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Abstract–A photovoltaic (PV) panel consists of several photovoltaic cells designed to convert 
solar radiation into electrical energy. Cooling of PV cells is an important task to increase PV panel 
efficiency, improve output power and optimize performance parameters. There are various 
methods for PV cooling. Phase change materials (PCMs) can be used to cool PV panels. The 
integrated system is called PV-PCM system. This paper provides an overview of the history, 
applications, mathematical modeling and economic evaluation for PV-PCM systems. The focus of 
this study is on the cooling of the PV cells using PCMs. Furthermore, the other types of PV 
systems (hybrid systems) are investigated. The effects of main parameters on the performance of 
PV or PV-PCM systems are investigated, too. Mathematical modeling including thermal and 
electrical models are presented. Finally, the advantages and disadvantages of PV-PCM system and 
its future overview are discussed. The results discover that the PV panel temperature up to 20 °C 
and electrical efficiency up to 5% can be reduced by PCM. 
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1. Introduction 

Nowadays renewable energies (such as wind, solar, tidal, 

micro-hydro, geothermal and biomass) are more interested 

than fossil fuels (such as natural gas and coal) because the 

latter leads to pollution and greenhouse emissions. 

Specially, Solar energy is a reliable energy source. It is a 

free renewable energy source with no gas emissions 

[1].Solar energy can be applied to obtain electrical power 

directly using photovoltaic (PV) solar cells or indirectly 

using a solar thermal system. The PV systems can be 

divided into two categories, flat panel PV and concentrator 

PV, in terms of module geometry [2]. The solar towers, 

solar dishes and parabolic trough solar collectors (PTSC) 

are examples of solar thermal systems that can be applied to 

produce electrical power [3].Fig. 1 represents the main 

applications of solar energy. 

Solar PV electricity generation is practically preferable 

to solar thermal due to wider application scenarios [4]. PV 

systems are an excellent choice at a reasonable price for 

remote areas for low to medium power levels due to easy 

scaling of the input power source [5]. In fact, the main 

attraction of PV systems is that they generate electrical 

power by directly converting solar energy into electricity 

without harming the environment. Unfortunately, the price 

of a unit of energy produced from a PV system is higher 

than that of conventional energy supplied by the power grid 

to urban areas, because the technologies associated with PV 

power systems are not yet fully developed. However, the 

continuous reduction in the cost of PV arrays and 

increasing their efficiency have a promising role for PV 

generation systems in the near future. 

1.1. Photovoltaic technology 

The major contribution of solar radiation incident on the 

PV module cannot be converted into electricity. Only 5–20% 

of the incident solar energy is converted into electricity, 

depending on the PV cell technology and the remaining 

energy is converted into heat[6]. PV technology is based on 

the PV effect, which for the first time was discovered by 

Edmond Becquerel in 1839 [7]. It should be noted that PV 

effect occurs due to the absorption of photon energy over 
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the band gap. In 1883, Fritz developed the first PV cell and 

its efficiency was less than 1% where in 1954the first 

practical solar cell was constructed[8].Initially, the main 

goal of research on PV technology was to power space 

satellites. The energy crisis of the 1970s drew public 

attention to PVs and their potential to become an alternative 

municipal electricity source. PV cells (also called solar cells) 

made of semiconductor materials are the building block of a 

PV system. A number of solar cells connected electrically to 

each other to form a PV module. Multiple modules can be 

connected together to form an array. PV arrays can be 

connected in both parallel and series electrical 

arrangements to produce any required current and voltage 

combination. A PV system typically consists of the PV 

array and a number of supporting elements known as the 

balance of system (BOS). BOS refers to the components 

other than the module [2]. Fig. 2 represents the PV system 

and BOS. PV systems can be classified from different 

viewpoint that have been summarized in the Table 1. For 

more details, see Ref. [2].  

 

 

 
 

Fig. 1:The main applications of solar energy 

 

 
(a) 

 
(b) 

Fig. 2:(a) Photovoltaic system and (b) BOS  
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Table 1:PV system taxonomy[2] 

Basis of 

classification 

PV denomination 

PV cell materials 1. Silicon based PV 

      I. Crystalline silicon PV 

                a. Monosilicon (m-Si) PV 

                b. Polysilicon (p-Si) 

         II. Amorphous silicon (a-Si) PV  

a. Single junction 

                  b. Double junction 

                  c. Triple junction 

2. Group III-V material based PV 

3. Thin film solar cell (TFSC) based PV 

a. Si based PV 

                b. CdS/CdTe based PV 

                c. CIS/CIGS based PV 

4. Dye sensitized solar cell (DSSC) based PV 

5. Organic/Polymer based PV 

  

Interfacing with 

load 

1. Grid connected PV 

2. Off-grid or Standalone PV 

  

Mode of 

installation 

1. Building integrated PV (BIPV) 

2. Rack-mounted PV (RPV) 

3.Roof-top RPV 

4. Ground-mounted RPV 

  

Tracking facility 1. Tracking system PV 

2. Fixed tilt PV 

  

Module geometry 1. Flat plate PV (FPPV) 

2. Concentrator PV (CPV) 

  

System 

complexity 

1. Simple photovoltaic system (PV-only) 

2. Hybrid photovoltaic thermal system 

(PVT) 

 
 

 

 

1.2. Photovoltaic performance  

Solar PV panels are increasingly used worldwide due to 

their ability to operate under diffuse radiation. So, it is 

important to know how PV panels respond to changed 

climatic conditions. The PV efficiency is approximately 30% 

under laboratory conditions, but in real conditions, its value 

is only about 5–20%[9]. Different parameters can affect the 

efficiency, such as the dust accumulation on the PV surface 

and the solar radiation intensity. PV module efficiency 

decreases by approximately 0.40–0.65% when the module 

temperature increases by only 1 °C[10]. This fact has been 

reported extensively in previous works, for example [11, 

12].  The PV temperature can reach to 80 °C and even 

higher than 100 °C in desert regions[6], that leads to a 

significant reduction in PV power generation. As we know, 

the amount of electricity produced from each unit of solar 

energy depends on the electrical and physical properties of 

PV cells and environmental conditions. While scientists are 

developing PV cells with higher conversion efficiency, the 

PV efficiency is constrained by its operating conditions [7].  

Several PV cells make up a PV panel. Their task is to 
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convert solar radiation into electric energy. The 

performance of PV panels is determined as conversion 

efficiency or how much solar radiation [W/m�] is 

transformed into electric power [W/m�] in certain 

conditions. The electrical power conversion efficiency for 

commercial PV modules is conventionally between 13% 

and 20%[13]. Consequently, only a small part of the 

absorbed solar energy is converted to electricity whereas 

the remaining portion is converted into heat. This leads to 

increasing the temperature of PV panel. One of the most 

important factors that affect the efficiency of PV panels, is 

temperature. The PV module temperature is a function of its 

physical properties and environmental conditions. The 

temperature of a PV module has been modelled by various 

authors and a good literature review of these works is given 

in [14]. As we know, some of the sun's radiation is 

converted into electrical energy and most of it into thermal 

energy. This leads to PV cells heating up and reducing their 

electrical efficiency. There are different ways to reduce the 

temperature in PV panels. PV cooling techniques include 

passive techniques and active techniques, which are 

summarized in Fig. 3 [15]. These include air based, liquid-

based and PCM based PV cooling systems. All these 

cooling techniques can be used actively and passively. The 

active system is more effective than passive system since it 

uses the water (or other coolants) as cooling fluid although 

it consumes more electricity and costs more. For more 

details, see Ref. [16]. Hasan et al. [17] have summarized 

the advantages and disadvantages of the PV thermal 

management technologies. Among the cooling techniques, 

the current paper focuses on the PCM-based PV cooling 

systems. 

 

 

 
Fig. 3:Some PV cooling techniques [15] 

 

1.3. PV cooling systems based on PCM 

The main purpose of using thermal regulation 

techniques in PV panels is to reduce the temperature of the 

solar cells as low as possible and close to the standard test 

conditions (STC) in order to increase the efficiency [18]. 

STC will be introduced at section 3.One of the promising 

solar energy storage techniques is the use of phase change 

materials (PCM).A comprehensive review for solar energy 

storage using PCMs has been published by Kenisarin and 

Mahkamov[19].Thermal regulation of PV panel based on 

the PCM is classified as passive cooling technique [20]. 

This system is known as PV-PCM system. Research in PV-

PCM systems are gaining interest. In these firstly, the solid 

PCM turns into liquid during sunny hours and then the 

reverse process occurs during non-sunny hours. on the other 

words, the absorbed heat is rejected to the ambient during 

non-sunshine hours[15].As we know, a lot of energy can be 

stored by a small amount of PCMs when they undergo a 

phase change. PCMs can be used in many industrial 

applications such as cooling electronic devices [21, 22], 

solar heating systems [23, 24],waste heat recovery [25, 26], 

and thermal energy storage systems [27, 28]. Unfortunately, 

they have low thermal conductivity and therefore, many 

researchers have tried to improve their thermal conductivity. 

Recently, the nano encapsulated phase change materials 

(NEPCMs) were proposed by scientists. NEPCMs are a 

new type of nanofluids that nanoparticle includes a shell 
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and a PCM core [29]. It should be mentioned that the 

conventional nanofluids are used to enhance heat transfer in 

many various industries such as solar collectors, radiators, 

air conditioning in buildings, cooling of electronic circuits 

and medical applications [30-32]. Nanofluids can be 

produced by adding the nano-sized particles (such as 

copper and silver) into the base fluids (such as oils, water, 

and so on) [33]. Simulation of their behavior in cavities is 

an interesting subject for researchers due to many industrial 

applications [34-41].Also, nanofluids can be applied as an 

effective coolant for PV modules. For example, Elmir et al. 

[42] and Yun and Qunzhi[43] used Al2O3-water and MgO-

water, respectively, as a nanofluid for cooling the PV 

modules. Micro-Encapsulated PCM (MEPCM) was first 

time used for PV cooling by Ho et al. [44,45] and 

Tanuwijava et al. [46].On the other hand, NEPCMs 

simulation have been performed by some researchers [47-

51]. Many experimental and theoretical studies have been 

published on PV-PCM cooling.  In 1978, Stultz et al. [52] 

proposed to use PCM to cool the PV panel since PCM has 

the latent heat capacity which can absorb substantial 

amount of heat from PV. However, the first study on the 

PCM based cooling of PV panels was published in the year 

2004 by Huang et al. [53]. They studied the thermal 

behavior of the PV-PCM system using a 2-D numerical 

model. They studied three different systems experimentally 

and numerically. In order to simulate a PV cell, they applied 

an aluminum plate. An aluminum plate attached to a 

chamber filled with PCM was used to simulate a PV-PCM 

system. The third system was a PV-PCM system including 

internal fins. They discovered that the temperature of PV 

cell can reduce more than 30 °C when the internal metal 

fins are attached to the PCM chamber [54]. Literature 

shows that PCM can effectively reduce the temperature of 

the PV panel by 20°C and also improve the electrical 

conversion efficiency by 5% [15, 55-57]. A PV-PCM 

system with aluminum fins studied theoretically and 

experimentally by Huang et al. [58- 60]. Hasan et al. 

[17]studied experimentally, the effect of PCM thermal 

properties such as thermal conductivity and melting point 

on PV surface temperature under different solar radiation. 

They concluded that PCMs with higher conductivity and 

higher melting point are better for the PV operating at high 

temperature. With the PCM application, a performance 

increase between 2.5% and 10.7% have been achieved in 

the PV panel power output [61,62]. In a study PCMs to 

reduce the operating temperature of the PV panel, higher 

performance was obtained compared to a conventional PV 

module, especially during the hottest months. They showed 

that 3.5–10% more electrical energy could be obtained from 

a PV panel using PCM all year long [63].In 2014, a techno-

economic study on the PV-PCM system for two locations 

with different climates was conducted by Hasan et al. 

[64].In 2014, Park et al. [65] studied a PV-PCM in South 

Korea and concluded that electricity production can be 

improved by 1–1.5% annually using PCM. In 2017, a year-

round numerical study conducted in United Arab Emirates 

suggests that in extremely hot climate, the PV-PCM system 

can raise the annual electricity yield by 5.9% [66].In 2009, 

an enhanced thermal conduction model for the prediction of 

convection dominated solid–liquid phase change was 

proposed by Vidalain et al. [67]. In 2013, annual 

performance enhancement of building integrated PV 

modules by applying PCM was investigated by Hendricks 

and Sark[68].In 2013, the thermal energy storage 

technologies and concentrating solar power (CSP) systems 

including PCMs were analyzed by Kuravi et al. [69]. In 

2013, Du et al. [70] made a critical review on the thermal 

management systems for crystalline silicon based PV 

panels in which PV-PCM systems are highlighted as a 

prospective method. In 2012 and 2014, the finite difference 

thermal model was applied for a PV-PCM system by Ciulla 

et al. [71] and Brano et al. [72], respectively. In 2014, the 

thermal regulation systems including PCMs (PV-PCM) for 

electronic components and Li-ion batteries were 

extensively studied by Ling et al. [21]. In 2015, Atkin and 

Farid [20] studied improving the efficiency of PV cells 

using PCM. They used aluminum fins. In 2015, Browne et 

al. [15]performed a review on the application of PCM in 

PV systems and analyzed the economic viability of PV-

PCM systems. Also in 2015, Zhou et al. [73] reviewed on 

the use of PCMs for solar thermal energy storage in 

residential buildings in cold climate. In 2015, a good review 

paper on the use of PCMs in PV systems for thermal 

regulation has been published by Ma et al. [74]. In 2016, 

Kant et al. [75] studied the heat transfer of PV panel 

coupled with PCM. In 2016, Stropnik and Stritih [55] used 

TRNSYS software for modeling the PV-PCM system. They 

verified modeling results with the outdoor experimental 

results. In 2016, Bahaidarah et al.[76]studied the various 

uniform cooling techniques for PV panels including PCM 

systems. In 2016, another good review paper has been 
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published by Islam et al. [2]. They reviewed recent 

advances and achievements in PV-PCM technology. In 

2017, a parametric study about the potential to integrate 

PCM into PV panel was performed by Ma et al. [77]. In 

2018, the mathematical model of the PV-PCM system was 

developed by Ma et al. [78]. They compared the1-D 

thermal resistance model and the CFD model to each other. 

In 2018, a review paper on the thermal and electrical 

management of PV panels using PCMs was published by 

Waqas et al. [16]. They mentioned the names of PCMs used 

for cooling of PV [see Table 3 from Ref.16].Also, they 

reported that approximately 2.6 kg of PCM per 1 m� of 

PV panel area is required to reduce the PV panel 

temperature by 1℃ during peak hours.In 2019, the year-

round performance analysis of a PV panel coupled with 

PCM was performed by Zhao [79]. In 2019, Ma et al. [80] 

performed a research review on the application of PCMs in 

PV system. In 2020, Savvakis et al. [81]studied the 

operational performance of an alternative PV-PCM concept. 

In 2021, Sharma and Gaur [82]published a good review 

paper on the application of PCMs for cooling of solar PV 

panels. The rest of paper are organized as follows: 

Section 2 provides the configuration of system. The 

mathematical modeling including electrical model, solar 

radiation model and electricity generation model will be 

presented in section 3. The effectiveness of PCM for 

thermal and electrical regulation of PV panel will be 

discussed in section 4. Section 5 presents the hybrid PV 

systems. Economic feasibility of PV-PCM systems are 

shown in section 6. The effects of main parameters on the 

performance of PV or PV-PCM systems will be 

investigated in section 7. Finally, future developments and a 

short summary are presented in sections 8 and 9, 

respectively. More than one hundred forty publications are 

reviewed in this study. 

 

2. System configuration  

As mentioned earlier, it has been reported that when the 

PV temperature increases by only 1°C, the output power 

can be decrease by 0.4-0.65%. PCM can be employed to 

control PV module temperature and increase power 

generation since it can absorb great amount of heat without 

raising the temperature of itself. This kind of integrated 

system is the so-called PV-PCM system[78].Basically, PV-

PCM system has two significant parts, i.e. PV panel and 

PCM container (or called PCM chamber). Usually, 

crystalline silicon PV is used in the system because it has a 

high temperature coefficient and wide applications[74]. 

There are several geometrical configurations of PCM 

chamber such as rectangle chamber, semi-circle chamber, 

triangle chamber, finned chamber and so on [70, 83]. But, 

generally rectangle chamber is selected [78]. Conventional 

PV panels have different layers depending on the type of 

design and manufacturing technology[84]. Conventionally, 

the main layers are: exterior glass, ARC (anti reflexive 

coating), PV cells (silicon cells), EVA (ethylene-vinyl 

acetate), metal rear contact and tedlar [13].Fig. 4 represents 

an example of the PV-PCM system that is assembled by a 

PV module and an aluminum chamber filled with PCM. 

Fins in the aluminum chamber is optional. RT35 has been 

considered as the PCM since it is commercially available, 

non-combustible and non-corrosive [17, 85]. Table 

2summarizes the basic properties of PV-PCM system [78].  

 

 

 

 
Fig. 4:(a) 3-D view of PV-PCM system; (b) schematic of the system configuration. [78] 
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Table 2:The properties of PV module and PCM chamber[78] 

Property Glass EV

A 

Silicon 

cells 

Tedl

ar 

Polyeste

r 

RT35 (PCM) Aluminum 

Density (kg/m�) 2500 935 2330 1500 1390 800 2791 

Specific heat(J/(kg K)) 
750 

250

0 
700 1090 1172 2000 871 

Thickness(mm) 
3.2 0.5 0.2 

0.03

75 
0.25 20-50 5 

Thermal conductivity(W/(m K) 
1.04 

0.2

9 
150 0.35 0.155 0.2 202.4 

Emissivity 0.95 - - - - - 0.095 

Solidus temperature(℃) - - - - - 29 - 

Liquids temperature (℃) - - - - - 36 - 

Latent heat capacity (kJ/kg ) - - - - - 130 - 
 

 

 

3. Mathematical model 

A multi-physics model must be performed to investigate 

the thermal behavior of a PV panel when it works under 

variable environmental conditions. 

 

3.1.Electricalmodel 

In a PV panel, the PV cells are mounted in arrays 

connected in series and/or parallel to produce the desired 

output voltage, current or power. The one-diode model, can 

be used to describe the electrical behavior of a PV panel 

[86]. Fig. 5 represents a typical electrical circuit of the solar 

PV cell[87]. Based on this model, the voltage and current 

relationship can be given as follows (Kirchhoff’s law of 

current) [88]:  

 
Fig. 5:Equivalent electrical circuit in the five-parameter photovoltaic 

model (reproduced from Ref. [87]) 

 

� = �� − �� − ��� = �� − �� �exp �" + �$�% & − 1&
− " + �$�$��  

(1) 

  

where" is the voltage/potential at the terminals of the 

circuit,� is the current and �� is the current source,�� is 

the diode reverse saturation current, $��  is the shunt 

resistance,$� is the series resistance and% a modified diode 

ideality factor given by the following relation: 

 

% = '�()*+,-./  
(2) 

 

where '� is the number of PV cells connected in series, () is the Boltzmann constant(() = 1.38 × 104��J/K), *+ 

is the diode ideality factor (for an ideal diode, it is equal to 

1 and for an non-ideal diode is between 1 and 2 [87]), ,- is 

the operating temperature of the PV cells and the constant ./ is the electron charge(./ = 1.602 × 10456C).  

It should be mentioned that Eq. (1) can be expanded for 

PV panels with strings of cells connected in parallel. In 

2013, Tsai [89] proposed the following expression for 

electrical model: 

� = '8�� − '8�� 9exp : ./()*+,- 9 "'� + �$�'8 ;< − 1;
− ='8/'�>" + �$�$��  

(3) 

 

where'� and '8 are the number of cells connected in 

series and parallel inside the PV panel, respectively.  

A PV array is nonlinear component and can be 

interpreted by its current-voltage (� − ")  characteristic 

curve. Also, it is worth noting that there are different 

mathematical models, which can describe I-V characteristic 

curve. Eq. (1), represents the five-parameter photovoltaic 

model(%, ��, ��, $�and$��) for I-V characteristic curve [90]. 

The current-voltage (� − ")  curve of a solar cell is a 

nonlinear inclination that gives three important parameters: 

the short-circuit current ��-, the open-circuit, voltage "C-,, 
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and the maximum power point DEFG . Fig. 6 shows an 

example of current-voltage curve for a solar cell. To 

determine these parameters (��- , "C-andDEFG) some 

reference conditions are needed [90]: 

 
Fig. 6:Representation of current-voltage curve of solar cell. 

 

At short circuit current: 

� = ��-,H/Iand " = 0 (4) 

 

At open circuit voltage: 

� = 0  and " = "C-,H/I (5) 

 

At the maximum power point: 

� = �E8,H/Iand " = "E8,H/I (6) 

 

At the maximum power point: 

JK(�")K" LE8 = 0 
(7) 

 

At short circuit: 

J K�K"L�- = − 1$�� 
(8) 

 

Substituting the Eqs. (4-8) into Eq. (1) generate five 

nonlinear equations that must be solved with numerical 

methods. Solving of them gives the value of five parameters (%H/I, ��,H/I, ��,H/I, $�,H/Iand$��,H/I)   at the reference 

conditions. For calculation the model parameters at new 

climatic and operating conditions  (M+/N , ,-/OO,+/N)a set of 

auxiliary equations is used [91,92]. For more details, see 

Ref. [90]. 

According to Fig. 6, the maximum output power of a 

solar cell can be described graphically as the largest 

rectangular area that can be fitted under the (� − ")curve: DE8 = "E8�E8 (9) 

 

Where "E8 and �E8 define the maximum voltage and 

current, respectively.  

� Reference conditions 

Because the power of a PV cell is dependent on solar 

irradiation level and temperature changes, the standard 

parameters are defined that can generate the Watt-peak =PQ>.Therefore, the electrical power generated by a PV 

panel (measured in PQ) is evaluated at reference conditions 

or  standard test conditions (STCs). The average 

temperature of solar cell =,-/OO,H/I> , the solar radiation 

intensity =MH/I>  and  wind speed =RNS+T,H/I>  at STCs 

are 25℃, 1000 W/m� and 1 m/s, respectively [84]. 

� Fill factor (FF) 

The fill factor (FF) is the ratio of the maximum power 

produced by a solar cell to the product of ��-and "C-[93]: 

WW = "E8�E8"C-��-  
(10) 

 

� Energy efficiency 

The energy efficiency (or actual electrical efficiency) of 

a PV system at maximum power is defined as the ratio of 

actual electrical output to input solar energy incident on PV 

surface area and it is given by [93, 94] 

X/O = "E8�E8Y = WW "C-��-Y  
(11) 

 

It should be mentioned that the maximum energy 

efficiency of a PV system is given by [94]: 

X/O,EFG =  "C-��-Y  
(12) 

 

Therefore, we have: X/O = WW X/O,EFG (13) 

 

In Eq. (11), Y is solar absorbed flux (W)and it is given 

by [90, 93] Y = M ZFHH = M('�'EZECT) (14) 

where M  , ZFHH , 'E  and '�  are solar radiation 
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intensity (W/m�), PV array area, number of modules in 

series per string, and number of strings, respectively. PV 

module area (ZECT) can be calculated by: ZECT = [ × P (15) 

where [  and P  are the length and width of solar 

module, respectively. 

 

3.2. Exergy Analysis 

Exergy is one of the important concepts of the second 

lawof thermodynamics, which is the maximum useful work 

that wecan obtain from a flow of matter or energy [95]. 

Exergy efficiency is defined as the ratio of total output 

exergy to total input exergy [96]: 

X/G = \]C^_\]S+ = 1 − �-.`\]S+ 
(16) 

The main equations for exergy analysis are summarized 

in Table 3.  

 

 
Table 3: The main equations for exergy analysis 

Descriptions Equations No. 

The inlet exergy is exergy of solar radiation intensity. 

According to the Petela theorem, it can be calculated by Eq. (17), 

[97, 98].  ,�^+ stands for the effective temperature of the sun, which 

Holmberg et al. [99] estimated to be 5777.  

\]S+ = Y a1 − 43 ,FEc,�^+ + 13 �,FEc,�^+ &de 

 

(17) 

The irreversibility of control volume is sum of the external 

exergylosses and internal exergy losses (exergy destructions). [90]: 
�-.` = f(\]OC�� + \]T/�_) (18) 

The external exergy loss due to heat leakage is obtained by Eq. 

(20) [100]: 
\]OC�� = g�ZFHH(,-/OO − ,FEc) �1 − ,FEc,-/OO & (19) 

The exergy destruction includes four terms; the first term is due to 

optical losses in PV array surface [90]: 
\]T/�_,C8_ = Y �1 − ,FEc,�^+ & =1 − (h*)> (20) 

The second term is caused by the temperature difference between 

PV array surface and the sun temperature [101]: 
\]T/�_,ijklm = (h*)Y,FEc � 1,-/OO − 1,�^+& (21) 

The third term is due to the temperature variation of PV panel with 

respect to the ambient temperature [100,101]: 
\]T/�_,ijnoo = p-/OOq8,FEcΔs 9ln � ,-/OO,FEc& − (,-/OO − ,FEc),-/OO ; (22) 

The specific heat capacity of silicon solar cell (q8)  can be 

obtained using Eq. (23)[90]: 

q8 = 0.844 + 1.18 × 104d,-/OO − 1.55 × 10d,-/OO4�  

 
(23) 

The fourth term is electrical exergy destruction [94]: \]T/�_,/O = ��-"C- − �E8"E8 (24) 

 

3.3. Solar radiation model 

The solar radiation model is used to calculate the 

amount of absorbed solar radiation(M in Wm4�) by PV 

cells which can be estimated by the following equation 

[102]: M = =hIu*vw>+Mj (25) 

where =hIu*vw>+  is the normal transmitivity-

absorptivity product [86].Mj(W/m�) is solar radiation of 

the surface of the PV panel and can be obtained by: 

Mj = $cMcxc + MTxT �1 + yz{ |2 & + (Mc
+ MT)}uHC^+TxuHC^+T �1 − yz{|2 & 

(26) 

 

Other necessary equations for solar radiation modeling 

are summarized in Table 3 based on different angles of a 

PV panel shown in Fig. 7.In Eq. (26), Mc(W/m�) and MT(W/m�) are direct (beam) and diffuse solar radiations 

on horizontal plane, respectively. Also, the other parameters 

of Eq. (26), are given in Table 4. 

 

 
Fig. 7:Angles in a PV panel[86] 
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Table 4: Solar radiation modeling[86] 

Definition of parameter Equation No. 

The tilt angle of the PV panel (|) Shown in Fig. 7 - 

The ratio of beam radiation 

on the tilted plane to that on the horizontal plane ($c) 
$c = sin (* + |)sin (*)  

(27) 

The elevation angle (*)where� is the latitude of the location * = 90 −  � + � (28) 

The declination angle  (�)where K is day of year � = 23.45 sin J360365 (284 + K)L 
(29) 

The incidence angle modifier for the beam radiation  (xc)where �C = −1 xc = 1 + �C � 1cos (�c) − 1& 
(30) 

The incidence angle of the beam solar radiation on the surface of the PV 

panel(�c) 

�c = 90 − (* + |) (31) 

The incidence angle modifier for the diffuse radiation (xT) 

 
xT = 1 + �C � 1cos (�T) − 1& 

 

(32) 

The incidence angle modifier for the ground-reflected radiation (xuHC^+T) 

 
xuHC^+T = 1 + �C 9 1cos (�uHC^+T) − 1; 

(33) 

The incidence angle for the diffuse radiation (�T) �T = 59.68 − 0.1388| + 0.001497|� (34) 

The incidence angle for the ground-reflected radiation (�uHC^+T) �uHC^+T = 90 − 0.5788| + 0.002693|� (35) 

Reflectivity of the ground, also called albedo (}uHC^+T) }uHC^+T = 0.2 (36) 

 

 

As mentioned above, the PV temperature (,vw) 

depends on the solar radiation intensity on the 

module (MjinWm4�) ,the wind velocity (RNS+T) , the 

ambient temperature (,FEc), the PV inclination, the PV 

module technology and structure, and the geometry of the 

PV modules with respect to wind direction. 

3.4. Power generation model  

The effect of PV temperature on its efficiency and 

power can be calculated by Eqs. (37) and (38), respectively 

[103, 104]: 

DE =  XH/IMj a1 − |-/OO=,-/OO − ,H/I>
+ �-/OO�� 9 MjMH/I;e 

(37) 

 

Xvw =  XH/I a1 − |-/OO=,-/OO − ,H/I> + �-/OO�� 9 MjMH/I;e 
(38) 

 

DE is Power generation (W/m�),  XH/I is conversion 

efficiency at standard conditions (conventionally, it takes 

values between 0.13 and 0.20 and is given by the PV panel 

manufacturer), Mj  is total solar radiation on the tilted 

surface of the PV panel (W/m�) , ,-/OO  is average 

temperature of the PV cell layer in ℃ ,  |-/OO  is 

temperature coefficient of the PV cell (it takes values 

between 0.4 %/K and  0.5 %/K and is usually provided by 

the PV panel manufacturer),  �-/OO  is solar radiation 

coefficient of the PV cell. �-/OO = 0.085  for single 

crystalline silicon cells, and  �-/OO = 0.11  for poly-

crystalline silicon cells [103].  Here, ,H/I = 25 °q  and  MH/I = 1000 W/m�.  

 

� Necessary information 

It should be mentioned that hourly meteorological data 

over a complete year will be supplied by ENSERV for 

different locations. It is assumed that the following 

information will be provided: 

- Latitude of the location (�) 

- Hourly data of direct solar radiation on 

horizontal plane (Mc) 

- Hourly data of diffuse solar radiation on 

horizontal plane (MT) 

- Hourly data of air temperature (,FSH) 

- Hourly data of wind velocity (RNS+T) 

To calculate the total solar radiation on the surface of 

the PV panel, the solar radiation model must be used (See 

Table 4) assuming best orientation of the PV panel (south-

oriented in North latitudes; north-oriented in South 

latitudes).  

 

3.5. Mathematical modeling of PV-PCM system 

For PV-PCM systems, different modelling methods can 
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be found in literature, including CFD model [105], thermal 

resistance model [106] and finite element model [107]. Also, 

an improved thermal resistance model by using enhanced 

conductivity method was developed for incorporation of 

PCM convective effect in 1-D model by Ma et al [78]. This 

innovative model offers a good compromise between 

simplicity and accuracy(The model will be discussed at 

subsection 3.5.5). For a typical PV-PCM system, the 

mathematical model can be generally divided into four 

main sections, i.e. heat transfer model, fluid model, phase 

change model and power generation model. Heat transfer 

model, fluid model and phase change model are commonly 

called thermal model. The aim of this subsection is to 

present a numerical model to simulate the thermal behavior 

and electricity production of a PV-PCM system on an 

annual basis. The model will be able to solve one 

dimensional (1D) heat transfer equations coupled with 

power generation equations from the following inputs: 

- PV panel characteristics (geometry, layers 

properties, power generation efficiency). 

- PCM layer properties and thickness.  

- Hourly weather data, including at least direct 

solar radiation, global or diffuse solar 

radiation, air temperature, and wind velocity. 

- Latitude of the location.  

The outputs (hourly data) of the model will be: 

- Time evolution of the temperature within the 

PV panel layers and PCM layer. 

- Power generation. 

 

The schematic view of a PV-PCM system is shown in 

Fig. 8. The properties of PV module and PCM chamber for 

Fig. 8 can be found in Table 1 from Ref. [79]. They are 

similar to the data presented in Table 2.  

 

 

 

 

 
 

Fig. 8:(a) System configuration; (b) heat transfer pathway[79] 

 

 

 

3.5.1. Assumptions 

In the thermal model the following assumptions are 

made: 

- Considering that the thickness of the PV panel 

is low comparatively to the surface of the 

panel, 1D heat transfer can be assumed. 

- Assuming that a solid-solid PCM or a shape-

stabilized PCM is used, the only heat transfer 

mechanism within the PCM layer is heat 

conduction. 

- Phase transition of PCM occurs in a narrow 

range of temperatures and can be describe 

through currently used simplified enthalpy-

temperature models. 

- The thermal contact between any two layers 

of the PV-PCM system is assumed to be 

perfect. Therefore, equality of temperature 

and continuity of heat flux conditions apply at 

the interfaces between any two layers.  

 

3.5.2. Heat transfer equation 

The heat transfer equation within any layer of the PV-
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PCM panel can be written as follows: 

 

}y8 �,(], s)�s = ( ��,(], �)�]� + . 

 

(39) 

 

where } is the density of the material of the layer, y8 

is the specific heat and ( the thermal conductivity. All 

these parameters are assumed to be constant except the y8 

value of the PCM layer, which is given by the temperature 

derivative of the PCM enthalpy function (y8 = K�/K,).  

The source term . is zero in all the layers expect in the 

glass cover and in the PV cell layers. 

 

3.5.3. The boundary conditions 

 

1. The boundary condition on the top of the PV-PCM 

system (top of the glass layer) isas follows: 

 

(u ��,u�] �IHC+_ = ℎIHC+_=,u,IHC+_ − ,FSH>
+ Wu4�����u=,u,IHC+_d − ,���d >+ Wu4uHC^+T��u=,u,IHC+_d − ,uHC^+Td > 

 

(40) 

 

where (u  and �u  are, respectively, the thermal 

conductivity of the glass and its infrared emissivity.  ,u,IHC+_, ,FSH and ,uHC^+T are the temperatures at the top 

surface of the glass layer, the air temperature and the 

ground temperature. �  is the Stefan–Boltzmann 

constant(� = 5.67 × 104�W m4�K4d).  

 

2. The boundary condition on the bottom of the PV-

PCM system (bottom of the backing plate) is as 

follows: 

 

(c ��,c�] �H/FH = ℎH/FH=,c,H/FH − ,FSH>
+ Wc4�����u=,c,H/FHd − ,���d >+ Wc4uHC^+T��c=,c,H/FHd − ,uHC^+Td > 

 

(41) 

 

where (c  and �c  are, respectively, the thermal 

conductivity of the bottom layer of the system and its 

infrared emissivity.  ,c,H/FH , ,FSH  and ,uHC^+T  are the 

temperatures at the rear face of the PV-PCM system, the air 

temperature, and the ground temperature. 

 

To estimate the sky temperature, the following 

equations have been used in previous studies [86, 108]: 

 ,��� = 0.0552 ,FSH5.�   or ,��� = 0.0375 ,FSH5.� +0.32 ,FSH  

(42) 

 

The ground temperature, can be assumed to be equal to 

the air temperature [86]:  

 ,uHC^+T = ,FSH (43) 

 

For the estimation of the convective heat transfer 

coefficient ℎIHC+_, and ℎH/FH there are different methods 

that have been proposed. According to SanchezBarroso et al. 

[86], it seems that the method proposed by Amstrong and 

Hurlay [13] provides the best agreement with experiments.  

(see, Table 5). Other necessary equations for thermal 

modeling are summarized in Table 5.  

 

3. At the initial time (s = 0), the PV-PCM system is 

assumed to be in thermal equilibrium with the 

environment. That is, ∀], ,(], 0) = ,FSH.   

 

 
Table 5:Thermal modeling 

Definition of parameter Equation No.  

For glass cover layer: 

where � is the thickness of the glass cover and *uOF�� represents its 

solar absorptivity. 

 

. = *uOF��Mj�  
(44) 

For PV cell layer: 

WithDE and Mj given by Eqs.(37) and (38) respectively. � is the 

thickness of the PV cell and (h*)/II represents the effective product of 

transmissivity of glass cover and absorptivity of solar cell. 

. = (h*)/IIMj − DE�  

 

(45) 
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The view factor coefficients for glass to sky [86] 

 
Wu4��� = 1 + yz{ |2  

(46) 

The view factor coefficients for glass to ground[86] Wu4uHC^+T = 1 − yz{ |2  
(47) 

The view factor coefficients for rear to sky [13] 

 
Wc4��� = 1 + yz{ (� − |)2  

(48) 

The view factor coefficients for rear to ground[13] 

 
Wc4uHC^+T = 1 − yz{ (� − |)2  

(49) 

The forced convection coefficient (Wm4�K45)[109] ℎ-C+`/4ICH-/T = 11.4 + 5,7RNS+T (50) 

The forced convection coefficient (Wm4�K45) [Test et al. 

[110] 

ℎ-C+`/4ICH-/T = 8.55 + 2.56RNS+T (51) 

Note: Any of the Eqs. (50) or (51) can be used. 

The free convection coefficient (Wm4�K45) ℎ-C+`/4IH// = 'R × (FSH[vw,8F+/O  
(52) 

where(FSH is the air thermal conductivity ,'R is the Nusselt number, and [vw,8F+/O is the longest dimension of the PV panel.   

The free (natural) convection from the top of the PV panel is obtained 

by Eq. (53)[111]: 

whereD� is the Prandtl number,M�and M�-Hare the Grashof number 

and the critical Grashof number, respectively, and �  is the angle of 

inclination of thePV panel with the vertical (see Fig. 7). 

For the critical Grashof number, see Refs. [13] and [111]. 

'R���� = 0.14[(M� × D�)5/� − (M�-H × D�)5/�]+ 0.56(M�-H × D� × cos �)5/d 

 

(53) 

Natural convection from the bottom of a heated inclined plate is 

given as a function of theNusselt number[112]: 'R���� = a0.825 + 0.387 × $%5/�
[1 + (0.492/D�)6/5�]�/��e�

 
(54) 

Rayleigh number ($%)is defined as [112]: $% = M� D� (55) 

Grashof number (M�)is defined as [112]: M� = �|_(,-/OO − ,F)[�
��  

(56) 

The effective convection heat transfer coefficient from the front 

surface of the PV panel(ℎIHC+_) 
ℎIHC+_ = ℎ-C+` =  ℎ-C+`/4ICH-/T� + ℎ-C+`/4IH//�¡

 
(57) 

The convection heat transfer coefficient from the rearsurface of the 

PV panel(ℎH/FH) 

ℎH/FH = ℎ-C+`/4IH// (58) 

 

 

3.5.4. Simulation results 

Solving Eqs. (39)-(41) with hourly meteorological data 

and using Eq.(37) for power generation calculations, the 

following hourly data are produced: 

- Temperature at any point within the PV-PCM 

system 

- Power generated by the PV-PCM system. 

However, for analysis purposes and comparisons, it is 

convenient to reduce them to some significant performance 

indicators: 

- Total power produced by month. 

- Total power produced by year. 

- Maximum daily temperature 

 

 

3.5.5 Improved thermal resistance model 

An improved 1-D thermal resistant model was 

developed by Ma et al. [78]. The schematic view of 1-D 

thermal resistance model is shown in Fig. 9. The model 

consumes less computation time than CFD method. It can 

consider the effect of convective heat transfer within melted 

PCM using applying the enhanced conductivity method. 

Therefore, the enhanced conductivity model of PCM was 

proposed by Ma et al.[78]. The heat transfer rate (v¢£ 

inside the PCM can be obtained by: 

(v¢£ =

¤¥
¥¥
¦
¥¥¥
§(�COST^�                                                                                                 ¨©  , < ,�

(�COST^�  + (OS«^ST^�
1 + exp a− ¬j4®¯°®k± ²

(j¯4jk) e   
   ¨© ,� <  , < ,O=(�COST^�  + (OS«^ST^�>(,+ − ,+³5  )´¨©  , ≥ ,O

� 

 

(59) 

where (�COST^�  and (OS«^ST^�  are the heat conductivity 

of solid and liquid PCM in (W m45K45); respectively. ¶ 

and ·  are constants that dependent on the property of 

PCM.,+ and ,+³5 is the temperature of two adjacent PCM 

layers in℃. Fig. 10 represents the thermal conductivity of 

RT35((v¢£) based on Eq. (59). For PCM of  RT35, the  
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values of  ¶ and · are 10 and 2, respectively [78]. Fig. 10 

is corresponding to PV-PCM system that earlier was shown 

in Fig. 4 and Table 2. 

 

 

 

 
Fig. 9: Schematic diagram of improved 1-D thermal resistance model [78] 

 
Fig. 10: The variation of (v¢£ versus temperature (recalculated from Ref. [78]) 

 

3.6. Experimental system design 

Fig. 11shows a set of an experimental design for the PV-

PCM system. The system consists of a PV panel, a battery, 

a dump load, a maximum-power-point tracker (MPPT) 

controller, the PT-100 temperature sensors and an analog 

data collector. More details about this structure can be 

found in the work of Zhao et a.[79, 113]. 

 

4. Evaluating the effectiveness of PCM to reduce PV 

temperature 

The aim of using PCM with PV panel is to reduce 

operating temperature of the PV panel and increase the 

electrical efficiency. Table 6 represents the main terms that 

must be used to evaluate the effectiveness of PCMs. Also, 

Waqas et al. [16] have summarized the findings of various 

studies related to PCMs in PV systems.  
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Fig. 11: Experimental design of PV-PCM system [79] 

 

Table 6: The main terms for evaluation of PCMs effectiveness[16] 

Description  Definition of parameter  No.  

Peak temperature of the PV panel without PCM (℃) ,8/F�4vw - 

Temperature of a PV-PCM panel at peak time (℃) ,vw4v¢£ - 

Difference temperature (℃) ∆,vw48/F� = ,8/F�4vw − ,vw4v¢£ (60) 

Specific Mass of PCM (p�8/-) in (kg m4�) 

The required amount of PCM is determined by this parameter for one-meter square of the 

PV area 

p�8/- = pv¢£Zvw  (61) 

The effective mass coefficient (p/II)in (kg m4�℃45) 

It is used to indicate how muchp�8/-must be used to decrease one-degree peak PV 

temperature. 

p/II = p�8/-∆,vw48/F� (62) 

 Hasan et al. [66] proposed Eq. (63) for calculation of PV temperature at winter days. ,vw = ,FEc � 0.328.91 + 2RNS+T& M 
(63) 

 

Also, the performance of the PV-PCM systems can be calculated by the indicators shown in Table 7. 
 

 

Table 7: Indicators to evaluate the performance of PV-PCM systems 

Description  Definition of parameter No. 

The electrical efficiency is one of the major indicators [20, 44-46]. Xvw =  XH/I 1 − |-/OO=,-/OO − ,H/I>² (64) 

The power enhancement percentage (PEP) DC^__v¢£ and DC^__H/I are  the output power of the PV panels with and without 

PCM, , respectively [114]. 

D\D = DC^__v¢£ − DC^__H/IDC^__H/I × 100% 
(65) 

The efficiency enhancement percentage (EEP) XC^__v¢£ and XC^__H/I are the efficiency  of the PV panels with and without 

PCM, respectively  [114]. 

\\D = XC^__v¢£ − XC^__H/IXC^__H/I × 100% (66) 

X is the energy efficiency  D� is the energy savings (Wh) due to the integration of PCM. D/ is the electric power of the PV panel measured at"C-and ��- . WW is the fill 

factor and usually it is between 0.72 and 0.75. [66, 115]. 

X = D�D/_H/I 

       where D� = D/_vw_v¢£ − D/_H/I 

D/ = "C-��-WW  

(67) 
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The enhancement of thermal performance for a PV-PCM system [116]. \�ℎ%�yp��s(%) = ,vw − ,vw4v¢£,vw × 100% 
(68) 

The total thermal regulation enhancement (Γ)[16, 17]. 

 Γ = f=,vw,_ − ,vw4v¢£,_>_½+
_½�

 
(69) 

 

In order to use PV-PCM systems, some questions must be answered which are summarized in Table 8. The second 

column of this table shows the answers to the questions that were obtained after the investigation. 
 

Table 8: Main questions about PV-PCM systems 

Main questions [16] Answering into questions 

1. What is a PV-PCM technology?  See subsection  1.3 and section 2 

2. How much PV panel temperature can be 

reduced by using PCM? 

PV panel temperature up to 20 °C and electrical efficiency up to 5% can be reduced by 

PCM[16]. 

3. How much mass of PCM is required to 

reduce temperature of the PV panel? 

p/II  is approximately equal to 2.6 kg m4�℃45 (See Eq. 62) [16] 

4. What must be the PCM melting point (,E)for PV cooling application? 

the selection of ,E depends on the climatic conditions and the geographical location  

Conventionally, 25℃ < ,E < 35℃ 

For the hot climatic conditions, ,E > 35℃.  

When PV temperature rises up to 90 °C, ,E,EFG = 42℃[16]. 

5. Which type of PCM (organic or 

inorganic) should be used?  

In general, organic PCMs are more desirable, but inorganic PCMs have economic 

advantages. Also, see section 4 and Ref. [16]. 

6. Can the heat collected by PCM  be used 

more or not? 

See sections 5  (hybrid systems) 

7. What problems might arise for PV-PCM 

systems? 

The overall weight of PV panels increases if a large amount of PCM is used which leads 

to difficulty in installation. 

8. What is the method of integrating PCM 

with PV panel? 

See sections 2 and 5 

9. Is PV-PCM technologically–

economically feasible or not? 

 

PV-PCM systems are suitable for the locations with high solar radiation and high ambient 

temperature(See section 6). 

An economic viability of the PV-PCM system was discussed by Waqas et al. [16], Hasan 

et al. [66] and Radziemska  et al. [117]. 

 

It is worth mentioning that an ideal PCM should have large thermal conductivity, non-toxic,non-corrosive,large latent 

heat, inexpensive and chemically stable [118].PCMs are generally divided into three main groups: organic compounds, 

inorganic compounds and eutectic mixtures. A comparative merits and demerits of organic PCM, inorganic PCM and 

eutectics, can be found in the work of Islam et al.  [2].The performance of the inorganic and organic PCMs for cooling of PV 

panel were compared with each other by Hasan et al. [17]. Classification of the PCMs are given in Table 9.  
 

Table 9: Classification of PCMs  

Basis of classification PCM denomination 

Major capsulation 

techniques[16] 

1. Macro-capsulated PCMs (capsulation size > 1 mm)       

2. Micro-capsulated PCMs (1 µm <capsulation size <100 µm) 

Note: Macro-capsulation of PCM is cheaper than micro-capsulation 

. 

Nature of PCM [17, 56] 

1. Organic (such as RT20) 

Organic PCMs have lower thermal 

conductivity(0.1 < ( < 0.2  Wm45K45). 

2. Inorganic (such as CaCl2·6H2O and Sp22) 

Inorganic PCMs have high thermal conductivity. 

3. Eutectic mixtures (such as Capric–palmitic acid) 

Note: The use of inorganic PCMs is limited due to their corrosive nature and sub-cooling. 

 

 

 

5. Hybrid PV systems  

Another area of PV-PCM research is the application of 

PCM to other types of PV systems, for example, 

PV/thermal (PV/T) system, concentrated PV (CPV) system, 
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be assessed in terms of exergy ef

al. [119]reviewed the literature for PVT exergy ef
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air collector and thermal resistance modeling [119].
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thermoelectric (PV/TE) system 

As we know, the thermoelectric (TE) technology can 

directly convert heat into electricity due to the Seebeck 

ect. A combination of photovoltaic (PV) and 

thermoelectric (TE), known as the photovoltaic-

TE) hybrid system, is an effective way 

to increase the total power output [122]. Fig. 13 represents 

an example of the structural diagram of the PV

systems.

TE system based on thermal resistance model are presented 

in Fig. 14. As shown, both networks are similar to each 

other, including boundary condition, except for the other 

two thermal resi

can refer to work of Gu et al. [122].
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higher overall energy performance, the advantage of the 

PV/T collector system lies in reducing the need for physical 

space and the cost of equipment[119].In order to evaluate 

the performance of a PV/T collector, the amount of 

electricity compared to the useful heat from the collector is 

a main factor. The performance of a PVT col

be assessed in terms of exergy ef

al. [119]reviewed the literature for PVT exergy ef

Also, Fig. 12 represents the cross

air collector and thermal resistance modeling [119].

sectional view of a PV/T air collector[119], (b) Schematic of a PVT systems [121]

an example of the structural diagram of the PV

Also, the energy transfer networks of PV and PV

TE system based on thermal resistance model are presented 

in Fig. 14. As shown, both networks are similar to each 

other, including boundary condition, except for the other 

two thermal resistances, TEG and gel. For more details, one 

can refer to work of Gu et al. [122].

TE. [122] 

simultaneous produce hot airor hot water[108]

higher overall energy performance, the advantage of the 

em lies in reducing the need for physical 

space and the cost of equipment[119].In order to evaluate 

the performance of a PV/T collector, the amount of 

electricity compared to the useful heat from the collector is 

a main factor. The performance of a PVT col

be assessed in terms of exergy efficiency [120]. Sarhaddi et 

al. [119]reviewed the literature for PVT exergy ef

Also, Fig. 12 represents the cross-sectional view of a PV/T 

air collector and thermal resistance modeling [119].

sectional view of a PV/T air collector[119], (b) Schematic of a PVT systems [121] 

an example of the structural diagram of the PV

Also, the energy transfer networks of PV and PV

TE system based on thermal resistance model are presented 

in Fig. 14. As shown, both networks are similar to each 

other, including boundary condition, except for the other 

stances, TEG and gel. For more details, one 

can refer to work of Gu et al. [122]. 
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a main factor. The performance of a PVT collector can also 
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al. [119]reviewed the literature for PVT exergy efficiency. 
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ficiency. 

sectional view of a PV/T 

and PV-TE 

Also, the energy transfer networks of PV and PV-
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in Fig. 14. As shown, both networks are similar to each 

other, including boundary condition, except for the other 

stances, TEG and gel. For more details, one 
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Fig. 14: Schematic diagram of energy transfer networks: (a) PV; (b) PV-TE. [122] 

 

 

5.3. Hybrid photovoltaic-PCM-thermoelectric (PV-

PCM-TE) system 

The integration of PCM systems and PV-TE hybrid 

system can be an effective way to cool the PV panel and 

increase the power generation. The PV-PCM-TE system 

consists of a PVcell, shape-stabilized PCM plate and TE 

module. As shown in Fig. 15the solar radiation is absorbed 

by the PV cell while the PCM is deployed between the TE 

modules and the PV cell. During operation, the solar energy 

is imposed on the PV modules, then the thermal energy is 

transferred to the upper surface of the PCM, the energy is 

absorbed by the PCM or transferred to the connected TE 

modules. The mathematical model of the PV-PCM-TE 

system can be found in the study of Luo et al. [123]. 

 

 

 
Fig. 15:(a) PV-TE-PCM hybrid system schematic [2], (b) The geometrical structure of the PV-PCM-TE system [123] 

 

 

6. Economic feasibility of PV-PCM systems 

Radziemska [117]performed an economic analysis for a 

PV-PCM system. They found that the cost of modified PV-

PCM system (1 kWQcapacity) can be 8.5% higher than the 

cost of a simple PV. Of course it produces 7% more energy 

for each year. In another work, Hasan et al. [66] observed 

that a PV-PCM system can produce 13.5 kWh/m� of 

additional energy to compared to a simple PV. Therefore, it 

provides an economic benefit of 2.02 $/m�(13.5 kWh/m�  × 0.15 $/kWh = 2.02$/m�). The cost of electricity is 

assumed to be 0.15 $/kWh. Here, 27 kg of PCM was used 

for onem�of PV area. The cost of paraffin wax (organic 

PCM) and slat hydrates (inorganic PCMs) is 1.0 $/kg and 

0.14–0.24 $/kg, respectively. Therefore, they can produce a 

payback within 10–12 years and 3-4 years, respectively. 

Table 10 represents a summary of the major works on the 

different PV systems.  
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Table 10: Some major works on the different PV systems 

Literature Type of 

system 

[4], [7], [9-14], [42,43], [70], [76], [86-88], 

[90-94], [103,104], [108], [124-145]  

PV 

system 

[15-20], [44-46], [53-58], [60-68], [71-82], 

[105], [107], [113-118], [146,147] 

PV-PCM 

system 

[84], [122], [148,149] PV-TE 

system 

[123], [150-153] PV-

PCM-TE 

system 

[56], [69], [119-121], [154] PVT or 

CPVT 

system 

 

7. Investigation the effect of active parameters on 

the PV-PCM system 

In this section the effect of main parameters on the 

performance of PV or PV-PCM systems is reviewed. On the 

other word, the main outcomes of the literature, are 

summarized in below.  

7.1.Output power and current versus voltage in a PV 

cell 

 

As mentioned before, in 2021, Sharfabadi et al.[87] 

investigated the energy and exergy analysis of 190 W PV 

cell. Table 11 represents the characteristics of PV cell at 

reference conditions.  A code in the equation engineering 

solver (EES) software was extended to recalculate the 

original results. The outcomes are presented in the Figs. 16-

18.  

 

Table 11:The characteristics of solar cell at reference conditions[87] 

 

Parameters Value 

Maximum power , DE8(W) 191.861 

open circuit voltage, "C-(V) 44.988 

short circuit current, ��-(A) 5.733 

maximum power point voltage, "E8(V) 

36.055 

maximum power point current, �E8(A) 

5.321 

Shunt resistance, $��(Ω) 388.485 

series resistance of cell, $�(Ω) 0.982 

The voltage temperature 

coefficient ÃC-(V/K) 

-0.0033 

The current temperature 0.0003 

coefficient, Ã�-(A/K) 

Number of cells ' 72 (6 × 12) 

Dimensions (mm) 1580 × 808 × 45 

 

Fig. 16: Output power and current versus voltage at reference 

conditions(recalculated from Ref. [87]) 

 

 
Fig. 17:  Current versus voltage at different values of solar intensity 

(recalculated from Ref. [87]) 

 

 
Fig. 18:  Output power versus voltage at different values of solar 

intensity  (recalculated from Ref. [87]) 

 

7.2. Analysis of a PV system 

 

Note: At the beginning, it should be stated that, the Figs. 

19-23are borrowed from Sánchez Barroso's article[86]. 
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� The I–V and P–V curves  

The I–V curve of the PV panel can be plotted using the 

values of the shunt and series resistances.  The I–V and P–

V curves for the PV panel BP 350 at Standard Test 

Conditions (STC) were plotted by Siddiquiet al. [88] and 

Tsai [89]that are shown in Fig. 19 [86]. 

 

 

 
Fig. 19: Curves for the PV panel BP 350 at STC calculated by Siddiqui et al. [88] and Tsai [89]: (a) I–V curves, (b) P–V curves 

 

� The effects of cell temperature and global solar 

radiation on the I–V curve 

The curves for three different temperatures at constant 

solar irradiance are shown in Fig. 20a. Also, the curves for 

three different global solar radiations at constant cell 

temperature are shown in Fig. 20b. [86] 

 

 

 
Fig. 20:I–V curves for a Panel BP 350at: (a) different cell temperatures and (b) different global solar radiations. 

 

� The effects of ambient temperature, global solar 

radiation and wind speed on the PV cell 

temperature  

The effects of ambient temperature, global solar 

radiation and wind speed on the PV cell temperature are 

shown in Figs. 21-23.This figure discovers that there is a 

certain wind speed (near or above 1 m/s) which the 

temperature of the cells decreases. 

 

 



Journal of Applied Dynamic Systems and Control,Vol.6, No.2, 2023: 55-85 

 
75 

 

 

 
Fig. 21:PV cell temperatures with changing ambient temperature [86] 
 

 
Fig. 22:PV cell temperatures with changing global solar radiation[86] 

 

 
Fig. 23: PV cell temperatures with changing wind speed[86] 

 

7.3. Analysis of a PV-PCM system 

As mentioned before, in 2018, the mathematical modelling 

of a PV-PCM was performed by Ma et al. [78]. Fig. 24 

represents a comparison between the PV temperature 

profile modelled by the thermal resistance method 

(MATLAB program) and CFD method (FLUENT program). 

Fig. 25 represents a sample result of CFD modelling. 

Liquid fraction and temperature distributions can be seen in 

this figure. Figs. 24 and 25are corresponding to Table 2 and 

Figs. 4, 9and 10. Figs. 24 and 25 were taken from Ref. [78]. 

 

 

 

 
Fig. 24: PV temperature profile modelled by thermal resistance 

method (MATLAB program) and CFD method (FLUENT program)[78] 

 

Fig. 25: The CFD simulation result of a PV-PCM system[78] 

 

7.4. Experimental Analysis of a PV-PCM system 

In 2019, Zhao et al. [79] investigated a PV-PCM system 

theoretically and experimentally. Fig. 26 shows a 

comparison between the simulation result and the 

experimental data (for a summer day of Shanghai). Fig. 26 

is corresponding to Figs. 8and 11. 
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Fig. 26:PV temperature including the experimental data and the 

simulation result [79]. 

 

7.5.Effect of PCM thickness on the performance of a 

PV-PCM system  

 

Performance analysis of a PV panel integrated with 

PCM was investigated by Zhao et al. [155].  Comparison 

of PV temperature between PV-only system and PV-PCM 

system (30 mm PCM) is shown in Fig. 27.  Also, Fig. 28 

shows the output power of system for different values of 

PCM thickness. The simulation result discovers that the PV 

temperature can be reduced by about 25°C using PCM and 

thus the electricity output can be increased by 

approximately 11%. [155]. 

 

Fig. 27:PV temperature for PV-onlyand PV-PCM system (30 mm 

PCM) [155] 

 

 

 
Fig. 28: Electricity output of PV-PCM system for different values of 

PCM thickness [155] 

 

7.6.Analysis of a PV-TE system 

 

As mentioned before, in 2019, Gu et al. [122]evaluated 

performance of a hybrid photovoltaic-thermoelectric system. 

PV-TE system. The Figs. 29-32 are borrowed from this 

paper. Fig. 29 presents the PV cell temperature that has 

been calculated by CFD analysis (Ansys software) and the 

thermal resistance model (MATLAB code). Fig. 

30represents the efficiency versus concentration ratio for 

PV and PV-TE systems. The variations of power, efficiency 

and temperature for PV and PV-TE systems in a sunny day 

are shown in Figs. 31 and 32.    

 

 

Fig. 29: Validation of PV and PV-TE model [122] 
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Fig. 30: The efficiency versus concentration ratio  [122] 

 

Fig. 31: The power and efficiency of PV and PV-TE under a sunny 

case  [122] 

 

Fig. 32: The temperature variation under sunny case[122] 

 

7.7.Analysis of a PV-PCM-TE system 

As mentioned earlier, in 2022, Luo et al. [123] studied the 

performance of a PV-PCM-TE system during the year. The 

meteorological parameters in summer has been given in Fig. 

33. Figs. 34 and 35 represent the solar cell temperature of 

PV and its output power.  Also, Fig. 36 shows the 

electrical efficiency and annual total electrical power for 

three systems (PV, PV-TE and PV-PCM-TE systems). The 

results show that the last system (PV-PCM-TE) is the most 

favorable. 

 

 
Fig. 33:  The meteorological parameters in summer [123] 

 

 
Fig. 34:  Solar cell temperature of PV in summer [123] 

 

 
Fig. 35: Output power of PV in summer [123] 
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Fig. 36:Electrical efficiency and annual total electrical power for three 

systems [123] 

 

8. Future developments 

The continuous reduction in the cost of PV arrays and 

increasing their efficiency have a promising role for PV 

generation systems in the near future. The life of solar cells 

increases using cooling techniques because these methods 

lead to the reduction of thermal stresses. Investigations on 

the possibility of using PCMs as a medium of thermal 

regulation in PV systems is now a growing field of research 

all over the globe. It should be noted that PV-PCM systems 

are not yet commercialized because of high system cost, 

technological challenges and availability of appropriate 

PCMs. However, PV-PCM systems are still in the research 

stage and have a wide scope for practical applications. 

Suggestions for the future works were provided by Waqas et 

al. [16]. Rea et al. [156] stated that CPV integrated with 

PCM is a promising and practical application of PV-PCM 

system in the near future. 

 

9. Summary 

In the present study, firstly, conventional PV system 

integrated with PCM (known as PV-PCM) was critically 

reviewed. Then, after explaining the PV-PCM system 

configuration, mathematical modeling including electrical 

model, solar radiation model and electricity generation 

model was presented. The improved 1-D thermal resistant 

model (the enhanced conductivity method) was explained. 

Indicators to access the performance of PV-PCM systems 

were presented. Hybrid systems including PVT, PV-TE, and 

PV-PCM-TE were presented. The effects of main 

parameters on the performance of PV or PV-PCM systems 

were investigated. It has been observed that PCM can 

effectively reduce the operating temperature of the PV 

panel and improve electrical efficiency of the PV panels. 

Table 12 summarized the advantages and disadvantages of 

PV-PCM systems.  

 

 
Table 12:The advantages and disadvantages of PV-PCM systems 

Advantages  Disadvantages  

Temperature reduction of PV 

panels  

Energy storage  

Saving energy  

High heat absorption rate 

No moving parts 

No electricity consumption 

No maintenance cost 

Uneconomic 

Unavailability of optimal PCMs 

Lack of proper disposal technology for used PCM after completion of their life cycle 

 

 

 
Nomenclature 

% Modified diode ideality factor (eV) 

Z Area (m�) 

q8 Specific heat (J kg45K45) 

EEP Efficiency enhancement percentage  (%) 

\] Exergy (W) 

W View factor  

WW Fill Factor 

M Solar radiation intensity  (W m4�) 

Mc Direct (beam) solar radiations  (Wm4�) MT Diffuse solar radiations  (Wm4�) M� Grashof number (−) 

ℎ Heat transfer coefficient (W m4�K45) 

� Circuit current (A) 

�Æ.Ç Irreversibility in control volume (J) 

( Thermal conductivity (W m45K45) 

() Boltzmann constant (JK45) 

[ Length of solar module (m) 

p�8/- Specific Mass of PCM  (kg m4�) 
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p/II Effective mass coefficient (kg m4�℃45) 

'� Number of PV cells connected in series 

'8 Number of PV cells connected in parallel  

D Power output (W) 

P

CM 

Phase change material 

D� Prandtl number (−) D" Photovoltaic 

D"/, Photovoltaic/Thermal collector  

./ Electron charge (C) 

$ Resistance (Ω) 

$% Rayleigh number (−) Y solar absorbed flux (W) 

, Temperature  (K) 

,- Operating temperature  (K) 

T

E 

Thermoelectric 

RNS+T Wind velocity (ms45) 

" Circuit voltage (V) 

P Width of solar module  (m) 

�-/OO Solar radiation coefficient (−) 

Greek Symbols 

*+ Diode ideality factor (−) 

| Tilt angle of the PV panel (°) 

|-/OO Temperature coefficient of the PV cell 

� Emissivity (−) 

X/O Electrical efficiency (−) 

ÃC- Voltage temperature coefficient (VK45) Ã�- Current temperature coefficient (AK45) } density of the material of the layer (kg m4�) 

� Stefan-Boltzmann’s constant (W m4�K4d ) 

(h*) The effective product oftransmittance-

absorptance 

� Latitude of the location 

Γ Total thermal regulation enhancement (−) 

Subscripts 

a

mb 

Ambient  

d

est 

Destruction  

M
od 

Module 

M

p 

Maximum power point 

O
c 

Open-circuit 

R

ef 

Reference  

S Series 

S

h 

Shunt 
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