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Abstract 

Optimal path planning with optimal journey time and the motor saturation limit are two main challenges 

in mobile industrial robot design. The motion speed and motor saturation limit are important factors 

determining the required torque. Calculating the optimal torque value reduces the construction and motor 

selection costs. This paper proposes the theory of optimal control open-loop base model for path planning 

by simultaneously minimizing the journey time, wheels’ torque for industrial robots. In this study, 

nonlinear equations of robot motion were considered as a constraint in optimal control problems. Next, 

the cost function was proposed, including the torque of the left and right wheels and time-related terminal 

conditions and disturbance, in which the nonlinear equations of the industrial robot motion are assumed 

as constraints. The final equations were numerically solved, and the effectiveness of the proposed 

method was demonstrated by simulating and path design for industrial robots' motions along with 

considering motor saturation limit. 
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1. Introduction 

Mobile industrial robots can be programmed to perform tasks in an industrial setting. Typically they 

are used in stationary and workbench applications. However, mobile industrial robots have introduced 

a new method for lean manufacturing. With advances in controls and robotics, current technology has 

been optimized, allowing for mobile tasks such as product delivery. This additional flexibility in 

manufacturing can save corporate time and money during the manufacturing process, resulting in a 

less expensive end product [1]. Figure 1 shows a mobile industrial robot. 

 

 

 

 

 

 

 

https://dorl.net/dor/20.1001.1.27170314.2021.10.3.4.7
https://en.wikipedia.org/wiki/Manufacturing
https://en.wikipedia.org/wiki/Robotics
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Figure 1. An Industrial mobile robot example: OTTO 1500 self-driving vehicle for heavy-load material transport in 

warehouses, distribution centers, and factories [1] 

 

The control problem of a mobile robot has been investigated in the past decades [2]. Korayem et al. 

investigated dynamic modeling and optimal path planning of a non-holonomic mobile robot in a 

complex environment [3]. Also, Nazemizadeh et al. presented an optimal control strategy for mobile 

robots' optimal trajectory planning using the indirect solution of the optimal control method [4]. They 

excluded the time parameter in their optimal control problem. Wu et al. designed a finite-time control 

law for a non-holonomic mobile robot in a dynamic model. Furthermore, they proposed a robust 

adaptive control strategy for controlling the mobile robot [5]. Cui et al. applied adaptive tracking and 

obstacle avoidance with unknown sliding to control a mobile robot. They introduced a sliding mode 

observer and an obstacle avoidance control law to estimate the sliding parameters online in a non-

holonomic system to compensate for the unknown parameters [6]. Dos Santos et al. used a direct 

optimization method for the optimized path planning if the manipulators are in a constrained 

workspace [7]. Ramos optimally controlled time and energy minimization in the trajectory generation 

based on the kinematics of a mobile robot [8]. Tuncer and Yildirim proposed a new mutation operator 

for a genetic algorithm and applied it for mobile robot navigation in dynamic environments [9]. The 

above works were only addressed the motion planning of mobile robots and disregarded the 

optimality of journey time. Perrier et al. [10] designed the path of a non-holonomic moving robot. In 

their proposed method, they used only in kinematic modeling of a robot. However, in designing the 

path of a mobile robot, the actuators' torque limitations should be considered; otherwise, the path 

design errors increase. However, to increase the efficiency and effectiveness of mobile robots, 

designing their optimal path is paramount. Accordingly, various articles provide the optimal path 

design and consider various cost functions, such as minimum input efforts [11]. Korayem et al. [12] 

used a linear iterative programming method to design the path of a moving robot. This method has 

disadvantages such as linearization of equations and lack of proper convergence of the answer, 

making it unsuitable in practice. In [13], the optimal path of the non-holonomic mobile robot for the 

condition of the end-effector path was investigated. First, the dynamic modeling of the system was 

performed by considering non-holonomic constraints, and the optimal path of the mobile robot was 

designed for a specific end-effector path. Korayem and Nazemizadeh [14] investigated the path 

planning of a mobile robot in the presence of environmental obstacles and used potential functions 

for obstacle avoidance. In [15] and [16], the optimal path of a flexible mobile robot is designed using 

the optimal control method, and the path of the moving robot is known while the non-holonomic 
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constraints of the robot are not considered. The present paper uses the optimal control theory for path 

planning, minimizing the journey time in the generated optimized trajectory. Generally, the optimal 

control problems are based on open-loop control, and a dynamic equation mainly plays the role of 

the constraints in the optimal control problem. In Section 2, the dynamic equations are derived while 

the constraints are discussed. Section 3 addresses the problem of optimal control and a new cost 

function for minimum journey time. In Section 4, the simulation and the results are presented. 

 

2. Dynamic model of the wheeled mobile robot 

This section derives the dynamic model of a mobile robot. Consider the mobile robot shown in 

Figure 2. The mobile robot moves on the ground using the friction contact between wheels and the 

ground. The presented model considers no slips in the driving and lateral directions. The dynamic 

motion modeling of the mechanical systems includes dynamic variables related to system motion 

caused by external forces and system inertia. The Lagrange method has been used to derive the 

dynamic equations of the robot. 

 

 
Figure 2. Schematic of the wheeled mobile robot 

According to Lagrange formulation, the following differential equations are obtained [17]: 

𝑚𝑐�̈� − 𝜆1sin𝛾 =
1

𝑟
(𝜏𝑟 + 𝜏𝑙)cos𝛾 

(1) 

𝑚𝑐�̈� + 𝜆1cos𝛾 =
1

𝑟
(𝜏𝑟 + 𝜏𝑙)sin𝛾 

(2) 

𝐽�̈� =
𝐿

2𝑟
(𝜏𝑟 − 𝜏𝑙) 

(3) 

 

Where 𝑚𝑐 and 𝐽 denote the robot mass and moment of inertial, respectively. 𝑥, 𝑦, and 𝛾 are 

generalized coordinates of the robot. 𝐿 and 𝑟 denote the distance between the wheels and the radius 

of each wheel, respectively. The torque of the left and right wheels are denoted by 𝜏𝑙 and 𝜏𝑟, 

respectively. Finally, the Lagrange multiplier of the constrained system is denoted by 𝜆. A dynamic 

model of the system with constraints can be expressed as follows: 

𝑀(𝑞)�̈� + 𝑉(𝑞, �̇�) = 𝐸(𝑞)𝑢 − 𝐴𝑇(𝑞)𝜆 (4) 
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The parameters of the above equation are defined as: 𝑞 is the vector of generalized coordinates and 

𝑀 is the positive definite mass and inertial matrix, 𝑉 is the vector of Coriolis and centrifugal forces, 

𝐸 is transformation matrix from actuators space to the generalized coordinates space, 𝑢 is the input 

vector and 𝐴𝑇 is the matrix of kinematics constraints coefficients and 𝜆 is the vector of Lagrange 

multipliers. According to equation (4), matrices 𝑀, 𝐸, 𝐴𝑇
 and Vector 𝑢 in the motion equation of the 

mobile robot can be expressed as follows: 

𝑀 = [

𝑚𝑐 0 0
0 𝑚𝑐 0
0 0 𝐽

] 
 

(5) 

𝐸 =
1

𝑟
[

cos𝛾 cos𝛾
sin𝛾 sin𝛾
𝐿

2
−

𝐿

2

] 

 

(6) 

𝐴 = [−sin𝛾 cos𝛾 0] (7) 

𝑢 = [
𝜏𝑟

𝜏𝑙
] (8) 

The remaining matrices are zero. The system can be written in the state-space as follows [17]: 

[
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�]

 
 
 
 

=

[
 
 
 
 
𝑣cos𝛾
𝑣sin𝛾

𝜔
0
0 ]

 
 
 
 

+

[
 
 
 
 
 
 

0 0
0 0
0 0
1

𝑚𝑐𝑟

1

𝑚𝑐𝑟
𝐿

2𝐽𝑟
−

𝐿

2𝐽𝑟]
 
 
 
 
 
 

[
𝜏𝑟

𝜏𝑙
] 

 

 

(9) 

 

3. Optimal control theory for path planning 

In this section, the mobile robot's optimal control problem and trajectory optimization are addressed, 

and the optimum values of control inputs to generate the optimal paths involving the left and right 

wheels' torque and optimal time are obtained. In optimal motion planning of the mobile robot, the 

dynamic equations of the system are assumed as constraints of the optimal control problem, and it is 

aimed to determine the optimal state vector 𝑧 and 𝑢, thus introducing a cost function: 

 

min
𝑢(𝑡)

{𝜙(𝑡𝑓) + ∫ (𝐿(𝑧(𝑡), 𝑢(𝑡)) + 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒) 𝑑𝑡
𝑡𝑓

0

} 
(10) 

 

And 
𝑠. 𝑡:   �̇�(𝑡) = 𝑓(𝑧(𝑡), 𝑢(𝑡))𝑎

𝑧(0) = 𝑧0

𝑧(𝑡𝑓) = 𝑧𝑓

𝜕𝜑

𝜕𝑡𝑓
(𝑡𝑓) + 𝐻(𝑧∗(𝑡𝑓), 𝑢

∗(𝑡𝑓), 𝑝
∗(𝑡𝑓)) = 0

 

 

 

 

 

(11) 

Where here 𝜙(𝑡𝑓) as follow and assume that disturbance is zero: 

𝜙(𝑡𝑓) = 𝛼𝑡𝑓 (12) 
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Using the calculus of variations and the Pontryagin minimum principle, the Hamiltonian function is 

as follows [18]: 

𝛨(𝑧, 𝑢, 𝑃) = 𝐿(𝑢) + 𝑃𝑇𝑓(𝑧, 𝑢) (13) 

 

Where 𝑃 is the co-stat vector. The optimality conditions are extracted as a set of differential equations: 

is as follows [18]: 

𝛨(𝑧, 𝑢, 𝑃) = 𝐿(𝑢) + 𝑃𝑇𝑓(𝑧, 𝑢) (13) 

 

Where 𝑃 is the co-stat vector. The optimality conditions are extracted as a set of differential equations: 

 

�̇�∗ =
𝜕𝐻

𝜕𝑃
=

[
 
 
 
 
 
 

𝜈∗cos𝛾∗

𝜈∗sin𝛾∗

𝜔∗

1

𝑚𝑟
(𝜏𝑟

∗ + 𝜏𝑙
∗)

𝐿

2𝐽𝑟
(𝜏𝑟

∗ − 𝜏𝑙
∗)

]
 
 
 
 
 
 

 

 

 

 

 

 

 

(14) 

�̇�∗ = −
𝜕𝐻

𝜕𝑧
=

[
 
 
 
 

0
0

𝑝1
∗𝑣∗sin𝛾∗ − 𝑝2

∗𝑣∗cos𝛾∗

−𝑝1
∗𝑣∗cos𝛾∗ − 𝑝2

∗𝑣∗sin𝛾∗

−𝑝3
∗ ]

 
 
 
 

 

 

 

 

 

(15) 

𝜕𝐻

𝜕𝑢
=

[
 
 
 2𝜏𝑟

∗ +
𝑝4

∗

𝑚𝑟
+

𝑝5
∗𝐿

2𝐽𝑟

2𝜏𝑙
∗ +

𝑝4
∗

𝑚𝑟
−

𝑝5
∗𝐿

2𝐽𝑟]
 
 
 

= 0 

 

 

 

(16) 

 

Using equation (16), the control law is obtained as follows: 

 

𝜏𝑟
∗ = −

1

2
(
𝑝4

∗

𝑚𝑟
+

𝑝5
∗

2𝐽𝑟
) 

(17) 

𝜏𝑙
∗ = −

1

2
(
𝑝4

∗

𝑚𝑟
−

𝑝5
∗

2𝐽𝑟
) 

(18) 

 

In order to solve the optimal control problem with unknown time, the problem can be transformed 

into a standard form as suggested in [19]. The time should be parameterized as 𝑠 =
1

𝑡𝑓
𝑡, so that 𝑠 ∈

[0,1], provided that 𝑡 ∈ [0, 𝑡𝑓] and the variable will be added. A new augmented state vector 𝑚 =

(𝑚1 𝑚2 ⋯ 𝑚11) ∈ ℝ11 will be defined as [19]: 

𝑚 = [𝑧𝑇 𝑝𝑇 𝑘]𝑇 (19) 

In which (𝑚1 𝑚2 𝑚3 𝑚4 𝑚5) = (𝑥 𝑦 𝛾 𝑣 𝜔) represents the position and linear and 

angular velocities, also (𝑚6 𝑚7 𝑚8 𝑚9 𝑚10) = (𝑝1 𝑝2 𝑝3 𝑝4 𝑝5) represents the co-
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state and 𝑚11 = 𝑡𝑓 the final time. Then, the temporal derivative of the augmented 𝑚 state is 
𝑑𝑚

𝑑𝑡
=

𝑑𝑚

𝑑𝑠
�̇� =

1

𝑡𝑓

𝑑𝑚

𝑑𝑠
. 

𝑑𝑚∗

𝑑𝑠
= 𝑚11

∗

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑚4
∗cos(𝑚3

∗)

𝑚4
∗sin(𝑚3

∗)

𝑚5
∗

1

𝑚𝑐𝑟
(𝜏𝑟

∗ + 𝜏𝑙
∗)

𝐿

2𝐽𝑟
(𝜏𝑟

∗ − 𝜏𝑙
∗)

0
0

−𝑚6
∗𝑚4

∗sin(𝑚3
∗) + 𝑚7

∗𝑚4
∗cos(𝑚3

∗)

𝑚6
∗cos(𝑚3

∗) + 𝑚7
∗cos(𝑚3

∗)

𝑚8
∗ ]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(20) 

 

4. Simulations and results 

The mathematical details used to solve the optimal control problem are presented in the previous 

section. In the following, the problem is solved via a numerical approach. The characteristics of the 

robot are given in Table1. 

 

Table 1. Parametric values of mobile robot 

Value Symbol Property 

94(𝑘𝑔) 𝑚𝑐 Mass of the robot 

6.61(𝑘𝑔.𝑚2) 𝐽 Moment of inertia of the robot 

0.08(𝑚) 𝑟 The radius of each wheel 

0.4(𝑚) 𝐿 The distance between the wheels 

 

The simulation conditions are selected according to Table 2 to show the effectiveness and capability 

of the proposed method.  

 

Table 2. The initial condition for simulation 

State x y γ 

Start point 0 0 0 

Target point 5 5 45 

 

The optimal path generated by the optimal control is shown in Figure 3. 
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Figure 3. The optimal path generated by the mobile robot in the horizontal plane 

 

The optimal time calculated in the simulation is 14.62 seconds. The time history of the positions and 

the robot's orientation are shown in Figure 4. 

 

 
Figure 4. The time history of the (a) positions and (b) orientation of the robot 

 

The linear and angular velocities of the robot's mass center as a function of time are shown in Figure 

5. 
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Figure 5. Center of mass (a) linear velocity and (b) angular velocity of the mobile robot 

 

Also, the time history of the angular velocity of the left and right wheels is presented in Figure 

6. 

 
Figure 6. The time history of the angular velocity of left and right wheels of the mobile robot 

 

The lower and upper limits of the torques for Dc actuators of the mobile robot are obtained as: 

𝑈+ = 𝐾1 − 𝐾2𝜐
𝑈− = −𝐾1 − 𝐾2𝜐

  

(21) 

 

Where is 𝜐 the angular velocity of the wheels, that in the simulations the actuator constants are 

considered as: 

 
𝐾1 = [12 12]

𝐾2 = [1.18 1.18]
  

(22) 

 



Journal of Modern Processes in Manufacturing and Production, Volume 10, No. 3, Summer 2021 

33 

Figure 7 depicts the optimum torque values for the wheel actuators. According to the obtained path, 

the torque and velocity of the right wheel are expectedly higher than that of the left wheel. 

 

 
Figure 7. Optimal Torques of wheeled (a) right wheeled (b) left wheeled 

 

5. Conclusion 

In the present research, the optimal path planning with optimal time based on the open-loop optimal 

control theory was investigated for a mobile industrial robot. First, the robot's nonlinear equations 

were expressed, that this equation is assumed constraints in optimal control problem. In order to 

minimize the time, the appropriate cost function was presented for optimal motion control of the 

system. It includes the torque inputs of wheels and time-related terminal conditions and disturbance 

formulated in optimal control problems presented. In order to solve the optimal control problem, the 

minimum principle of Pontryagin was employed. In the numerical simulation of the optimal control 

problem, selecting the 𝛼 coefficient in the condition terminal is vital since it directly affects time 

optimization. In this simulation, its 𝛼 value is considered equal to 0.9. The 𝛼 coefficient acts as a 

weight function in optimization.  

It can be selected the optimal motor to build the robot according to the torque obtained to generate 

the optimal path at the minimum time without surpassing the motors' saturation limit. Simulation 

results demonstrate the proposed method's power and capability in selecting a suitable motor for 

building robots. 
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