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Abstract- This article deals with an identification method for the fractional multiple-input single-

output model. It is considered the Hammerstein model to separate dynamic linear and static 

nonlinear behaviors. Which Bezier-Bernstein polynomials are used to approximate the nonlinear 

functions and the fractional order transfer function is applied to estimate the linear part. A hybrid 

identification method based on a modified evolutionary algorithm and a recursive classic method 

is presented. As an advantage, this method can also correctly identify the system in the presence of 

output noise. A photovoltaic experimental system and a numerical example are used to illustrate 

the efficiency and performance of the proposed scheme. 
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1. Introduction 
 

The utilization of fractional calculations has been 

observed in a variety of fields in science and technology, 

including image processing [1,2], signal processing [3], 

mechanics [4], path planning and tracking [5], control 

theory and applications [6], and real physical systems 

modeling and identification [7-12], etc. This supports the 

notion that real plants and processes inherently possess 

some degree of fractionality [6], thus requiring fractional-

order models to yield more accurate and satisfactory 

identification results compared to integer models [7]. 

However, for systems with wide operating areas, nonlinear 

models such as neural networks, Volterra series, or block-

oriented models should be considered [13]. 

The Hammerstein model is a sequential structure 

comprising a static nonlinear subsystem and a dynamic 

linear block. It has been widely utilized to identify various 

nonlinear systems across different engineering problems, 

including chemical processes [14], DC/DC converters [15], 

model-based controller design [16], speech signal 

processing [17], electric drives [18], electrically stimulated 

muscles [19], RF transmitters [20], and more. 

The different literatures presented various identification 

algorithms for Hammerstein models that correspond to 

different applications [13, 21-26]. The various methods 

differ in how they represent memory less non-linear static 

parts and optimization algorithms used to approximate 

unknown parameters. A particular approach for identifying 

the Hammerstein model with commensurate fractional 

order transfer function as the linear part is proposed in [27], 

assuming the differential order is a known parameter. In 

[28], an iterative algorithm is presented to identify the 

continuous fractional order of the Hammerstein system in 

ARX and OE forms. This method applies only to nonlinear 

systems with quasi-linear properties and identifies two 

categories of linear and non-linear unknowns through least 

squares-based estimation in two steps. The P-type order 

learning algorithm is used iteratively to estimate the order 

of differentiation. Moreover, [29] proposes identifying the 

fractional order Wiener-Hammerstein model but faces 

issues such as initial guesses, mathematical complications, 

and making a large number of data assumptions. Reference 

[30] suggests identifying the fractional Hammerstein model 

by minimizing output error using the LM algorithm. 

Additionally, [31] uses Particle Swarm Optimization (PSO) 

to minimize output error. 

One possibility to represent the static part is Bezier-

Bernstein polynomials that are commonly utilized in 

computer design and graphics [32, 33]. In [32], an 

identification method based on the Bezier-Bernstein 

approximation single-input single-output (SISO) 

Hammerstein systems is proposed. However, this approach 

has several disadvantages that hinder its use in real-world 

nonlinear process identification, such as computational 

complexity and inaccurate estimation due to non-linear 

coefficient estimation using the Gauss-Newton algorithm, 

especially in noisy data. Ref. [34] considers the 

Hammerstein model in a multiple-input-single-output 

(MISO) structure and estimates both linear and non-linear 

parameters using the Levenberg-Marquardt (LM) 
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algorithm. However, this article only focuses on estimating 

outputs of non-linear static parts. Both of these articles are 

based on integer Hammerstein model. 

Prior methods of identification have not been able to 

adequately capture the nonlinearities present in the system. 

This issue stems mainly from utilizing a predetermined 

structure such as known-order polynomials, multi-segment 

piecewise linear forms, etc., for describing the nonlinear 

behavior of the system. In practical scenarios, it is often 

difficult to describe the characteristics of many plants using 

these predefined structures. The primary objective of this 

research paper is to propose a novel identification scheme 

for MISO fractional order Hammerstein models. Unlike 

previous approaches, we consider the form of nonlinear 

functions to be unknown and estimate them during the 

identification process. We use Bezier-Bernstein 

polynomials to estimate the static nonlinear component for 

this purpose. It has been demonstrated that among all 

polynomial functions utilized in function approximation, 

Bernstein basis is the most stable and best conditioned [35]. 

This provides an additional advantage to our application. 

Furthermore, we employ the Fractional Order Transfer 

Function (FOTF) to achieve a more precise estimation of 

the linear dynamic component. 

The other sections of this article are prepared as follow: 

Section 2 provides a summary of fractional order transfer 

function mathematics background. Section 3 gives a brief 

introduction to Bezier-Bernstein polynomials. Section 4 

contains my proposed identification method. Section 5 

includes the numerical results and finally, the conclusion is 

explained in detail. 

 

2. FRACTIONAL ORDER TRANSFER 

FUNCTION  

A fractional differential equation (1) represents a dynamical 

continuous-time fractional system: 
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The binomial coefficients are calculated using the 

relationship between the factorial and the Euler gamma 

function [12]: 
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where the Euler Gamma function (.)Γ is defined as [12]: 
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Due to the existence of long memory behavior in fractional 

operator, Newton's binomial 
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 rate of convergence to 

zero with j will be very slow, and in accordance with the 

principle of short memory for real implementation, an 

approximation of equation (2) using only recently past 

values of f(t) is defined as the simplest solution for the 

simulation of fractional systems in the time domain [36].  
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where [ ]N T h= is the approximation addends number 

[36]. 

The FOTF corresponding to Equation (1) is: 
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3. BEZIER- BERNSTEIN POLYNOMIALS 

The expanding of ( )  1
d

x x−  + is formed the univariate 

Bernstein polynomial basis functions , ( )i dB x defined as 

[33]: 
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where i and d are nonnegative integers i d≤  over the 

region [0,1]x ∈ . The number of the single-variable 

Bernstein polynomials of order d is d + 1. Also, Bernstein 

polynomials are computed recursively: 
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Bezier-Bernstein polynomials over the region [0,1] are 

defined as: 
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The Bezier-Bernstein polynomials over the [a, b] domain, 
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0,1, , , 1,...,,k i i d k rδ = … = . To obtain these unknown 

parameters, this paper proposes the Modified Genetic 

Algorithm (MGA) [37] to identify the fractional orders 

,i jα β and provide an initial estimation for other unknown 

parameters , ,i j ka b δ . A recursive optimization algorithm is 

then used to update these other unknowns. 

The cost function for this approach is the mean of squared 

output errors, as given in equation (22), where ( )y k  is the 

real plant output and ( , )esty k θ  is the estimated output, and 

p is the number of data samples.  
2( ) ( , ))( ) ( , 0,1, ,esty k y ke mean k pθθ −= = …  (22) 

Once the fractional orders are obtained, the recursive 

algorithm is applied to update the unknown coefficients and 

weights ( , ,i j ka b δ ) accordingly. 

4.3. RLS Optimization Approach 

The standard RLS algorithm requires an initial set of value 

samples to obtain the unique solution of the unknown 

parameter vector θ , which is determined by the dimension 

of the regressor φ . Equation (19) in the RLS form can be 

expressed as equation (23) which is linear with respect to 

the coefficients, whereθ  includes unknown parameters and 

( )kφ  is the known vectors in kth step as shown in 

equations (24) and (25). 

( 1) ( ) ( 1)Ty k k e kθ φ+ = + +  (23) 

' ' ' '
1 100 10 1 0 1

' ' ' '
00 0 0

, , , , , ,..., , , ,...

                           ,..., , , ,..., , ,

n d m md

T

r r d rm rmd

a a b b b b

b b b b

θ  ′ ′= 




… … …

… …

(24) 

]

* *
1 100 10 1 0

1 00 0 0

( ) ( ), , ( ), ( ), , ( ),..., ( ),

     ..., ( ),..., ( ), , ( ),..., ( ), , ( )

n d m

T

md r r d rm rmd

k Y k Y k F k F k F k

F k F k F k F k F k

φ = − − … … …

… …

(25) 

The LS method provides a solution as equation (26) if the 

matrix 

1

1

( 1) ( 1)
k

T

i

i iφ φ
−

=

 
− − 

 
∑ exists, but the matrix φ  may 

become poorly conditioned or singular, making it difficult 

to calculate its inverse. To avoid this issue, MGA is used to 

obtain the required RLS initial values without needing to 

compute any inverses. 
1

1 1

ˆ ( 1) ( 1) ( 1) ( )
k k

T

k

i i

i i i y iθ φ φ φ
−

= =

 
= − − − 

 
∑ ∑     (26) 

Equation (27) is the recursive version of equation (26) and 

can be extended to online identification applications [36, 

38, 39], where optimization results are updated in each 

iteration using new measured input/output.  

1

1

ˆ ˆ ( ) ( 1)

( ) ( )

1 ( ) ( )

ˆ( 1) ( )
( 1)

1 ( ) ( )

k k k

T

k k
k k T

k

T

k

T

k

G k k

G k k G
G G

k G k

y k k
k

k G k

θ θ φ ε

φ φ
φ φ

θ φ
ε

φ φ

+

+




= + +


= −
+

 + − + =
 +

       (27) 

The adaptation gain matrix G for an initial value is 

generally selected according to equation (28) [36].  

0

1
;      0< 1G I γ

γ
= ≪                                (28) 

The coefficients , 1,...,ia i n′ =  are obtained fromθ̂  directly 

and the assumption 0 1b =  is used to calculate the values 

of ( ) ,  1 ,  0 d,  1  j w g
b w r g j mδ ≤ ≤ ≤ ≤ ≤ ≤ .  

MGA estimates fractional orders ( 1 0,..., , ,...,n mα α β β ) and 

produces initial estimations of other unknown parameters 

including , 1,...,ia i n′ =
 

and

' ,1 ,0 ,1w jgb w r g d j m≤ ≤ ≤ ≤ ≤ ≤ .  

Where the multiplication of jb s and ( )w g
δ s results in the 

unknown parameter beta
'
w jgb s. These estimations are 

frequently updated by RLS. The ,1jb j m≤ ≤ coefficients 

and 
'
w jgb s are then used to calculate the weights of Bezier 

Bernstein polynomials ( ) ,1 ,0w g
w r g dδ ≤ ≤ ≤ ≤ . If the 

stop conditions are satisfied, the identification process is 

complete. If not, RLS is applied again to reduce the 

estimation error. The identification process will continue 

until the desired accuracy is achieved. 

 

5. SIMULATION RESULTS 

To verify the effectiveness of the proposed approach, two 

examples are presented. The FOTF's general form is 

defined as the dynamic subsystem by equation (29). 

01

2 1

1

2 1 0

( )
b s s

G s
a s a s a

ββ

α α

+
=

+ +
                   (29) 

5.1. Example 1 

In the first example, the real Photo-Voltaic (PV) module 

MF120EC3 is from Pusat Tenaga Malaysia (Malaysia 

Energy Centre, MEC) is taken into consideration [40].The 

inputs are Solar Irradiance (Ir) and Cell Temperature (CT), 

while the output is DC Current (DCC).The transfer function 

of the MISO PV system is expressed in equations (30) and 

(31) [40]. The Tustin estimation operator is used to obtain 
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the continuous versions of the transfer functions given by 

equations (32) and (33). 

/

4 3 2

4 3 2

.01358 .02393 .001419 .01159
    

1.148 0.251 .01503 .0381

CT DCCTF

z z z z

z z z z

=

− − +
=

− + − +

(30) 

/

4 3 2

4 3 2

.05644 .06703 .002245 .00039
    

1.148 .251 .01503 .0381

Ir DCCTF

z z z z

z z z z

=

− − +
=

− + − +

(31) 

/

4 3 2

4 3 2

.009992 .1022 .1375 .05455 .001168
    

4.986 9.341 5.16 .8226

CT DCCTF

s s s s

s s s s

=

+ + − −
=

+ + + +
(32) 

/

4 3 2

4 3 2

.04928 .2941 .5597 .2966 .0812
    

4.986 9.341 5.16 .8226

Ir DCCTF

s s s s

s s s s

=

+ + + −
=

+ + + +

(33) 

The proposed method involves generating a simulated 

MISO Hammerstein model using equations (32) and (33) 

and adding Gaussian noise 
2( ) (0, )p t N σ∈  with two 

various 
2 0.0001σ = and 

2 0.01σ =  to the output. This 

method effectively cancels out the output noise. The inputs 

CT and Ir have uniform distributions within the ranges of 

[ ]20,80  and [ ]0,1000 , respectively. To achieve optimal 

accuracy, MGA was utilized to determine the appropriate 

degree for the Bernstein basis function, starting from 3. 

Eventually, the polynomial degree was set to d = 5, using 

Equation (10) for the Bernstein polynomials, resulting in 

the generation of a sequence of regressors

, ( ( )), 0,1,...,5i nB u t i = .This generates a sequence of 

regressors and Bezier-Bernstein polynomial basis functions 

for each input, with 5 knots set for each input. For the first 

input, we set 5 knots at [20, 35, 50, 65, 80], and for the 

second input, we selected another set of 5 knots at [0, 250, 

500, 750, 1000]. These knots generated 5 Bezier-Bernstein 

polynomial basis functions for each input that are depicted 

in Figs. 2- 5. 

 
Fig. 2.Six Bezier–Bernstein polynomial basis functions constructed in 

Example 1 over the first input data u1 

 
Fig. 3. Six Bezier–Bernstein polynomial basis functions constructed in 

Example 1 over the second input data u2. 

 
Fig. 4. The actual (blue line) and the estimated (red dashed line) outputs- 

PV Module (
2 0.0001σ = ) 

 

Fig. 5.The output estimation error- Example 1 (
2 0.0001σ = ) 

   The algorithm was iterated 200 times, reaching a Mean 

Squared Errors (MSE) value of   for the clean output and   

for the noisy output. The estimated outputs and related 

errors are shown in Figs. 6, 7 for low noise and Figs. 9, 10 

for high noise cases, demonstrating improved accuracy 

compared to reference [33]. The coefficients estimation 

using RLS is illustrated in Figs. 8, 11. The identified 

FOTFs are presented as (34) for low output noise and (35) 

for high output noise. 

The algorithm was iterated over 200 cycles, resulting in a 

Mean Squared Error (MSE) value of 
61.1857 10−×  for the 

low noise case and 
52.4803 10−×  for the high noise 

measurements i.e., the noisy case. The estimated outputs 

and their corresponding estimation errors can be seen in 

Figs. 6, 7 and Figs. 9, 10 for the low and high noise cases, 

respectively. These results demonstrate an improvement in 

accuracy compared to the reference [33]. The coefficient 
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estimation process using RLS is shown in Figs. 8, 11 for 

both noise levels. The identified FOTFs for the low and 

high output noise cases are represented by Equations (34) 

and (35), respectively. 
1.3461 0.0439

1.2176 0.8157

0.6257
( )

2.5644 0.5815

s s
G s

s s

−
=

+ +
  (34) 

1.6082 0.0048

0.9297 0.64862.

2.4708
( )

1.3366 07 50

s s
G s

s s

+
=

+ +
(35) 

Tables 1 and 2 showcase a comparative analysis between 

fractional order and integer order transfer functions at two 

different levels of noise. Additionally, Table 2 compares 

the performance of MGA, classic GA, and PSO. The 

estimated outputs and corresponding errors using an integer 

order transfer function can be observed in Figs. 12-15. To 

prove the robustness of our proposed approach against 

input uncertainties, we introduced Gaussian noise 
2( ) (0, )p t N σ∈ with a standard deviation of 

2 0.01σ =  to 

the inputs of the Hammerstein model. Table 2 also presents 

the simulation results of this case, supporting our assertion 

that FOTF and MGA lead to superior identification 

accuracy. 

 

 
Fig. 6. RLS coefficients estimation process-PV Module 

(
2 0.0001σ = ) 

 
Fig. 7. The actual (blue line) and the estimated (red dashed line) outputs- 

PV Module (
2 0.01σ = ) 

 
Fig. 8.The output estimation error-PV Module (

2 0.01σ = ) 

 
Fig. 9. RLS coefficients estimation process-PV Module 

(
2 0.01σ = ) 

 
Fig. 10. The actual (blue line) and the estimated (red dashed line)outputs- 

integer order transfer function- PV Module(
2 0.0001σ = ) 

 
Fig. 11. The output estimation error-integer order transfer function -PV 

Module(
2 0.0001σ = ) 
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Fig. 12.The actual (blue line) and the estimated (red dashed line)outputs- 

integer order transfer function- PV Module (
2 0.01σ = ) 

 
Fig. 13.The output estimation error- integer order transfer function -PV 

Module(
2 0.01σ = ) 

 
Fig. 14. Eleven Bezier–Bernstein polynomial basis functions constructed 

in Example 2 over the first input data u1 

 

Fig. 15. Eleven Bezier–Bernstein polynomial basis functions constructed 

in Example 2 over the second input data u2 

 

 

Table 1.The estimation error comparison between two different linear 

parts in PV Module (
2 0.0001σ = ). 

Approach MSE RMS 

Integer Order Transfer 

Function 
54.1182 10−×  

0.0073 

Fractional Order 

Transfer Function 
61.1857 10−×  

0.0018 

 

 

Table 2.The estimation error comparison between different optimization 

approaches and with two different linear parts in PV Module (
2 0.01σ =

). 

 

 

5.2. Example 2 

   The Steam-Water Heat Exchanger (SWHE) nonlinear 

gain function [34] is used as a numerical example in the 

second case. Eq. (36) describes the SWHE which has been 

studied previously in [41], whereas 2 ( )f u in Eq. (37) 

represents its nonlinear gain function. To create a MISO 

system, 1( )f u  is incorporated into the system model. The 

function ( , , )sat x x x− +  is the saturation function with 

respective left and right breaking points in x −  and x +  [34]. 

1 1

2 2 2 2

( ) 1.608 ( 1) 0.6385 ( 2) 0.3 ( ( ))

       0.207 ( ( 1)) 0.1764 ( ( 2)) ( )

y t y t y t f u t

f u t f u t p t

= − − − + +

+ − − − +
(36) 

1

2 3 4

2

( ) ( , 0.6,0.6)

( ) -31.549u+41.732u 24.201 68.634

f u sat u

f u u u

= −

= − +
 (37) 

Gaussian noise 
2( ) (0, )p t N σ∈ with different 

2 0.0001σ =  and 
2 0.01σ =  values is added to the 

Hammerstein model to demonstrate the proposed method's 

ability to eliminate output noise. The intervals [-1, 1] and [-

2.5, 2.5] set the input limits for 1u  and 2u , respectively. In 

order to achieve accurate results, MGA is implemented to 

Approach MSE RMS 

PSO & RLS 
41.3886 10−×

 
0.011723 

GA & RLS 
41.2601 10−×

 
0.011637 

MGA & 

RLS 

Integer Order Transfer 

Function 

41.3777 10−×
 

0.012102 

Fractional 

Order 

Transfer 

Function 

Without 

Input Noise 

52.4803 10−×
 

0.004305 

With Input 

Noise 

55.9813 10−×
 

0.008000 
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determine the appropriate degree of Bernstein basis 

functions. Consequently, 11 knots are selected for each 

input, producing 11 Bezier-Bernstein polynomial basis 

functions for each input as demonstrated in Figs. 16 and 17. 

The 11 knots for the first input was set as [-1, -0.8, -0.6, -

0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1] and a set of 11 knots for the 

second input were selected as [-2.5, -2, -1.5, -1, -0.5, 0, 0.5, 

1, 1.5, 2, 2.5]. Finally, one hundred input/output data 

samples are generated using Eqs. (36) and (37). 

And as a result, aset of In the case of 
2 0.0001σ = , MSE 

after 100 iteration cycles became
51.8646 10−× . The 

estimation of dynamic subsystem is obtained as: 
0.5594 0.8616

2.3921 0.4164

0.2880
( )

3.9933 4.7773 2.4674

s s
G s

s s

+
=

+ +
(38) 

In the case of a rather noisy data, i.e. 
2 0.01σ = , after 100 

iterations, the MSE value was equaled to
55.3781 10−× . The 

dynamic transfer function is obtained as: 
0.3307 0.0526

3.4542 0.5089

4.6881
( )

2.6694 4.5400 2.1056

s s
G s

s s

+
=

+ +
 (39) 

Figures 16-19 display the estimation accuracy of nonlinear 

static parts and corresponding errors. Additionally, Figures 

21 and 23 provide a visual representation of outputs 

approximated with low and high noise levels, respectively, 

with their related errors depicted in Figures 22 and 24. 

Furthermore, Figures 20 and 25 illustrate coefficients 

estimation using RLS for two distinct amounts of noise. 

For this particular experiment, a comparison was carried 

out between fractional order and integer order transfer 

functions as linear dynamic parts. Tables 3 and 4 present 

results for two different noise levels, with estimated outputs 

and corresponding errors depicted in Figures 26-29. The 

optimization method employed significantly improved 

estimation accuracy compared to the GA and PSO methods, 

as showcased in Table 4. Moreover, the proposed method's 

robustness against input uncertainty was demonstrated by 

introducing Gaussian noise
2( ) (0, )p t N σ∈  with standard 

deviation 
2 0.01σ =  to each model input, as shown in 

Table 4. Finally, Tables 3 and 4 highlight the superior 

identification accuracy achieved using FOTF and MGA. 

 
 

 

Fig. 16.The actual (blue line) and the estimated (red dashed line)nonlinear 

gain functions associated with the first input in low noise 

condition(SWHE) 

 
Fig. 17. The actual (blue line) and the estimated (red dashed line) 

nonlinear gain functions associated with the second input in low noise 

condition (SWHE) 

 
Fig. 18. Corresponding estimation errors regarding the first nonlinear 

function (SWHE) 

 
Fig. 19. Corresponding estimation errors regarding the second nonlinear 

function (SWHE) 

 
Fig. 20.The actual output (blue line) and the estimated output (red dashed 

line)-SWHE (
2 0.0001σ = ) 
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Fig. 21. The output estimation error- SWHE (

2 0.0001σ = ) 

 
Fig. 22. RLS coefficients estimation regarding SWHE 

(
2 0.0001σ = ) 

 
Fig. 23.The actual (blue line) and the estimated (red dashed line) outputs 

regarding SWHE (
2 0.01σ = ) 

 
Fig. 24.The output estimation error-SWHE (

2 0.01σ = ) 

 
Fig. 25. RLS coefficients estimation regarding SWHE (

2 0.01σ = ) 

 
Fig. 26.The actual (blue line) and the estimated (red dashed line) outputs- 

integer order transfer function-SWHE (
2 0.0001σ = ) 

 
Fig. 27.The output estimation error- integer order transfer function-

SWHE(
2 0.0001σ = ) 

 
Fig. 28.The actual (blue line) and the estimated (red dashed line) outputs- 

integer order transfer function-SWHE(
2 0.01σ = ) 
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Fig. 29.The output estimation error- integer order transfer function-SWHE 

(
2 0.01σ = ) 

Table 3.The estimation errorcomparison between two different linear parts 

in SWHE (
2 0.0001σ = ). 

Approach MSE RMS 

Integer Order 

Transfer Function 

43.5895 10−×  0.0104 

Fractional Order 

Transfer Function 

51.8646 10−×  0.0019 

 

Table 4.The output estimation errorcomparison between two different 

optimization approaches and with two different linear parts in SWHE (
2 0.01σ = ). 

Approach MSE RMS 

PSO & RLS 
43.2069 10−×

 
0.0151 

GA & RLS 
41.7230 10−×

 
0.0122 

MGA & 

RLS 

Integer Order Transfer 

Function 

45.7775 10−×
 

0.0157 

Fractional 

Order 

Transfer 

Function 

Without 

Input Noise 

55.3781 10−×
 

0.0054 

With Input 

Noise 

58.2548 10−×
 

0.0088 

6. CONCLUSIONS 

The study presented a novel approach for the 

identification of Multiple-Input Single-Output (MISO) 

fractional order Hammerstein models using Bezier-

Bernstein polynomials with noise cancellation. Through 

comprehensive simulation results and analysis on the 

presented PV module and SWHE case studies, we have 

demonstrated the effectiveness and robustness of the 

proposed method in accurately capturing the complex 

nonlinear behaviors of the systems while mitigating the 

impact of output noise. The achieved results showcase 

superior identification performance and noise cancellation 

capabilities, laying the foundation for advancements in 

nonlinear system identification methodologies. 

Looking ahead, future research endeavors could extend 

this method to more diverse and complex practical systems, 

exploring its applicability in real-world scenarios. 

Furthermore, the application of this method in other 

domains such as control systems, robotics, and industrial 

processes presents an exciting avenue for further 

investigation. Additionally, research efforts could focus on 

refining the algorithm's efficiency and extending its 

capabilities to address broader classes of nonlinear systems, 

thus contributing to a more comprehensive understanding 

and utilization of fractional order models in practical 

engineering applications 
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