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Abstract 

In recent years, there has been a demand for the production of materials with high thermal resistance 

and manufacturing structures with high mechanical strength in modern industries. In this paper, the 

frequency responses analysis of the sandwich beams with functionally graded core and homogeneous 

face sheets are presented based on the high-order sandwich beam theory. All materials are 

temperature dependent and the properties of FGM are varied gradually by a power-law rule which is 

modified by considering even and uneven porosity distributions across the thickness. Nonlinear 

Lagrange strain and thermal stresses of the face sheets and in-plane strain and transverse flexibility 

of the core are considered. Governing equations of the motion are obtained based on Hamilton’s 

principle and solved by a Galerkin method for the clamped-free boundary condition. To verify the 

results of this study, they compared with special cases of the literature. Based on the numerical results, 

it is concluded that by increasing the temperature, power-law index, length, thickness, porosity 

volume fraction the fundamental frequency parameter decreases, and increasing the wave number 

causes the frequency increases. 
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1. Introduction 

Nowadays, the sandwich panels which usually have two thin and stiff faces and a lightweight flexible 

core, have become common and useful structures in modern industries such as aerospace, 

transportation, naval, and construction structures.  These structures have a high bending rigidity, high 

performance with a low weight concurrently [1].  

On the other hand, the failure, delamination, and thermal stress concentration are the results of using 

the classical composite materials in high-temperature environments. To avoid these damages 

functionally graded materials (FGMs) have been proposed which are microscopic inhomogeneous 

materials and gradually graded from a metal surface to a ceramic one [2]. In recent years, there has 

been a demand for the production of materials with high thermal resistance and manufacturing 

structures with high mechanical strength in modern industries such as aerospace, turbine, reactor, and 

other machines. The FGMs are modern materials applied in the sandwich structures as coating layers 

to save the panels in high thermal conditions. There are different methods of manufacturing the FGMs 
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such as powder densification processes, coating processes, plasma spray forming, thermal spray 

techniques, laser cladding, settling and centrifugal separation, infiltration processing. In some 

production processes of FGM, due to technical problems, some micro voids and porosities appear 

which reduce the mechanical properties such as density and Young modulus. So this important effect 

must be considered in the model of FGMs. 

In the classical theories, the core has been considered as a constant thickness layer, but to investigate 

the localized effects in the sandwich structures behavior, the high order sandwich panels theory is 

presented which the core is considered as a transversely flexible layer [3]. Many researchers have 

been studied the mechanical behaviors of sandwich beams by using different theories. 

Fazzolari studied the vibration and elastic stability of functionally graded sandwich beams resting on 

the elastic foundation by using a higher beam theory [4]. Based on the Timoshenko beam theory, 

Chen et al. studied the nonlinear vibration of sandwich beam with porous FG core and solved the 

equation by applying the Ritz method theory [5]. Akbaş investigated the vibration of the FG porous 

deep beam based on a finite element procedure under thermal conditions [6]. Bourada et al. studied 

the vibration of FG beams with porosity based on a high order trigonometric deformation theory [7]. 

Li et al. studied the nonlinear vibration of FG sandwich beams with negative Poisson’s ratio 

honeycomb core based on the 3D full-scale finite element analyses [8]. Wu et al. surveyed the 

vibration and buckling of sandwich beams with FG carbon nanotube-reinforced composite faces 

based on the Timoshenko beam theory [9]. Xu et al. investigated vibration of composite sandwich 

beam with corrugated core based on the continuous homogeneous theory and Rayleigh-Ritz method 

[10]. Li et al. investigated the vibration of multilayer lattice sandwich beams numerically and 

experimentally [11]. Li investigated the nonlinear vibration and stability of axially moving 

viscoelastic sandwich beam under resonances by using the Galerkin method [12]. Şimşek and Al-

shujairi investigated different types of vibration behaviors of FG sandwich beams under the harmonic 

loads by using the Timoshenko beam theory [13]. Nguyen et al. studied the buckling and vibration 

behaviors of different types of FG sandwich beams by using a quasi 3D beam theory [14]. By using 

a finite element model, Kahya and Turan investigated the buckling and vibration of different types of 

FG sandwich beams based on the first-order shear deformation theory [15]. Tossapanon and 

Wattanasakulpong studied the buckling and vibration behavior of sandwich beams with FG faces 

resting on elastic foundation based on the Timoshenko beam theory and Chebyshev collocation [16]. 

Arikoglu and Ozkol investigated the vibration of composite sandwich beams with viscoelastic core 

based on the differential transform method [17]. Pradhan and Murmu investigated the vibration of 

FG beams and FG sandwich beams resting on elastic foundations by using the differential quadrature 

method [18]. Mashat et al. studied the vibration of FG layered beams by using Carrera unified 

formulation and FEM [19]. Nguyen et al. studied the vibration and buckling of FG sandwich beams 

based on the higher order shear deformation theory [20]. Vo et al. studied the vibration and buckling 

of FG sandwich beams by using a quasi 3D theory and a finite element model [21]. Yang et al. studied 

the vibration behavior of the different type of the FG sandwich beams by using a meshfree boundary-

domain integral equation method [22]. Mayandi and Jeyaraj studied the mechanical behaviors of FG-

CNTR polymer composite beam such as buckling by using finite element method [23]. Mammano 

and Dragoni presented the approximate equations of buckled beam based on the elastica solution for 

low-stiffness elastic suspensions [24]. Alijani and et al. studied the elasto-plastic nonlinear buckling 
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responses of FGM beams based on the finite element method [25]. Majumdar and Das analyzed the 

thermal buckling behavior of clamped FG beams based on the Euler-Bernoulli theory [26]. Koissin 

et al. studied the physical nonlinearity effect on the buckling responses of the sandwich beam with a 

foam core experimentally, theoretically, and numerically [27]. Tran et al. studied the bending and 

buckling behavior of sandwich FG beam based on third-order shear deformation theory and finite 

element method in thermal conditions [28]. Osofero et al. investigated the vibration and buckling of 

FG sandwich beams by using a quasi-3D theory [29]. Challamel and Girhammar studied the buckling 

behavior of partial composite beam-columns by using the variational theories and by considering the 

shear and axial effects [30].  

In this study, by using a high order sandwich beam theory modified by considering the flexibility of 

the core in the thickness direction, free vibration of sandwich beams is investigated. The sandwiches 

consist of two homogeneous faces which cover an FG core. All materials are temperature dependent 

and the properties of the FGM are location-dependent which is graded according to a power-law rule.  

To increase the accuracy of the model of the FGM properties, even and uneven porosity distributions 

are applied. Nonlinear Lagrange strain and thermal stresses of the face sheets and in-plane strain of 

the core are considered. Governing equations of the motion are obtained based on Hamilton’s 

principle and solved by a Galerkin method for the clamped-free boundary condition. To validate the 

present approach, special cases of the results of this analytical approach are compared with some 

studies. Finally, the effects of temperature, the volume fraction distribution of FGM, some 

geometrical parameters, and porosity effects on the vibration characteristics of defined sandwich 

beams are investigated. 

 

2. Formulation 

A sandwich beam with a porous FG core is covered by the homogeneous face sheets. A schematic 

cross-section of this sandwich beam is shown in Figure 1. 

 
Figure 1. A schematic of sandwich beam 

The properties of the homogeneous and the FG materials are temperature dependent which defined 

as follows [31]: 

 1 2 3

0 1 1 2 31P P T PT PT PTP 

    
 (1) 

Where "P"s are the coefficients of temperature, and they are unique for each material; T=T0+ΔT, 

which T0 is equal to 300(K). Usually, it is considered that functionally graded materials are composed 

of metal and ceramic. Material properties such as Young’s modulus, density, Poisson’s ratio are 

varied gradually across the thickness direction. The power-law rule which consists of even porosity 

distribution is presented for the FG core as follow [32]: 
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where "N" is the constant power-law index; g(z) and [1-g(z)] are volume fraction of ceramic and 

metal; "ζ" is the porosity distribution; subscripts “m” and “ce” are metal and ceramic and subscripts; 

"c" refers to the core. In the uneven case, the microvoids are spread in the middle area of the layers 

decrease near to the edges and tend to zero. So, the power-law rule in the uneven case is modified as 

follows [32]: 
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(4) 

To model the displacement fields of the face-sheets, First Order Shear Deformation Theory (FSDT) 

is employed as follows [33]: 

   0 , ; ), , ( ,jj j ju t jx z t u x z t b   
 

(5) 

   0  , , ,j jw x z t w x t
 

(6) 

where "0" denotes values with correspondence to the central plane of the layers; subscripts "t" and 

"b" refer to the top and bottom faces, respectively "u" and "w" are the in-plane deformation and the 

transverse deflections of the faces in the "x" and "z" directions, respectively. ''Φ'' is the rotation of the 

transverse normal line. Also, the kinematic relations of the core are considered as a polynomial pattern 

with the unknown coefficients, uk (k=0,1,2,3), for the in-plane and wl (l=0,1,2) for vertical 

displacement components which obtained by the variational principle [34]: 
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(8) 

In this theory, the compatibility conditions assume that the faces are stuck to the core completely and 

the interface displacements between the core and the face sheets can be obtained as follows [35]: 

   / 2 / 2c c c t t tu z h u z h   
, 

 / 2c c c tw z h w  
 (9) 

   / 2 / 2b b b c c cu z h u z h   
, 

 / 2b c c cw w z h
 

(10) 

To obtain the governing equations of the motion, Hamilton's energy principle is applied as follow: 

 
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1
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t
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(11) 
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The variation of kinetic and the strain energy are “δK” and “δU”, respectively; “t” is the time 

coordinate that varies between the times “t1” and “t2”; “δ” is the variation operator. The variation of 

the kinetic energy is calculated as follows: 
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where (∙∙) indicates the second derivative to time; The density is "ρ" which in the functionally graded 

layers is the function of the displacement. The variation of the total strain energy in the face sheets 

and the core, also the compatibility conditions at the interfaces of the layers which are the constraints 

and attended in Hamilton’s principle in terms of Lagrange multipliers, is expressed as follows: 
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where “σxx”  is the in-plane normal stress; “τxz” is the in-plane shear stresses; “εxx” and “γxz” display 

the in-plane normal and shear linear strains; “dxx” and “dzz” are the in-plane normal and shear 

nonlinear strains of the layers; “σT
xx” and “σT

zz” express the thermal stresses; “σc
zz” and “εc

zz” present 

the lateral normal stress and strain in the core; “τc
xz” and “γc

xz” declare shear stress and shear strain 

in the core; and “λx’ and “λz” are the Lagrange multipliers. 

Considering small deflection, the strain components for the faces can be declared as follows [36]: 
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The"(),i" expresses derivation with respect to ''i''. The strain of the core can be defined as [36]: 
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In this model by substituting the expressions of the Eq. (12) and Eq. (13) according to the kinematic 

relations of the layers and using the interfaces relations, and after some algebraic operations, the 
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thirteen equations of motion are obtained. These equations are not independent and by using the 

compatibility conditions and based on a reduction method the number of equations is reduced to nine. 

These equations include two unknowns of the faces and seven unknowns of the core which are 

presented in the follows: 
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where “Ikt”, “Ikb” (k=0, 1, 2) are the inertia terms of the top and the bottom face sheets, respectively; 

“Ilc” (l=0, 1…6) are the inertia terms of the core. “Nj
xx”, “Nj

xz”, (j=t, b) are the stress resultants and 

“Mj
xx” (j=t, b) is the moment resultants of the top and the bottom face sheets; “NjT

xx”, “NjT
zz”,(j=t, b) 

are the force thermal resultants; “Qxc”, “MQ1xc”, “MQ2xc”, “Rzc”, “Mzc”, “Rxc”, “Mx1c”, “Mx2c” and 

“Mx3c” are the high order stress resultant of the core. In the relations of the face sheets, the in-plane 

stress resultants, “Nxx”; the moment resultants, “Mxx”; and then out of plane shear stress resultants, 

“Nxz”, is calculated as follows [36]: 
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“A” is the stretching stiffness, “B” is the bending-stretching stiffness and “D” is the bending stiffness; 

which are constant coefficients and express as [37]: 
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The high order thermal stress resultants in the face sheets are depicted as follows [31]: 
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where E, ν, and α are Young's modulus, the Poisson’s ratio, and the thermal expansion coefficient, 

respectively, which in the functionally graded layers are the function of the displacement, too. The 

inertia terms of the face sheets and the core are calculated as follows [36]: 
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The high order stress resultants of the core are as follows: 
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Finally, by substituting the high order stress resultants in terms of the kinematic relations, the 

equations are derived in terms of the nine unknowns.  



Mohsen Rahmani, Temperature-dependent Vibration Analysis of Clamped-free Sandwich Beams with …, pp.61-77 

68 

3. Verification and Numerical Results 

To solve the equations of the free vibration of the FG sandwich beam, a Galerkin method with nine 

trigonometric shape functions, which satisfy the boundary condition, is established. The shape 

functions of the clamped-free boundary condition can be expressed as [38]: 
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where “am=mπ/L; “m” is the wave number and 
, ,uk wk jC C C are the nine unknown constants of the 

shape functions. These nine equations can be written in a 9×9 matrix which includes the mass, “M”, 

and stiffness, “K”, matrices as follows: 

2( ) 0mm m mk M C   (49) 

In Eq. (49), m  is the natural frequency; and “Cm” is the eigenvector which contains nine unknown 

constants.  

To validate the approach of this study, present results in a special case are compared with results of 

literature [39-41] which are shown in Table 1, for the simply supported (S-S) and clamped (C-C) 

boundary conditions. There is a good agreement between the results. Since the procedure of the 

present study is different with references [39-41], negligible discrepancies are seen in the results. 

 
Table 1. Fundamental frequency parameters of present results and literature [39-41] (L/h=5) 

B.C reference N=0 N=0.5 N=1 N=2 

S-S 

Simsek [39] 5.1525 4.4083 3.9902 3.6344 

Vo [41] 5.1526 4.3990 3.9711 3.6050 

Nguyen [40] 5.1525 4.4075 3.9902 3.6344 

Present method 5.0789 4.3312 3.8618 3.5487 

C-C 

Simsek [39] 10.0344 8.7005 7.9253 7.2113 

Vo [41] 9.9984 8.6717 7.9015 7.1901 

Present method 9.9151 8.5887 7.8080 7.1088 

 

Consider an FG sandwich beam which is assumed to be made from a mixture of Silicon nitride as 

ceramic phase and Stainless steel as a metal phase. The temperature-dependent properties of 

constituent materials which are introduced by Eq. (1) are presented in the reference [33]. For 

simplicity, the fundamental frequency parameter defined that is non-dimensional as: 

/1000  (50) 
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In general, the ht-hc-hb sandwich beam is a structure with the indices of outer face sheet thickness, 

core thickness, and inner face sheet thickness equal to ht, hc, and hb, respectively. Therefore, in a 1-8-

1 sandwich, the core thickness is eight times every face sheet thickness. 

Temperature variation has an important effect on the frequency of the structures. According to Eq. 

(1), temperature rising reduces the Young modulus of metal and ceramic. So, the strength of the 

materials reduces, which is an important reason for decreasing the frequency in high-temperature 

conditions. Figure 2 shows the fundamental frequency parameter variation versus the temperature for 

1-8-1 FG core sandwich beam with clamped-free boundary conditions. Geometrical parameters are 

“h = 0.02m, L/h=5, m=1”. By increasing the temperature, the fundamental frequency parameters 

decrease. As shown in Figure 2, when N=0, the FG layer is made of full ceramic, as a result, the 

stability and resistance against the high-temperature conditions are more than the other values of “N”, 

so its fundamental frequency parameters are higher than others. By increasing the power-law index, 

“N”, the amount of the ceramic reduces in the structure which causes the young modulus of the FGM 

and the stability of the structures to decrease. When “N=0”, by increasing the temperature, the 

fundamental frequency parameter decreases 22.78%, for “N=1” and “N=2” it decreases 34.33%, and 

35.23%, respectively.  

 

Figure 2. Fundamental frequency variation versus temperature rising 

 

Some geometrical effects on the fundamental frequency of FG sandwich beams are investigated. 

Figure 3 shows the effect of length to thickness ratio on the fundamental frequency parameter in 1-8-

1 FG core sandwich beam in the clamped-free boundary conditions. Geometrical parameters are ''h = 

0.02m, T=300K, m=1''. When ratios are increased in a constant “N”, the fundamental frequency 

parameter decreases. Based on Figure 3, by increasing this ratio, the stability of the structure reduces 

and it is important to consider that long length is not proper for the FG sandwich beams. Also, it is 

obvious that by increasing the power-law index, “N”, the fundamental frequency parameters decrease, 

but in this case effect of variation of the length is a dominant parameter and its variation has an 

impressive effect on the fundamental frequency. For example, for ''L/h=5'', by increasing “N”, the 

fundamental frequency parameter decreases 35.18%, but for “N=0”, by increasing this ratio, the 



Mohsen Rahmani, Temperature-dependent Vibration Analysis of Clamped-free Sandwich Beams with …, pp.61-77 

70 

fundamental frequency decreases 6193%. Also, it should be noted that when the ratio is more than 

12, the slope of the variation of the fundamental frequency is decreased significantly. 

 
Figure 3. Fundamental frequency variation versus L/h ratio 

 

Figure 4 shows the effect of the variation of the core to face sheet thickness ratio, “hc/ht”, on the 

fundamental frequency parameter in various power-law indices and constant total thickness. When 

“hc/ht=0.5”, it means the thickness of the faces is two times the core thickness, so it shows the results 

of the 2-1-2 sandwich. And, when “hc/ht=8”, it shows results of the 1-8-1 sandwich. Geometrical 

parameters are ''h = 0.02m, T=300K, m=1, L/h=10''. By increasing the ratio in a constant total 

thickness, the amount of ceramic increases, and the structure becomes stiffer, so the fundamental 

frequency parameters increase at lower gradient indices. Since in 1-8-1 sandwich, the amount of 

ceramic is more than 2-1-2 one, it is clear that the fundamental frequency parameter is higher, as 

shown in Figure 4. But from a certain value of the power-law index, by increasing the power-law 

index, the fundamental frequency of the 2-1-2 becomes more than 1-8-1 sandwiches. By increasing 

the power-law index in a constant thickness, the ceramic quantity of the FG layer decreases, so, for 

all values of ''hc/ht'', the fundamental frequency parameters decrease. In “hc/ht=0.5”, the fundamental 

frequency parameter decrease 7.626 when “N” is increased, and in “hc/ht=8”, the fundamental 

frequency parameter decreases 34.96% when “N” is increased. Also, for “N=0”, by increasing this 

ratio, the fundamental frequency increases 31.50%, but for ''N=2'', it decreases 7.38%. 
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Figure 4. Effect of variation of the core to face sheets thickness ratio on the fundamental frequency parameter  

The effect of the variation of the wave number, “m”, on the fundamental frequency parameter in 

various power-law indices and the constant total thickness is depicted in Figure 5. Geometrical 

parameters are ''T=300K, L/h=10''. By increasing the wave number, the fundamental frequency 

parameters increase.   

 
Figure 5. Effect of variation of the wave number on the fundamental frequency parameter 

 

The effect of the variation of the total thickness of the sandwiches, “h”, on the fundamental frequency 

parameter in various power-law indices for clamped-free FG sandwich beam is depicted in Figure 6. 

It is obvious that by increasing the total thickness in a constant L/h ratio, the fundamental frequency 

parameter decreases. 

The slope of decreasing the frequency in the value of lower than 0.02m is severe, but in the higher 

values, the slope of decreasing is lower. It means after a certain value, increasing the thickness has a 

little effect on the frequency. For example, in “N=0” by increasing the “h”, the fundamental frequency 
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parameter decreases 2487.91%. But, it is seen that after the “h=0.02m”, the rate of variation is 

decreased and the difference is 562.99%. For “h=0.01m”, by increasing “N”, the fundamental 

frequency parameter decrease 54.27%.  

 
Figure 6. Effect of the variation of the total thickness of the sandwiches on the fundamental frequency parameter  

 

To investigate the porosity influence, Figure 7 and Figure 8 show the effects of even and uneven 

porosity distributions on the fundamental frequency parameters of sandwich beam, respectively. 

Geometrical parameters are “h = 0.02m, L/h=10, m=1”. In the even distributions, porosities occur all 

over the cross-section of the FG layer. While, in the uneven distribution, porosities are available at 

the middle zone of the cross-section. As shown in Figure 7 and Figure 8, by increasing the porosity 

volume fraction, the fundamental frequency parameters increase for all power-law indices. The slope 

of increasing is stronger in the case of even porosity distribution. In the even case in “N=0”, by 

increasing the volume fraction of the porosity, the fundamental frequency increases 64.43%, and in 

the uneven case in “N=0”, by increasing the volume fraction of the porosity, the fundamental 

frequency increases 21.91%. 
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Figure 7. Fundamental frequency variation versus even porosity 

 

 
Figure 8. Fundamental frequency variation versus uneven porosity 

 

4. Conclusion 

In this study, frequency analysis of the 1-8-1 sandwich beams, according to a high order sandwich 

beam theory was presented. The fields of the displacement of the face sheets were considered based 

on the first-order shear deformation theory and the core displacement fields were considered as the 

polynomial distributions for vertical and horizontal deflections. High order stresses resultants in-

plane stresses in the core and thermal stress resultants, and nonlinear strains in the face sheets were 

considered. All materials were temperature-dependent. A power law distribution was used to model 

the material properties of the FG core which was modified by considering two distributions of 
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porosity. The equations of motion were obtained by Hamilton's principal and solved by using the 

Galerkin method for clamped-free boundary conditions. To survey the capabilities of this model for 

free vibration analysis, the results were verified by literature results in a special case. Based on the 

results, there was a good agreement between them. The following conclusion can be drawn: 

1. When the temperature is increased, the fundamental frequency parameters decrease. 

2. By increasing the power-law index, the amount of ceramic reduces, so the fundamental frequency 

parameter decreases. 

3. By increasing the length to thickness ratio, the stability of the structure reduces, so the fundamental 

frequency parameter decreases. 

4. In a constant total thickness, by increasing the core to face-sheet thickness ratio, first the 

fundamental frequency parameters increase at the lower gradient indices, but from a certain value 

of the power-law index, by increasing the power-law index, when the ratio is increased, the 

fundamental frequency parameters decrease. 

5. By increasing the wave number, the fundamental frequency parameter increases. 

6. By increasing the total thickness of the sandwich beams, the fundamental frequency parameter 

decreases.  

7. By increasing the porosity volume fraction in both even and uneven distributions, the fundamental 

frequency parameter increases. Variation of frequencies in even porosity cases is more than uneven 

cases. 
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