)𝑑𝑉 

 

  (29) 

For the sake of simplification, the coefficient of each variable in the above equation is named from 

E1 to E15 and this equation can be rewritten as shown below: 

 

𝛿𝑈 = ∫  
𝑉

(𝐸1𝛿𝑤,𝑥𝑥+ 𝐸2 𝛿𝑤,𝑦𝑦+ 𝐸3 𝛿𝑤,𝑥𝑦+ 𝐸4𝛿 𝑤,𝑥 

+𝐸5 𝛿 𝑤,𝑦+ 𝐸6 𝛿 𝜑𝑥,𝑦𝑦 + 𝐸7𝛿 𝜑𝑦,𝑥𝑥 + 𝐸8 𝛿  𝜑𝑦,𝑥𝑦 + 𝐸9 𝛿𝜑𝑥,𝑦𝑥 

+𝐸10 𝛿 𝜑𝑥,𝑥 + 𝐸11 𝛿𝜑𝑦,𝑦 + 𝐸12𝛿𝜑𝑥,𝑦 + 𝐸13 𝛿 𝜑𝑦,𝑥 + 𝐸14 𝛿𝜑𝑥 + 𝐸15 𝛿𝜑𝑦)𝑑𝑉         (30)  

Where E1 to E15 are calculated as shown: 
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𝐸1 =
𝜕2𝑤

𝜕𝑥2
 [(𝜆 + 2𝜇)(𝐶3 − 𝐶1𝐶2) +

1

2
𝜇𝑙2(1 + 𝐶4) −

1

4
𝜇𝑙2(1 + 𝐶4)(1 − 𝐶4)] +

 
𝜕2𝑤

𝜕𝑦2
 [𝜆(𝐶3 − 𝐶1𝐶2) −

1

2
𝜇𝑙2(1 + 𝐶4) +

1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)] +  

𝜕𝜑𝑥

𝜕𝑥
[−(𝜆 +

2𝜇)(𝐶2𝐶1) −
1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)] +  

𝜕𝜑𝑦

𝜕𝑦
[−𝜆(𝐶2𝐶1) −

1

4
𝜇𝑙2(1 − 𝐶4)(1 +

𝐶4)]  

(31) 

 

𝐸2 =
𝜕2𝑤

𝜕𝑦2
 [(𝜆 + 2𝜇)(𝐶3 − 𝐶1𝐶2) +

1

2
𝜇𝑙2(1 + 𝐶4)

−
1

4
𝜇𝑙2(1 +  𝐶4)(1 −   𝐶4  )]

+ 
𝜕2𝑤

𝜕𝑥2
 [𝜆(𝐶3 − 𝐶1𝐶2) −

1

2
𝜇𝑙2(1 + 𝐶4)

+
1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]

+   
𝜕𝜑𝑦

𝜕𝑦
[−(𝜆 + 2𝜇)(𝐶2𝐶1) −

1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]

+ 
𝜕𝜑𝑥
𝜕𝑥

[−𝜆(𝐶2𝐶1) −
1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)] 

(32) 

 

 

𝐸3 = 
𝜕2𝑤

𝜕𝑥 𝜕𝑦
[4𝜇 𝐶2

2 + 𝜇𝑙2(1 + 𝐶4)
2] +

𝜕𝜑𝑥

𝜕𝑦
[−2𝜇𝐶2𝐶1 −

1

2
𝜇𝑙2(1 − 𝐶4)(1 +

𝐶4)] +  
𝜕𝜑𝑦

𝜕𝑥
[−2𝜇𝐶2𝐶1 −

1

2
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]  

(33) 

 

𝐸4 = (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥) [𝜇(1 − 𝐶4)

2 +
1

4
𝜇𝑙2𝐶5

2] + (
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
−
𝜕2𝜑𝑥
𝜕𝑦2

) [
1

4
𝜇𝑙2𝐶5𝐶1] 

(34) 

 

𝐸5 = (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦) [𝜇(1 − 𝐶4)

2 +
1

4
𝜇𝑙2𝐶5

2] + (
𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

−
𝜕2𝜑𝑦

𝜕𝑥2
) [

1

4
𝜇𝑙2𝐶5𝐶1]  

(35) 

 

𝐸6 = 𝐸8 = (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥) [

1

4
𝜇𝑙2𝐶5𝐶1] + (

𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
−
𝜕2𝜑𝑥
𝜕𝑦2

) [ 
1

4
𝜇𝑙2𝐶1

2] 
(36) 

 

𝐸7 = 𝐸9 = (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦) [−

1

4
𝜇𝑙2𝐶5𝐶1] + (

𝜕2𝜑𝑦

𝜕𝑥2
−
𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

) [ 
1

4
𝜇𝑙2𝐶1

2]                  
(37) 

 

𝐸10 =
𝜕2𝑤

𝜕𝑥2
[ (𝜆 + 2𝜇)(𝐶1

2 − 𝑧𝐶1) −
1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]

+ 
𝜕2𝑤

𝜕𝑦2
[𝜆𝐶1(−𝑧 + 𝐶1) +

1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]

+
𝜕𝜑𝑥
𝜕𝑥

[ (𝜆 + 2𝜇)𝐶1
2 +

1

4
𝜇𝑙2(1 − 𝐶4)

2]

+
𝜕𝜑𝑦

𝜕𝑦
[𝜆𝐶1

2 −
1

4
𝜇𝑙2(1 − 𝐶4)

2] 

(38) 
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𝐸11 =
𝜕2𝑤

𝜕𝑦2
[ (𝜆 + 2𝜇)(𝐶1

2 − 𝑧𝐶1) −
1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]

+ 
𝜕2𝑤

𝜕𝑥2
[𝜆𝐴1(−𝑧 + 𝐶1) +

1

4
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]

+
𝜕𝜑𝑦

𝜕𝑦
[ (𝜆 + 2𝜇)𝐶1

2 +
1

4
𝜇𝑙2(1 − 𝐶4)

2]

+
𝜕𝜑𝑥
𝜕𝑥

[𝜆𝐶1
2 −

1

4
𝜇𝑙2(1 − 𝐶4)

2] 

(39) 

 

𝐸12 = 
𝜕2𝑤

𝜕𝑥 𝜕𝑦
[−2𝜇𝐶2𝐶1 −

1

2
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]

+
𝜕𝜑𝑥
𝜕𝑦

[𝜇𝐶1
2 + 𝜇𝑙2(1 − 𝐶4)

2] +
𝜕𝜑𝑦

𝜕𝑥
[𝜇𝐶1

2 −
1

2
𝜇𝑙2(1 − 𝐶4)

2] 

(40) 

 

𝐸13 =
𝜕2𝑤

𝜕𝑥 𝜕𝑦
[−2𝜇𝐶2𝐶1 −

1

2
𝜇𝑙2(1 − 𝐶4)(1 + 𝐶4)]

+
𝜕𝜑𝑥
𝜕𝑦

[𝜇𝐶1
2 −

1

2
𝜇𝑙2(1 − 𝐶4)

2] +
𝜕𝜑𝑦

𝜕𝑥
[𝜇𝐶1

2 + 𝜇𝑙2(1 − 𝐶4)
2] 

(41) 

 

𝐸14 = (
𝜕𝑤

𝜕𝑥
+ 𝜑𝑥) [𝜇(1 − 𝐶4)

2 +
1

4
𝜇𝑙2𝐶5

2] + (
𝜕2𝜑𝑦

𝜕𝑥𝜕𝑦
−
𝜕2𝜑𝑥
𝜕𝑦2

) [
1

4
𝜇𝑙2𝐶5𝐶1] 

(42) 

 

𝐸15 = (
𝜕𝑤

𝜕𝑦
+ 𝜑𝑦) [𝜇(1 − 𝐶4)

2 +
1

4
𝜇𝑙2𝐶5

2] + (
𝜕2𝜑𝑥
𝜕𝑥𝜕𝑦

−
𝜕2𝜑𝑦

𝜕𝑥2
) [

1

4
𝜇𝑙2𝐶5𝐶1] 

(43) 

   

The coefficients of C: 

𝐶1 = 𝑧 −
4

3
(
1

ℎ
)
2

 𝑧3 
(44)    

𝐶2 =
4

3
(
1

ℎ
)
2

 𝑧3 
(45) 

𝐶3 =
4

3
(
1

ℎ
)
2

 𝑧4 
 (46) 

𝐶4 = 4(
𝑧

ℎ
)
2

 
(47) 

𝐶5 = −8𝑧 (
1

ℎ
)
2

 
(48) 

𝐶6 =
4

3
(
1

ℎ
)
2

 
(49) 

 

𝐶7 = 𝜇
ℎ

3
 

   (50) 
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𝐶8 =  𝜇
ℎ

5
  

(51) 

𝐶9 =
ℎ3

252
(𝜆 + 2𝜇)  

(52) 

𝐶10 = (𝜆 + 2𝜇)
ℎ3

60
 

(53) 

𝐶11 =   𝜇 𝑙2
4

3ℎ
 

(54) 

𝐶12 =
1

4
𝜇 𝑙2ℎ  (55) 

𝐼𝑖 = ∫ 𝑍𝑖   𝑑𝑧

ℎ
2

−ℎ
2

 (𝑖 = 0,1, 2, 𝑛 − 1, 𝑛, 𝑛 + 1, 2𝑛 − 4, 2𝑛 − 2, 2𝑛) 
(56) 

 

2.3 Buckling load 

For a rectangular plate with length a, width b, and thickness h, under the axial forces (Pxy, Py, Px), the 

buckling force is obtained as shown in Eq. (57) [18, 19]: 

𝑃𝑥
𝜕2𝑤

𝜕𝑥2
+ 2𝑃𝑥𝑦  

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑃𝑦

𝜕2𝑤

𝜕𝑦2
= 𝑞(𝑥, 𝑦) 

 

(57) 

Where Px is the Axial force along the x-axis, Py is the Axial force along the y axis, Pxy is the shear 

force in the xy plane, and q (x, y) is the out-of-plane force. 

 

2.4 Virtual work equation 

In this kind of problems the virtual work of three kinds of external forces are included in the solutions, 

if the middle-plane and the middle-perimeter of the plate are shown as Ω and Γ respectively, these 

virtual works are [20]: 

1. The virtual work is done by the body forces, is applied on the volume V= Ω× (- h⁄2, h⁄2). 

2. The virtual work is done by the surface tractions at the upper and lower surfaces (Ω). 

3. The virtual work done by the shear tractions on the lateral surfaces, S= Γ× (- h⁄2, h⁄2). 

If (fx, fy, fz) is the body forces, (cx, cy, cz) are the body couples, (qx, qy, qz) are the forces acting on the 

Ω plane, (tx, ty, tz) are the Cauchy's tractions and (Sx, Sy, Sz) are surface couples the Variations of the 

virtual work is expressed as: 

δw = −[∫  
Ω

(fxδu + fyδV + fzδw + qxδu + qyδV + qzδw + cxδθx

+ cy δθy + czδθz) dx dy + ∫  
Γ

(txδu + tyδV + tzδw + sxθx   

+ syδθy + szδθz)dΓ] 

(58) 

Given that in this study only the external force qz was applied, virtual work becomes: 
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𝛿𝑤 = ∫ ∫ 𝑞(𝑥, 𝑦)𝛿𝑤(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 
𝑏

0

𝑎

0

 
(59) 

 

Finally using Hamilton's principle, it can be said that [21]: 

𝛿(𝑈 − 𝑤) = 0 (60) 

Where U is the strain energy and W is the work of external loads. 

 

2.5 The final governing equations of the plate after applying the buckling and external forces 
Using Hamilton’s principle, Eq. (60), and the Eq. (57) – (59), the governing equations of the plate 

including the buckling and external forces are obtained as follows: 

 

[∫ (
𝜕2𝐸1
𝜕𝑥2

−
𝜕𝐸4
𝜕𝑥

+
𝜕2𝐸2
𝜕𝑦2

+
𝜕2𝐸3
𝜕𝑥𝜕𝑦

−
𝜕𝐸5
𝜕𝑦

)𝑑𝑧

ℎ
2⁄

−ℎ 2⁄

] + 𝑃𝑥
𝜕2𝑤

𝜕𝑥2
+ 2𝑃𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

+𝑃𝑦
𝜕2𝑤

𝜕𝑦2
= 𝑞(𝑥, 𝑦)  

 

       (61) 

∫ (
𝜕2𝐸6
𝜕𝑦2

+
𝜕2𝐸9
𝜕𝑥𝜕𝑦

−
𝜕𝐸12
𝜕𝑦

−
𝜕𝐸10
𝜕𝑥

+ 𝐹14)𝑑𝑧 =

ℎ
2⁄

−ℎ 2⁄

0 
(62) 

∫ (
𝜕2𝐸7
𝜕𝑥2

−
𝜕𝐸13
𝜕𝑥

+
𝜕2𝐸8
𝜕𝑥𝜕𝑦

 –
𝜕𝐸11
𝜕𝑦

+ 𝐸15)𝑑𝑧 = 0

ℎ
2⁄

−ℎ 2⁄

 
(63) 

 

2.6. Obtaining the general equations of the third-order plate 

Considering the following constants: 

𝐷1 = 2𝐶12 + 𝑙
2𝐶7 +

1

2
𝑙2𝐶8 + 2𝐶9  (64) 

𝐷2 =
1

2
𝐷1 = 𝐶12 + 𝐶9 +

1

2
𝑙2𝐶7 +

1

4
𝑙2𝐶8  

(65) 

𝐷3 = −𝜇ℎ + 2𝐶7 –𝐶8 –𝐶11  (66) 

𝐷4 = 𝐶9 –𝐶10 +
1

4
𝑙2𝐶8 – 𝐶12   (67) 

𝐷5 = 3𝐶12 −
3

2
𝑙2𝐶7 +

3

4
𝑙2𝐶8 – (𝜆 + 𝜇)𝐼2 + 2(𝜆 + 𝜇)𝐶6 𝐼4 − (𝜆 + 𝜇)𝐶6

2𝐼6  (68) 

𝐷6 = −𝜇𝐼2 + 2𝜇𝐶6 𝐼4 − 𝜇𝐶6
2𝐼6 − 4𝐶12 + 2𝑙

2𝐶7 – 𝑙
2𝐶8   (69) 

𝐷7 =
1

4
𝜇𝑙2𝐼2 −

1

2
𝜇𝑙2𝐶6𝐼4 +

1

4
𝜇𝑙2𝐶6

2𝐼6  (70) 

𝐷8 = −(𝜆 + 2𝜇)𝐼2 + 2𝐶10 –𝐶9 –𝐶12 +
1

2
𝑙2𝐶7 −

1

4
𝑙2𝐶8  (71) 

 

𝐷9 =
5

4
𝑙2𝐶8 −

3

2
𝜇𝑙2𝐶6

2𝐼4 −
5

2
𝑙2𝐶7 + 3𝐶12 – (𝜆 + 𝜇)𝐼2 − (𝜆 + 𝜇)𝐶6

2𝐼6
+ 2(𝜆 + 𝜇)𝐶6𝐼4 

(72) 

 

𝐷10 = 3𝑙2𝐶7 −
3

2
𝑙2𝐶8 +

3

2
𝜇𝑙2𝐶6

2𝐼4 − 𝜇𝐼2 − 𝜇𝐶6
2𝐼6 + 2𝜇𝐶6𝐼4 − 4𝐶12  (73) 
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The general governing equation of the Mindlin’s plate will become: 

 

𝐷1
𝜕4𝑤

𝜕𝑥2 𝜕𝑦2
+ 𝐷2

𝜕4𝑤

𝜕𝑥4 
+ 𝐷2

𝜕4𝑤

𝜕𝑦4 
+ 𝐷3

𝜕2𝑤

𝜕𝑥2 
+ 𝐷3

𝜕2𝑤

𝜕𝑦2 
+ 𝐷4

𝜕3𝜑𝑥
𝜕𝑥3 

+ 𝐷4
𝜕3𝜑𝑥
𝜕𝑥 𝜕𝑦2

+ 𝐷4
𝜕3𝜑𝑦

𝜕𝑦 𝜕𝑥2
+ 𝐷3

𝜕𝜑𝑥
𝜕𝑥

+ 𝐷3
𝜕𝜑𝑦

𝜕𝑦
+ 𝐷4

𝜕3𝜑𝑦

𝜕𝑦3 
+ 𝑃𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑃𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

+𝑃𝑦
𝜕2𝑤

𝜕𝑦2
= 𝑞(𝑥, 𝑦) 

   

(74) 

 

−𝐷4
𝜕3𝑤

𝜕𝑥 𝜕𝑦2
+ 𝐷5

𝜕2𝜑𝑦

𝜕𝑦 𝜕𝑥
+ 𝐷6

𝜕2𝜑𝑥
𝜕𝑦2 

+ 𝐷7
𝜕4𝜑𝑦

𝜕𝑥 𝜕𝑦3
− 𝐷7

𝜕4𝜑𝑥
𝜕𝑦4 

+ 𝐷7
𝜕4𝜑𝑦

𝜕𝑦 𝜕𝑥3

− 𝐷7
𝜕4𝜑𝑥
𝜕𝑦2 𝜕𝑥2

− 𝐷3
𝜕𝑤

𝜕𝑥
− 𝐷3𝜑𝑥 − 𝐷4

𝜕3𝑤

𝜕𝑥3 
+ 𝐷8

𝜕2𝜑𝑥
𝜕𝑥2 

= 0 

(75) 

 

−𝐷4
𝜕3𝑤

𝜕𝑦 𝜕𝑥2
+ 𝐷9

𝜕2𝜑𝑥
𝜕𝑦 𝜕𝑥

+ 𝐷10
𝜕2𝜑𝑦

𝜕𝑥2 
+ 𝐷7

𝜕4𝜑𝑦

𝜕𝑥4 
+ 𝐷7

𝜕4𝜑𝑦

𝜕𝑥2 𝜕𝑦2
− 𝐷7

𝜕4𝜑𝑥
𝜕𝑦 𝜕𝑥3

− 𝐷7
𝜕4𝜑𝑥
𝜕𝑥 𝜕𝑦3

− 𝐷4
𝜕3𝑤

𝜕𝑦3 
– 𝐷3

𝜕𝑤

𝜕𝑦
− 𝐷3𝜑𝑦 + 𝐷8

𝜕2𝜑𝑦

𝜕𝑦2 
= 0 

(76) 

 

2.7 Solution of the governing equations using Navier’s method 

Navier’s solution applies to the rectangular plates which have simply supported boundary conditions 

on all edges. Since the boundary conditions are spontaneously satisfied in this method, the unknown 

functions of the plate’s mid-plane were assumed to be double trigonometric series [18, 20]: 

 

𝑊(𝑥, 𝑦) = ∑ ∑𝑊𝑚𝑛 𝑠𝑖𝑛 𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 

∞

𝑛=1

∞

𝑚=1

 
(77) 

𝜑𝑥(𝑥, 𝑦) = ∑ ∑𝑋𝑚𝑛 𝑐𝑜𝑠 𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 

∞

𝑛=1

∞

𝑚=1

 
(78) 

𝜑𝑦(𝑥, 𝑦) = ∑ ∑𝑦𝑚𝑛 𝑠𝑖𝑛 𝛼𝑥 𝑐𝑜𝑠 𝛽𝑦 

∞

𝑛=1

∞

𝑚=1

 
(79) 

  Moreover, the force can be calculated from the following relation: 

𝑞 = ∑ ∑𝑄𝑚𝑛 𝑠𝑖𝑛 𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 

∞

𝑛=1

∞

𝑚=1

 
(80) 

   

𝑄𝑚𝑛 =
4

𝑎𝑏
∫ ∫ 𝑞(𝑥, 𝑦)𝑠𝑖𝑛𝛼𝑥 𝑠𝑖𝑛 𝛽𝑦 𝑑𝑥 𝑑𝑦

𝑏

0

𝑎

0

 
(81) 
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𝑄𝑚𝑛 =

{
 
 

 
 

𝑞0      𝑓𝑜𝑟 𝑠𝑖𝑛𝑒 𝑆𝑡𝑟𝑒𝑠𝑠 
16𝑞0
𝑚𝑛𝜋2

    𝑓𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑠𝑡𝑟𝑒𝑠𝑠 

4𝑄0
𝑎𝑏

 𝑓𝑜𝑟 𝑝𝑜𝑖𝑛𝑡 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑒 𝑐𝑒𝑛𝑡𝑒𝑟

 

(82) 

Where 

 𝛼 =
𝜋𝑚

𝑎
   , 𝛽 =

𝜋𝑛

𝑏
 , 𝑖 = √−1 (83) 

 

Furthermore, simply supported boundary conditions are satisfied by the Navier method based on the 

following equations: 

𝑥 =  در0
,

𝑥 = 𝑎

{
𝑤(0, 𝑦) = 𝑤(𝑎, 𝑦) =∑∑𝑤𝑚𝑛 𝑠𝑖𝑛

𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0   

𝜑𝑦(0, 𝑦) = 𝜑𝑦(𝑎, 𝑦) =∑∑𝑦𝑚𝑛 𝑠𝑖𝑛
𝑚𝜋

𝑎
 𝑥 𝑐𝑜𝑠

𝑛𝜋

𝑏
 𝑦 = 0

 

 

(84)   

𝑦 =  در0
,

𝑦 = 𝑏
{
𝑤(𝑥, 0) = 𝑤(𝑥, 𝑏) =∑∑𝑤𝑚𝑛 𝑠𝑖𝑛

𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0

𝜑𝑥(𝑥, 0) = 𝜑𝑥(𝑥, 𝑏) =∑∑𝑋𝑚𝑛 𝑐𝑜𝑠
𝑚𝜋

𝑎
 𝑥 𝑠𝑖𝑛

𝑛𝜋

𝑏
 𝑦 = 0

 

 

(85) 

2.8 The general equation matrix of third-order plate 

After solving the governing equations and naming the coefficient of each variable: 

𝑅1 = 𝐷1𝛼
2𝛽2 + 𝐷2𝛼

4 + 𝐷2𝛽
4 − 𝐷3𝛼

2 − 𝐷3𝛽
2 − 𝑃𝑥𝛼

2 − 𝑃𝑦𝛽
2 (86) 

 

𝑅2 = 𝑅4 = 𝐷4𝛼
3 + 𝐷4𝛼 𝛽

2 − 𝐷3𝛼 (87) 

 

𝑅3 = 𝑅7 = 𝐷4𝛽
3 + 𝐷4𝛼

2𝛽 − 𝐷3𝛽 (88) 

 

𝑅5 = −𝐷7𝛽
4 − 𝐷7𝛼

2𝛽2 − 𝐷6𝛽
2 −𝐷8𝛼

2 − 𝐷3 (89) 

 

𝑅6 = 𝐷7𝛼𝛽
3 + 𝐷7𝛼

3𝛽 − 𝐷5𝛼𝛽 (90) 

 

𝑅8 = −𝐷7𝛼
3𝛽 − 𝐷7𝛼𝛽

3 − 𝐷9𝛼𝛽 (91) 

 

𝑅9 = 𝐷7 𝛼
4 + 𝐷7𝛼

2𝛽2 − 𝐷10𝛼
2 − 𝐷8𝛽

2 − 𝐷3 (92) 

 

Finally, the general equation matrix of the Mindlin's plate along with the auxiliary equations will be 

obtained as follows: 

[
𝑅1 𝑅2 𝑅3
𝑅4 𝑅5 𝑅6
𝑅7 𝑅8 𝑅9

] [

𝑤𝑚𝑛
𝑋𝑚𝑛
𝑦𝑚𝑛

] = [
𝑄𝑚𝑛
0
0
] 

(93) 

Various materials such as epoxy, graphene, copper, and so on can be considered as the plate's 

material. In this study, graphene is chosen as the plate's material. A single-layer graphene plate has 
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the following properties [21]: 

𝖤 = 1.06𝑇𝑃𝑎, 𝜈 = 0.25 , ℎ = 0.34𝑛𝑚, 𝜌 = 2250
𝑘𝑔

𝑚3⁄  

 

Also, the relationship between E, μ, and ν can be expressed as: 

𝜆 =
𝜈𝘌

(1 + 𝜈)(1 − 2𝜈)
     , 𝜇 =

𝘌

2(1 + 𝜈)
 

 

(94) 

Where E is the Young modulus, and μ and λ are the Lame coefficients [22]. Then, q = 1N m2⁄  is 

considered as the stress amount. 

 

3. Results and Discussion 

Results were obtained using a computational program coded in MATLAB software. The plate's 

dimensional parameters are chosen as follows: 

a: plate's length 

b: plate's width 

h: plate's thickness 

l: material length scale parameter 

Table 1 shows that the value of dimensionless bending of third-order nanoplate under the sinusoidal 

load is less than that of the uniform surface traction. The dimensionless bending value increases by 

increasing the aspect ratio of the plate. Besides, the aforementioned value decreases by increasing the 

length scale parameter to thickness ratio. 

Figure 1 presents the bending value of different nanoplates under uniform surface traction for 

different length-to-width ratios. According to Fig. 1, the bending value is the lowest for the Kirchhoff 

nanoplate and the highest for the third-order nanoplate. 

Table 2 represents the bending value of the third-order nanoplate subjected to uniform surface traction 

for different length to width and parameter length scale to thickness ratios. The bending value of the 

plate decreases by increasing the length parameter to thickness ratio. In addition, increasing the aspect 

ratio of the plate leads to higher bending values. 

Figure 2 depicts the bending value of the third-order nanoplate under sinusoidal loading for different 

length to width and length scale parameter to thickness ratios. The figure shows that the bending 

value of the plate declines by increasing the length parameter to thickness ratios. Furthermore, it was 

observed that increasing the aspect ratio of the plate leads to higher bending values. 

Figure 3 exhibits the bending contours of the third-order nanoplate under uniform surface traction. 

According to the results, the maximum bending value occurs at the center of the plate. 

Figure 4 presents the critical buckling load of third-order nanoplate subjected to a biaxial loading in 

x and y directions. This value increases by increasing the ratio of length scale parameter to thickness 

and decreases by increasing the ratio of length to thickness. 

Table 3 shows that the critical buckling load of the third-order nanoplate under uniaxial loading in x-

direction increases by increasing the length scale parameter to thickness ratio and declines with 
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increasing the length to the thickness ratio. In addition, by comparing the results of Table 3 and Fig. 

4 it can be found that the critical buckling load in the uniaxial loading yields greater values than that 

of the biaxial loading. 

Table 4 lists the dimensionless critical buckling loads of different nanoplates subjected to biaxial 

loadings in x and y directions. Where an increase in length to thickness ratio leads to different 

behaviors as follows: 

 The dimensionless critical load increases by increasing the length to thickness ratio of Mindlin 

nanoplate. 

 The dimensionless critical load decreases slightly by increasing the length to thickness ratio 

of the third- and fifth-order shear nanoplates. 

 The dimensionless critical load remains unchanged while increasing the length to thickness 

ratio of the Kirchhoff nanoplate. 

Table 1. Comparison of dimensionless bending of third order nanoplate under sinusoidal and uniform surface traction 

for various length to width ratio (a / h = 30 and q = 1e-18 N / nm ^ 2) 

a/b 

l/h 

0 
 

0.5 
 

1 
 

2 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

Uniform 

load 

Sinusoidal 

load 

1 1.0000 1.0000  0.49874 0.49858  0.19922 0.19912  0.05856 0.05852 

1.5 1.0000 1.0000  0.49911 0.49883  0.19945 0.19927  0.05864 0.05858 

2 1.0000 1.0000  0.49923 0.49895  0.19952 0.19935  0.05866 0.05860 

 

 
Figure 1. Comparison of dimensionless bending of different nanoplates under uniform surface traction for various 

length to width ratio (a/h=30 and q=1e-18 N/nm^2, l/h=1) 
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Table 2. Bending values of third-order nanoplate under uniform surface traction for various length to width and length 

parameter to thickness ratios (q=1e-18 N/nm^2 and a/h=30) 

a/b 
l/h 

0 0.5 1 2 

1 10.7837 5.3783 2.1483 0.6315 

1.5 20.7713 10.3671 4.1428 1.2179 

2 28.0010 13.9789 5.5868 1.6426 

 

 
Figure 2. Bending values of third-order nanoplate under Sinusoidal stress for various length to width and length 

parameter to thickness ratios (q=1e-18 N/nm^2 and a/h=30) 

 

 
Figure 3. Bending contours of the third order nanoplate (a/h=30, q=1e-18 N/nm^2, and a/b=1, l/h=1) 
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Figure 4. Comparison of the critical buckling load of third-order nanoplate under biaxial loading in x- y direction for 

various length to width and length to thickness ratios (a / b = 1) 

 
Table 3. Comparison of the critical buckling load of third-order nanoplate under the uniaxial loading in x-direction for 

various length to width and length parameter to thickness ratios (a / b = 1) 

a/h 
 l/h 

0 0.5 1 1.5 2 

5 46.0378 99.6890 260.2116 527.5054 901.6352 

10 13.4331 27.4598 69.4801 139.4830 237.4772 

20 3.5051 7.0497 17.6789 35.3919 60.1893 

30 1.5706 3.1490 7.8834 15.7736 26.8197 

40 0.8860 1.7744 4.4396 8.8813 15.0997 

50 0.5678 1.1366 2.8429 5.6867 9.6679 

 

Table 4. Comparison of the dimensionless critical buckling load of third-order nanoplate under the biaxial loading in x- 

y direction for various length to width and length to thickness ratios (a / b = 1, I/h=1) 

a/h 
Kirchhoff 

plate 

Mindlin 

plate 

Third-order shear 

deformation plate 

N order shear 

deformation plate 

(n=5) 

5 5.0000 10.1594 5.6521 5.6937 

10 5.0000 12.8101 5.1723 5.1826 

20 5.0000 13.6820 5.0437 5.0463 

30 5.0000 13.8568 5.0195 5.0206 

40 5.0000 13.9191 5.0110 5.0116 

50 5.0000 13.9481 5.0070 5.0074 

 

4. Conclusion 

In this study, the bending and buckling of a third-order nanoplate were investigated using the 

modified couple stress theory. Based on the obtained results presented in the tables and figures, the 

dimensionless bending value of the third-order nanoplate under the sinusoidal load is less than that 

of the uniform surface traction.  Besides, increasing the length parameter to the thickness ratio led to 

a lower dimensionless bending value of the nanoplate. Furthermore, the value of dimensionless 
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bending increases with increasing the aspect ratio of the plate. The bending results showed that the 

Kirchhoff nanoplate has the lowest and the third-order nanoplate has the highest bending values.  

The critical buckling load value of the third-order nanoplate under uniaxial loading in x-direction 

increases with increasing the ratio of the length scale parameter to the thickness of the nanoplate, 

while it decreases by increasing the length to thickness ratio. moreover, it was found that the critical 

buckling load under uniaxial loading is greater than the critical buckling load under biaxial loading. 
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