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Abstract–Mechanical system in motor drive in industry can be modeled by multi-mass system. In 

this paper, the equations of the two-mass system are first stated in the state space and the two-mass 

mechanical system model is determined using the transfer functions. In torque control of this 

system, in order to have mechanical oscillation, PID controller is often used as a simple control 

method. Using the torque controller coefficients diagram method, it is designed and the behavior 

of the system is investigated and simulated using the analysis of eigenvalues. From the 

prominence of this study, we can mention the expression of electric torque changes in the two-

mass system based on the inputs and their relationship with each other. The simulation results 

show that designing the parameters using the coefficient diagram method can reduce the 

fluctuations of the electric torque in the two-mass system. In this design, the eigenvalues of the 

system are placed on the left side of the imaginary axis. 
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1. Introduction 
 

A mechanical system consisting of a number of masses 

such as motor, load and gear and connected to each other by 

a flexible shaft is called a multi-mass resonance system, 

which can be mentioned as examples of elevator system 

and steel rolling mill system [1-3]. 

The mechanical system in the industrial engine drive 

can be modeled by a multi-mass system [4-10]. 

In the motor moving system, if the motor and the load 

are connected by a fixed shaft, the movement of the motor 

system finds a mechanical oscillation, which is called a 

two-mass oscillating system [11,12]. The purpose of control 

in the two-mass oscillating system is to eliminate shaft 

rotation changes, return the load torque disturbance effect, 

quick response to base speed change without overshoot in 

load speed, and resistant stability [13,14]. 

Torsional fluctuations caused by rotor dynamics are one 

of the important topics in system dynamics. Torsional 

performance is a non-linear phenomenon, and the linear and 

mathematical model is a suitable tool system to investigate 

and diagnose and design against this phenomenon. The 

major problem of rotational oscillation in the flexible 

system arises when the load is connected to the motor 

through a long axis. Fluctuations are a major obstacle to 

increasing optimal system performance. The simplest 

model of this example of mechanical resonance systems is 

the two-mass system [15]. 

So far, various studies have been conducted in the field 

of multi-mass mechanical systems [16,17]. In [18], different 

methods for estimating the parameters of the two-mass 

mechanical system in electric drives are presented, in which 

a discrete-time output error model is applied to estimate the 

parameter, and the resulting pulse transfer function is 

converted into a continuous-time transfer function. and the 

parameters of the two-mass system model are solved 

analytically from the coefficients of this transfer function. 

The design of the model-based two-degree-of-freedom state 

space velocity controller for a two-mass mechanical system 

is proposed in [19], where the proposed design rules enable 

the automatic adjustment of the controller if the mechanical 

parameters are known. Also, the effects of time delay, 

measurement noise, and parameter changes on controller 

setting and control performance have been studied using 

Nyquist diagrams, noise transfer functions, and time 

domain simulations. 

Various control methods for two-mass oscillating 

system such as nonlinear mode feedback control [20], 

resonance ratio control [21], neural network [22], robust 

control [23], slow resonance ratio control [24] and sliding 

mode control [25] has been presented so far. 
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In this paper, the PID controller is used to control the 

torque in the two-mass mechanical system. To determine 

the controlling coefficients, the coefficient diagram method 

is used. The simulation results show the effect of the 

controller on the dynamic behavior of the system. The 

structure of the article is as follows. First, the equations of 

the two-mass system in the state space are stated in the 

second part, and the system model is determined using 

transfer functions in the Laplace domain. In the third part, 

the coefficients of the PID controller are determined. In the 

fourth part, the simulation results in Simulink MATLAB 

environment are presented. Finally, the conclusion is stated 

in the fifth part. 

The highlights of this study include the following: 

- Presentation of the two-mass resonance system model 

in the state space 

- Displaying the system model based on transfer 

functions. 

- Expression of electric torque changes in the system 

based on inputs and their relationship with each other. 

- Controller design based on characteristic equation 

polynomial. 

- Check changes in system response 

 

2. Two-Mass Mechanical System Model 

 

A simple structure of motor drive system with circulating 

load is shown in figure (1). The system consists of a drive 

motor and a load coupled to the motor through a shaft. If 

the stiffness of the shaft is low, the system will find 

mechanical oscillation. By choosing three state variables 

motor speed (ωM), load speed (ωL) and shaft torque (TS) and 

two input variables motor torque (TM) and load disturbance 

torque (TL), the equations of state of the two-mass system 

in the circuit state Again, it is expressed in matrix form as 

follows [26,27]: 

 

 
Fig. 1. Two-mass resonance system 
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where JL is load inertia, BL is load damping coefficient, KS 

is shaft stiffness coefficient, BS is shaft damping coefficient, 

JM is motor inertia, BM is motor damping coefficient. The 

value of KS depends on the material of the rotor and its 

shape. State variable vector and input vector are: 

[ ]TLSM TX ωω=  (2) 

[ ]TLM TTU =   (3) 

The block diagram of the two-mass resonance system 

can be shown according to Figure (2), where GL(s) is the 

load transfer function, GM(s) is the motor transfer function, 

and GS(s) is the shaft transfer function. As seen from the 

block diagram, we will have: 

 
Figure (2): Block diagram of the resonance system of the 

two-mass system based on the transfer functions of the 

system components 
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The shaft coupler consists of the sum of two signals, one 

of which is proportional to the difference in the speed of the 

motor and the load, and the other is proportional to the 

difference in the angles of the motor and the load, and due 

to the insignificant damping of the system, the torque of the 

shaft can be proportional to the difference in the angles of 

the motor and the load. Engine and load considered. The 

characteristic equation of the open circuit of the system is: 

01

2

2

3 asasas)s( +++=∆   (5) 

The inertia ratio is equal to: 

M

L
J

J

J
K =   (6) 

If the value of KJ is low, it is difficult to eliminate the 

torsional oscillations and more controller coefficients are 

needed. At KS=0, the characteristic equation has one root at 

the origin, and as the shaft stiffness coefficient increases, 

the roots move away from the imaginary axis. Shaft torque 

in terms of motor torque and load torque is equal to: 
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According to the roots of the quadratic equation, the 

resonant frequency and the damping coefficient are equal to: 
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As can be seen, resonance frequency and damping 

coefficient are affected by inertia ratio (KJ). The value of BS 

in most systems has a small value, and without BS, the 

damping value is zero [28,29]. The value of resonance 

frequency depends on the type of drive, and its value ranges 

from a few hertz in a printing machine, a few hundred hertz 

in a steel rolling machine, and a few thousand hertz in 

advanced servo drives. 

 

3. Torque Controller Design 

 

In this part, the method of coefficients diagram is 

explainned first, and then the system model for controller 

design using transfer functions is presented. Using this mo-

del, three proportional gain coefficients, integrator gain and 

derivative gain are determined for the controller. 

 

3.1. Coefficient Diagram Method (CDM) 

 

The coefficient diagram method is one of the algebraic 

methods that is developed based on the polynomial form 

and is considered between modern and traditional control 

theory. The design parameters in CDM are the stability 

index (γ1) and the equivalent time constant (τ), which are 

defined based on the closed loop polynomial coefficients of 

the system. If the general form of the characteristic 

equation of the closed loop system with order n is 

considered as follows [30]: 
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The polynomial coefficients of the characteristic equation 

are expressed as follows [31]: 
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The ratio of two consecutive coefficients in a polynomial 

is equal to: 
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The equivalent time constant determines the response 

speed and is considered based on the TS settling time as 

follows: 

3~5.2

TS=τ    (13) 

 

3.2. Torque Control System Model 

 

PID controller is a simple and practical controller and for 

this reason it has been used in many systems [32-36]. 

Figure (3) shows the torque control block diagram for the 

two-mass oscillating system with PID controller. The 

transmission function of the shaft torque in terms of the 

desired torque specified in the input (TC) and the load 

torque is: 

 
Fig. 3. Block diagram of torque control in two-mass resonance system 
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Ignoring the damping coefficients of the system, the 

transfer function of the ratio of the shaft torque to the input 

torque is expressed as follows: 
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The frequency response of the system in closed loop 

mode is: 
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As it can be seen, the real parts of Rn(ω) and Rd(ω) den-

ominator are equal transfer function and in two frequencies 

ωR and ωG imaginary parts of In(ω) and Id(ω) denominator 

are equal transfer function. where the crossover frequency 

of the gain (the frequency at which the magnitude of the 

frequency response of the closed circuit equals one) is equal 

to: 
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At frequencies ωG and ωR, the magnitude of the transfer 

function is equal to one and the phase of the transfer 

function has an effective change. 

 

3.3. Torque Controller Design 

 

In this part, the controller coefficients are determined 

according to the transmission function of the shaft torque to 

the desired torque. Based on the coefficients diagram 

method, the parameters τ, γ1, γ2 in the torque control closed-

loop system in the two-mass resonant system, regardless of 

the system damping, are equal to: 

















ω+
=γ

ω+
=γ

ω+
=τ

)JKK(J

KK

KKK

)JKK(

KK

JKK

2

RMSPTM

2

S

2

DT
2

IT

2

SDT

22

RMSPT
1

SIT

2

RMSPT

  (18) 

Therefore, the coefficients of the PID controller are equal 

to: 
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The time constant τ in terms of the crossover frequency 

of the gain is equal to: 

2

R

G

21

R
2

G

2

R

21

)(1

22

ω

ω
+

γγ

ω
=

ω+ω

γγ
=τ   (20) 

As can be seen, the value of τ is inversely proportional to 

ωG and ωG≥ωR should be considered to reduce the vibration 

of shaft oscillations. Figure (4) shows the changes in 

controller gains in terms of the ratio of crossover frequency 

to their resonance frequency. This curve is independent of 

the parameters of the two-mass system and depends only on 

the stability index, which is selected as γ1=2.5 and γ2=2. 

The integral and proportional gains of the controller are 

more dependent on the resonance frequency than the 

crossover frequency, but the derivative gain changes of the 

controller are less. 

 
Fig. 4.Variations of the controller gains based on the ratio of the crossover 

frequency of the gain to the resonance frequency 

4. Units Simulation Results 

 

Figure (5) shows the model of the two-mass resonance 

system for shaft torque control with PID controller in 

Simulink environment. As can be seen, the torque of the 

shaft is compared with the desired torque and after passing 

through the controller, it forms the input torque of the motor. 

Considering that the characteristic equation of the two-mass 

resonance system with the controller is of the third order, 

therefore, only the stability indices γ1 and γ2 are considered. 

With the increase of the resonance coefficient and the 

inertia ratio, the time constant increases in proportion to the 

ratio of the cut-off frequency to the resonance frequency. 

Also, the increase of γ1 and γ2 decreases the integrator 

coefficient. The system parameters are selected according 

to table (1). 

The eigenvalues of the system in the state without 

controller are: -1.2426 and -10.26±j137.14. As can be seen, 

in the state without controller, the characteristic equation 

has a negative real pole and two conjugate mixed poles, 

whose imaginary part is almost equal to the resonance 

frequency of the system. Figure (6) shows the frequency 

response of the transfer functions corresponding to the state 

variables in relation to the disturbance torque of the load 

and Figure (7) in relation to the motor torque, which shows 

the phase changes at the resonance frequency of 137.6 

radians/second. 
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controller in Simulink environment
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Table 2.Controller gains in mode A for different cutoff frequency values
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