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Abstract-Rehabilitation robots are very popular because they are beneficial tools in helping stroke 

patients and people with physical disabilities, so controlling them to get accurate performance is 

necessary. This paper presents a new super-twisting controller based on the determined gain with 

the TLBO algorithm (STA-TLBO) for an upper limb rehabilitation robot for the first time. One of 

the most important parts of designing the super twisting algorithm (STA) controller is determining 

the gains, which requires accurate calculations and obtaining disturbance. In this paper, the 

Teaching–Learning-Based Optimization (TLBO) algorithm is used to obtain the gains of the STA 

controller. To illustrate the validity of the proposed controller, the results are compared to PID, 

STA, and PID-TLBO controllers. The results indicate that the proposed controller ensures accurate 

tracking, finite-time convergence, and reduced chattering. The stability and the robustness of the 

PID-TLBO and STA-TLBO controllers are examined by three tests, parameter uncertainties, 

external disturbances, and step response. The results show that the STA-TLBO controller has a 

better performance than the others under different conditions; that means the proposed controller 

has a shorter convergence time, more accurate tracking, and fewer tracking error than the other 

three controllers. 

Keywords: Rehabilitation robot, Dynamic modeling, Super twisting algorithm, TLBO algorithm, 

Lyapunov stability. 

 

1. Introduction 

  Stroke, old age, and genetic diseases may cause 

weakness and disability of some organs of the body 

such as arms, legs and, etc. The mentioned patients 

need rehabilitation therapy to overcome such 

disabilities. The popularity of rehabilitation robots is 

due to the help of stroke patients and patients who 

suffer from muscle weaknesses because of congenital 

reasons [1]. Problems such as  high volume, 
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heavyweight, and large inertia, make it impossible for 

the patient to use a robot with a rigid mechanical 

structure alone. Compared to rigid exoskeletons, 

wearable exoskeletons are lightweight, more 

comfortable, smaller, and utilize human joints to 

rotate [2, 3]. The wearable rehabilitation robots are 

used in cases where the disability is less and the 

patient is not completely paralyzed [4, 5]. In recent 

years, many researchers have developed different 

types of wearable exoskeleton robots ,  which are 

comfortable ,  compliant, and low-cost [6] . 

 The early robotic exoskeletons for upper limb 

rehabilitation are not complicated in hardware 

structure and design .  Some researchers have 

remodeled ,  redesigned the upper limb robots to build 

a new version of them . For example,  Tobias Nef et al. 

have introduced a rigid exoskeleton ; so called the 

ARMin [7].  They also developed it in [8, 9].  Otten et 

al . have  developed the powered exoskeleton  

DAMPACE [10] that can be used to identify the 

reflex properties of stroke patients which can be 

applied to rehabilitation  training [11].  Keller et al. 

(2016) have proposed an exoskeleton with an 
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audiovisual therapy interface  for the upper limb 

rehabilitation of adolescents and children and called 

ChARMin [12].  Also, an exoskeleton for superior 

extremity training, ETS-MARSE, has been 

introduced by [13].   Many other exoskeletons have 

been developed for upper limb rehabilitation that had 

heavyweight and have high energy consumption and 

a large structure . For overcoming these problems 

some methods have been introduced, and due to more 

complexity exoskeleton structure, and slight system 

reliability are not interested [14, 15] .  Thus  

researchers have more focused on the wearable 

exoskeleton robots in which the force directly applies 

to the human skeleton [5, 16].  

 In general, the rehabilitation robot model is obtained 

using energy equations and Lagrange's relationships 

[17]. The human upper limb includes 7degrees of 

freedom (DOF) :  shoulder vertical and horizontal 

flexion/extension ,  shoulder internal/external rotation , 

 elbow flexion/extension ,  forearm 

pronation/supination ,  wrist flexion/extension, and 

wrist radial/ulnar deviation . The models are 

considered based on their DOF. TianFuXiang[18] and 

Agrawal[19] have extended the parametric mass 

model of the Kaneko et al. [17]that described the 

transmission of tendon traction, but their 

development method was very complicated. The 

backlash-induced hysteresis in the motion control of 

a robotic upper limb modeling is an interesting issue 

and has been investigated by [20]. The Hill-based 

Muscle-Tendon Model is one of the most popular 

models for modeling the mechanical characteristics 

of muscle [5, 21] .  

   The development of a control strategy to help 

accurately tracking is one of the greatest challenges 

in the control of robots.  Crea et al. have presented a 

new external skeleton for upper limb power. They 

used a PID closed-loop controller to adjust the 

location of the joint that minimizes the error between 

the desired angle and the measured angle [22]. 

Kawasaki et al. used the PD controller to control the 

rehabilitation robot with 18 degrees of freedom. The 

controller of the proposed engine moves 22 servo 

motors in the manual motor robot. This system has 

two functions, the first one is to measure the angles 

of the healthy hand, and the second one is to control 

the backward joint angles with the time of sampling 

time that the sampling time is equal to 1ms [23]. 

Similarly, [24] and [25] have used the PID controller 

to control the rehabilitation robot performance.  Li et 

al. have presented a new control method, including a 

repeated time-delayed neural network (TDRNN), to 

predict the kinematics of the upper limb and wrist 

robot with 3 DOF. Their proposed control method is 

considered the previous prediction of joint angles and 

SEMG signals as the system input and is used a batch 

training based on the Levenberg-Marquardt algorithm 

(LM) [26]. Kiguchi et al. have suggested a 

hierarchical neuro-fuzzy controller for an upper-limb 

robot exoskeleton, which consists of three steps: 

input signal selection, deployment area selection, and 

neuro-fuzzy control. This controller uses skin surface 

EMG signals as controller input signals [27]. Wu et 

al. have introduced a fuzzy sliding mode acceptance 

controller (FSMCA) for multi-mode elbow 

rehabilitation. The proposed controller shows high 

accuracy in tracking the path in the experimental 

mode and can be used for patients with different 

levels of weakness [5]. 

 Kang and Wang have designed an adaptive robust 

output feedback controller for helping to shoulder 

joint movements, elbows, and wrists. Their controller 

is robust to uncertainty and disturbances [28]. Since 

with the change of the patient, the parameters of the 

model change too, so the system behavior will very 

nonlinear; the sliding mode controller can ensure 

consistency against the uncertainty of parameters and 

external disturbances [29]. Lily et al. (2004) 

developed a sliding mode controller to track upper 

limb movement. The tracking performance of the 

designed controller was accurate [30]. The authors in 

[31] have compared the performance of a nonlinear 

sliding mode controller to a PID controller in terms 

of tracking accuracy and have concluded that the 

performance of a nonlinear controller is better than a 

linear controller. Rahman et al., also, have used this 

method to control robots with 5 and 7 DOF [29, 32]. 

Joo et al. (2017) have used an adaptive sliding mode 

controller to control an upper limb robot and have 

achieved results including robust against external 

disturbances and parametric uncertainty [33]. Other 

applications of sliding mode controller can be found 

in [34, 35]. 

   In 2011, Rao et al. have introduced the TLBO 

Algorithm [36], based on the traditional teaching 

method and the teacher's impact on students' learning. 

The introduced optimization algorithm is one of the 

modern successful algorithms in various fields and 

has good convergence speed and search accuracy [26, 

37, 38]. Now, by considering the mentioned literature 

review, the contribution of the paper is to develop an 

STA controller to control the tracking performance of 

an upper limb rehabilitation robot, by considering the 

stability of the proposed controller. 
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   The rest of the paper is organized as follows. 

Section 2 is devoted to the dynamic modeling of a 

rehabilitation robot. In section 3, the controller is 

designed. Section 4 explains the TLBO algorithm. 

The simulation results are given in Section 5. Finally, 

section 6 concludes the paper. 

2. System modeling 

To obtain the dynamic equations of the upper 

limb rehabilitation robot, we use the energy equations 

and the Euler-Lagrange method [39]. 

  �(�(�), ��(�)) = 12 �||
||� + 12 ���     
(1) 

  �(�(�), ��(�)) = �(�(�), ��(�)) − �(�(�))     
(2) 

  
���   (��(�, ��)

��� ) − ��(�, ��)�� = �     (3) 

Where   K is kinetic energy ,  β is a joint position , 

 β�  is time derivative of the position,   m  is the mass, ν is 

the angular velocity vector,   I  is the inertia,   L   is 

lagrangian,   U   is potential energy and τ  represents the 

driving torque from the servo motor . 

Fig. 1 shows the structure of an upper limb 

robot. 

 
Fig. 1. Structure of an upper limb robot [40]. 

 
It can be written by considering the position 

vector of the center of mass from each link [41]: 

  � = �  �����(�) + �����(� + �)
 −  ��� �(�) − ��� �(� + �)  

! 

where  P is a position vector,  � is a constant 

angle and � ∈ R is the position angle for the vertical 

axis ,  l1 and l2 are the lengths of link 1 and link 2 , 

 respectively . According to relations  (1)- (3), we 

have: 

    (�����)�$ + ����%���(� + �)= � − &'()(�, �� , �)     (4) 

whereFext(β,β� ,t)∈R is external forces as friction or 

disturbances  ,and can be expressed as :   

    F+,- = F. sign (θ� ) −   F3 θ�     
(5) 

where   &4  is the coulomb-friction constant and    &5  is the 

viscous friction coefficient.  On the other hand, the 

actuator dynamics are equal to:  

67�$ + 18 97:8��; +  
�<�=><  �� +  

�8 � 
=  

�<8><  ?, 
6) 

where  Jm,   fm(rβ� ),Ka,  Kb,Ra,  r,  and v(t) are, 

respectively, the inertia of the rotor  , the friction 

between the rotor and its bearing, the motor-torque 

constant,   the back emf constant,   the armature 

resistance,   the gears reduction ratio, the armature 

voltage and control input. Thus, the dynamic model 

of rehabilitation upper limb robot will equal to: 

� 18 � 
(����� + ��) + 67! �$ + 18 97:8��; 

+ 
����%8 � 

���( � + � )   +  ��<�=>< +  
&58 � 

 !  ��  
+ 

&48 � 
��%�:��   ; =  

�<8><  ? 

(

(7) 

 

The parameters of the system are given in 

Table.1 .   

 
Table.1.The parameter values of the robot mode     l[42] 

  Parameter of the robot model Values    

    m�   0.1   kg  

  l�   0.4   m  

 g   9.8   m/s�  

Armature Resistance   ><   0.56      Ω  

Inertia Constant   67  0.083 D�/(8E�/��)  

Gears reduction ratio  8   0.01  

Motor-torque constant   �<  0.43  F/(8E�/�G�)  

Back emf Constant   �=  0.43  F/(8E�/�G�)  

Armature Current   �<   0.2639  H  

  

 
3. Design and analysis of super twisting 

controller 

We can define the sliding surface s(t)  by 

considering the tracking error as    G = �I − �  ( �I is 

the desired trajectory for joint) as follows: 

   �(�) = JKG(�) + JIG�  (�) + LGM (8) 

whereJK     ,JI, L,  and   O are positive constants. The 

super twisting algorithm can be written by [43] : � = P� + P�   

 P� = −J�|�| 
QR ��%�(�) P� � =  − J� ��%� (�)   . 

(9) 

whereJ�     and J�are controller coefficients. The 

quadratic form of Lyapunov's function is: 

  VT(s) = zV P  z (10) 

 AV P + P A = −Q  , (11) 

Where zV = ΦV(s) = Z[�(s), u�] , in which P  is a  

unique positive definite  symmetric  matrix,  [�(s) =
|s|QRs�%�(s) ,  [�(s) = s�%�(s) ,   H = �−k� 1−k� 0!  and 

   _ = _` > 0  is a positive definite matrix  .  

� 

� 

� 

�2

�1

DC 

motor

Encoder
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One can write ϕ�(�) = ϕ′�(s)ϕ�(s), and 

ϕ′�(s) = �
� |s|bQR. Thus 

  z� = cϕ′�(s){−k�ϕ�(�) + s}−k�ϕ�(�) f
= ϕ′�(s) �−k�  , 1−k�  , 0!  ζ
= ϕ′�(s)Az 

 

(12) 

And the derivative of the Lyapunov function is: V�T(s) = z� VPz + zVPz�= ϕ′�(s)zV(AVP+ PA)z= −ϕ′�(s)zVQz 

(13) 

where Q can be calculated from the equation 

ALE (11). We had standard inequality for quadratic 

forms: 

λghi{P}‖z‖�� ≤ zVPz ≤ λgl,{P}‖z‖�� 

where ‖m‖�� = [��(�) + P�� = |�| + P��, and note that 

the inequality |s|bQR ≤ nϕ�(s)n ≤ ‖z‖� ≤ op
QR (q)

λrst
QR {u}

holds. 

Therefore −|s|bQR ≤ − op
QR (q)

λrst
QR {u}

. This shows that 

V�T ≤ −λghi{Q}ϕ
′�(s)‖z‖�� 

V�T ≤ −λghi{Q} v12 |s|bQRw ‖z‖��

≤ −
�
� λghi{Q} xλghi

QR {P}yb�

λgl,{P} VT
QR(s)

 

(14) 

Therefore VT decreases uniformly and has a 

stable asymptotic origin. This indicates that VT is a 

strong Lyapunov function. On the other hand the 

answer to the differential equation  
v� = −γ�vQR,    v(0) = v{ ≥ 0 is equal to 

   ?(�) = x?{
}QR − 12 L��yb�  , L� > 0  (15) 

Therefore, the convergence time can be 

estimated as follows: 

~(�{) = 1
b�
� L�(_) F�

QR(�{) 
(16) 

To ensure finite-time convergence and to 

establish Lyapunov stability conditions, the controller 

coefficients must have determined as follows [43, 

44]:   

J�� ≥   
4  �  J�(J� + �)J7� (J� − �) ، J� >  

�J7   
(17) 

where for all  P ∈ � and      � ∈ �   ,        |  � 

 � ( � | ≤ �    ,   0 < J7 <
 

 � 

 � ( �� < J�.  

 

4. TLBO Optimization 

In this paper, the TLBO algorithm is applied to 

find the optimal values of the controller coefficient. 

TLBO algorithm has two stages: the teacher’s 

influence on students and the student’s influence on 

each other. The algorithm, first, selects a population 

of students randomly, then the best member of the 

selected population is considered as a teacher. The 

teacher tries to improve the knowledge level of his 

(her) class. To improve the class knowledge level, the 

algorithm calculates the difference between the 

teacher’s knowledge and the average of all students 

and improves the knowledge of other students to the 

level of the teacher. Each student is given a 

commensurate rank with his or her level of 

knowledge, and at the end of each round of repetition 

of the teaching process, the best member of the 

population is recognized as the teacher who will 

share their knowledge with other members of the 

population. Students try to get a better grade than 

their previous status based on the academic status of 

their classmates and the quality of teacher education. 

The parameters of the algorithm include the number 

of learners (nL) and the maximum number of target 

performance evaluations. 

The flowchart of TLBO algorithm is presented 

in Fig. 2. In general, the algorithm can be 

summarized as follows [36, 38]:  

1- New learners (Np) are trained based on the 

teacher level. The population can be given as 

follows:  

� � = ���,� ��,� …⋮ ⋮ ⋱��K ��K,� …
��,I⋮��K,I

�, 

whereNp is population size, and d is number of 

design variables. 
2- By calculating the average values of scores of 

students, the performance of the whole class is 

obtained. �GE�� = Z�GE�� �GE�� … �GE�I] 
3- The TLBO algorithm promotes students by the 

difference between the teacher's position 

(�)'<4�'�) and the average position of all students 

in the random composition (�GE��). That 

means:    ��'� = ���I + 8(�)'<4�'� − :~�;�GE��,�'�), 

where r and ~� are random number on interval 

[0,1] and teaching factor, respectively.  
4- At this stage, either new learners (Np) are 

created or students' knowledge is updated 

through interaction with each other in the 

learning stage. Each student (��) is compared to 

another randomly selected student (��K). If the 

student has better knowledge (PFiti<PFitrp), then 
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he (she) is transferred to the selected student 

position; ��'� = ���I + 8(��K − ��), 

otherwise relocates ��'� = ���I + 8(�� − ��K). 

In the learning phase, each person tries to make 

progress by sharing their information with a 

randomly selected person. 

5- Finally, the algorithm improves as the difference 

between students' knowledge decreases, and the 

size of the search step gradually decreases, and 

this completes the algorithm. 

 
Fig. 2. Flowchart for TLBO algorithm. 

 

The objective function (O_F) is defined 

according to the motion trajectory error of joints is 

O_F=�� |G(�)|���∞{ , where G(�) = �I − �. 

 

5. Results and discussion 

5.1.  PID-TLBO controller 

In The PID controller coefficients are 

adjusted using the TLBO algorithm. 

 
Fig. 3. Block diagram of the closed-loop system for PID-

TLBO. 

  
Fig. 3 shows the block diagram of the closed-loop 

system for PID-TLBO. The relationship for the 

desired path of tracking is given as follows. �I =    ���(2�9�) + 1  (18) 

 
Fig. 4. The convergence rate for PID-TLBO objective 

function. 

 
The convergence rate for the PID-TLBO objective 

function with the best value of 0.04786 in the 136th 

iteration shows in Fig. 4. 

 

5.2. STA-TLBO controller 

In general, the coefficients of the STA 

controller are calculated from equation (9) by 

obtaining the perturbation bounds that is a time-

consuming process. The intelligent TLBO algorithm 

simplifies the adjustment of the STA controller 

coefficients and provides acceptable results.  

Fig. 5 and Fig. 6 show the block diagram of the 

closed-loop system and the best objective function 

with the best value of 0.0075 in the 557th iteration, 

respectively. 

 
Fig. 5. Block diagram of the closed-loop system for STA-

TLBO. 
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Table 2. shows the parameters of controllers. 

 
Table 2. The Controllers parameters. 

 JK J� JI γ µ 

PID 8029.9 18.979 30.59 - - 

STA 200 30 - 800 5 

PID-

TLBO 

90.936 35.141 25.52 - - 

STA-

TLBO 

381.47 48.1158 - 876.45 2.03 

 

Fig. 6. The convergence rate for STA-TLBO objective 

function. 

 
Fig. 7 shows the desired and measured position 

(�) path by applying the PID-TLBO and STA-TLBO 

controllers in comparison with the STA and PID 

controllers. As can be seen from Fig. 7, the adjusted 

coefficients using the TLBO algorithm cause a good 

performance for the PID-TLBO and STA-TLBO 

controllers. Also tracking is well done and the 

tracking error is small.  

 

 

 
Fig. 7. Measured and desired angular positions. 

 
As can be seen in Fig. 8, the tracking error of 

PID-TLBO controller is greater than the tracking 

error of STA-TLBO controller as well as its steady-

state error. 

 
Fig. 8.The tracking error. 

5.3. Robustness to external disturbance, 

and uncertainty 

The performance of the designed controller 

against parametric uncertainty and external 

disturbance is measured to evaluate its robustness. 

An external disturbance is applied between 5 and 6 

seconds. From Fig. 9, one can see that the proposed 

controller performs accurate tracking and has limited-

time convergence, and is robust despite external 

perturbations. To investigate the robustness against 

parameter uncertainty, we changed the parameter 

values between 5 and 10%. The results can be seen in 

Fig. 10 and indicate the desired performance of the 

designed controller. 

 

 
Fig. 9. Measured and desired angular positions under 

external disturbance. 
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Fig. 10. Measured and desired angular positions under 

uncertainty. 

 

5.4. Step response 

A step with a value of 0.2 is applied as input to 

the system in the 5th second. It is easy to see that the 

adjusted STA controller by the TLBO algorithm has 

better performance than the other controllers and has 

a less steady-state error (Fig.11.). 

To compare the performance of the controllers, we 

employed four famous indices, the root-mean-square 

error (RMS), mean square error (MSE), mean 

absolute error (MAE), and standard deviation (Sd). 

The values of mentioned indices are given in Table . 

It can be seen that the adjusted PID-TLBO and STA-

TLBO controllers have smaller tracking errors 

compared to PID and STA controllers.  

 

 
Fig. 11. Step response for the controllers. 

 
Also, the STA-TLBO controller has a better 

performance than the PID-TLBO controller under the 

nominal conditions, external disturbances, and step 

response. Finally, Fig. 12 presents a comprehensive 

comparison of the performance of the controllers. 

6. Conclusion  

In this paper, a nonlinear dynamic model of an upper 

limb robot was developed. A second-order sliding 

mode controller with a super twisting algorithm is 

used to control the rehabilitation arm robot. The gains 

of the STA-TLBO controller are obtained using the 

TLBO algorithm. To demonstrate the validity of the 

designed controller, the results are compared to the 

TLBO-PID, PID, and STA controllers. The 

superiority of the STA-TLBO controller compared to 

the others is confirmed by the simulation results. 

 

Table 3. RMS, MSE, MAE, and Sd of controllers. 

Nominal conditions Parameter uncertainties 

 PID STA PID_TLBO STA_TLBO PID STA PID_TLBO STA_TLBO 

RMS 0.1549 0.1174 0.0826 0.0495 0.1052 0.1198 0.0858 0.0903 

MSE 0.024 0.0138 0.0068 0.0025 0.0111 0.0143 0.0074 0.0082 

MAE 0.0669 0.0216 0.0397 0.0067 0.0261 0.0224 0.0409 0.0163 

Sd 0.1397 0.1154 0.0724 0.0491 0.1019 0.1177 0.0754 0.0888 

Disturbances Step response 

 PID STA PID_TLBO STA_TLBO PID STA PID_TLBO STA_TLBO 

RMS 0.2042 0.1063 0.0996 0.0965 0.0973 0.0766 0.0124 0.0037 

MSE 0.0417 1.13E-02 0.0099 0.0093 0.0095 0.0059 1.53E-04 1.37E-05 

MAE 0.0815 0.0219 0.0469 0.0182 0.0672 0.0308 0.0023 1.26E-04 

Sd 0.1873 0.104 0.0879 0.0948 0.0704 0.0701 0.0122 0.0037 
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Fig. 12. (a) Nominal conditions; (b) Parameter uncertainties; (c) Disturbances; (d) Step response. 

 

 
The proposed controller guarantees finite-time 

convergence, reducing steady-state tracking error, 

reduced chattering, and stability. The PID-TLBO and 

STA-TLBO controllers are robust against parameter 

uncertainties, external disturbances. Also, from the 

step response, the adjusted controllers with the TLBO 

algorithm have a more desirable performance in the 

transient and permanent state. For future works, 

according to the desired results obtained from the 

intelligent TLBO algorithm, we can use it to control 

rehabilitation robots with more degrees of freedom or 

other rehabilitation robots. 
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