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Abstract – This paper provides sufficient conditions for controllability of discrete time linear 

systems with input saturation. Controllability is a central notion in linear system theory, optimal 

quadratic regulators as well as model predictive control algorithms. The more realistic notion of 

constrained controllability has given less attention probably due to mathematical complications. 

Most of the existing works on constrained controllability studies the properties of reachable sets. 

However, there are only a few works which investigate the problem of whether a state is reachable 

or not. In this paper, a set of sufficient conditions are firstly given for constrained controllability of 

time varying linear systems in discrete time formulation. The given conditions are obtained using 

the Farkas’ lemma for alternative inequalities. The obtained results improve existing literature by 

providing conditions for both null-controllability and controllability regardless of the system 

stability. A sufficient condition is then given for the special case of time invariant single input 

linear systems with diagonal Jordan canonical form. Numerical examples are given for 

clarification. 
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1. Introduction 
 

Controllability has been the focus of several studies 

since 1960’s [1].This essential notion, characterizes the 

ability of a system to steer its state trajectory from a set of 

predefined initial states to a final state in finite time [1, 2]. 

The controllability property has been proven vital to state 

space feedback control schemes including pole placement 

design, some variations of model predictive control and 

linear quadratic regulator design. Controllability is of 

significant importance in time varying and nonlinear system 

theory as well. The controllability property depends on the 

definition of state variables [1], system internal 

interconnections [1], access of control input to the plant [3-

6], sampling rates [4, 7], and the structure and 

characteristics of admissible inputs (in case of constrained 

control) or states [8]. 

While innumerous results have been published in this 

area, relatively less attention has been given to the more 

realistic case of constrained controllability in which the 

control input is subject to saturation constraints [2]. Unlike 

the similarity between un-constrained controllability of 

continuous time and discrete time systems, the existing 

results on constrained controllability of discrete time linear 

systems [8-20] is different from that of continuous time 

systems [21-29]. The constrained controllability property is 

characterized by a set of achievable states, a set of initial 

states, the system dynamics as well as the constraint 

description. Input constraint is the most common and 

probably the most restrictive (from a feedback control 

perspective) constraint to be dealt with. The problem of 

controllability with input constraint investigates whether 

there exists a sequence of control inputs fulfilling a specific 

constraint and at the same time, able to steer the state vector 

of the system from a given initial state to a predefined final 

state. This form of problem, has been given less attention 

compared with the case of un-constrained controllability. 

Another shortcoming is that much less attention is given to 

the constrained controllability of time varying systems. 

However, due to the growing use of networked 

implementations, time varying systems are becoming more 

important since many network models include time varying 

elements (for instance time varying delays or intermittent 
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connections [3], bandwidth limitations [4-6] in shared 

communication media and multi rate sampling schemes[7], 

each of which changing a time invariant plant model to a 

time varying plant/ network model. 

To review the existing literature on constrained 

controllability of time invariant linear systems, consider the 

following state space description; 

��� + 1� = ����� + 	
���                  (1) 

Vectors u�k� ∈ R�� and x�k� ∈ R� define the control 

input and the state variable. Matrices A�×� and B�×�� are 

the state and input distribution matrices. In [8] a necessary 

and sufficient condition is given for null-controllability of 

(1) with two control inputs (u�k� = �u��k�u��k���). In [8] 

and many later works a set of null-controllable initial states 

is given for (1). In later works, necessary and sufficient 

conditions are established for local and global 

controllability [9-12] of (1) based on the system 

eigenvalues and/or eigenvectors. In [11], some necessary 

and sufficient conditions are given for local null-

controllability (local controllability as defined therein) with 

constraints defined by convex sets (e.g. saturated input) and 

global controllability with constraints defined by convex 

cones (e.g. non-negative input). The null-controllability 

region for the local case which assumes bounded sets for 

the constraint has not been given by [11]. Reference [10] 

studied some properties of the controllable regions for the 

local controllability problem. In [11, 12], several properties 

of constrained finite time controllability of (1) with B =I are established ( I represents the identity matrix of 

appropriate dimensions). One of the results reported in [11] 

can be viewed as a generalization to that of [8] for multi-

input systems (See also theorem 3 in [9]). Reference [13] 

studies the properties of reachability subspace of (1).An 

algorithm to calculate this region is given by [14] which 

may be viewed as complementary to the results of [9-11].  

Reference [15] used a novel methodology leading to 

strong necessary and sufficient conditions for null-

controllability of time varying linear systems. However, the 

provided conditions can’t be directly related to the 

saturation constraints or system matrices (See equations 6-8 

and theorem 2.4 therein). References [16-18] are focused 

on the computation and properties of null-controllable 

regions using an approach similar to that of [9-11]. Authors 

of [15] studied null controllability of single input systems in 

general (theorem 1 therein) and single input systems having 

only real positive eigenvalues (theorem 2 therein). The 

results of [11, 12] are based on the assumption that the 

constraint set is a closed polyhedral cone (See [11, 12] and 

[18]). This constraint set may be of practical interest in 

some cases (for example positive linear systems, in which 

only non-negative inputs are allowed) however, the more 

practical constraint model is that of [10] which assumes a 

bounded set containing zero in its interior (e.g. saturation 

constraint). Reference [10] arrives at the conclusion (See 

Theorem IV.5 in [18] or [10]) that system (1) with an 

arbitrary bounded constraint set is null-controllable if it is 

stable. This is not surprising since stability guarantees that 

the system state tends to the origin with zero-input. 

Reference [14] gives a similar result for stable (semi-stable 

according to [16]) systems, and derives null-controllable 

regions for anti-stable systems. Reference [19] investigated 

the constrained reachability problem for time invariant 

nonlinear discrete time systems with disturbances. The 

proposed computational methods are based on polyhedral 

algebra and computational geometry. The computational 

methods can be implemented on a software program. It is 

assumed that the system is piecewise affine and the 

constraints are polygonal. Reference [20] provides 

necessary and sufficient conditions for global constrained 

controllability of continuous time, time varying linear 

systems. This work also gives a necessary and sufficient 

condition for the existence of a control input sequence 

(satisfying the constraints) which steers the system to the 

origin from a specified initial state. The work of [20] was 

one of the pioneering works in the field. However 

evaluating the given conditions, is not straightforward. For 

instance, see theorem 2.3 (equation 2.5) or example 1 

therein.   

The works of [21-29] studied constrained controllability 

of continuous time systems. In [21] the notion of 

approximate controllability is investigated for time 

invariant sampled data linear systems. The provided results 

(see theorem 4.1 therein) consists of trivial conditions of 

non-pathologic sampling periods (see equation 4.3 therein), 

input distribution matrix having full rank (see 4.2 therein) 

and an equality constrains (4.1 therein) which is 

computationally hard to evaluate because one has to fist 

compute the matrices and then check the equation. In fact, 

there is no method to guarantee this condition hold. 

Reference [22] investigates a few important properties of 

the reachable and attainable sets of a linear time invariant, 

continuous time system. Theorems 3.1 through 3.3 therein 

contain interesting properties. However, as can be seen 

from examples 4.1 and 4.2 in [22], the provided results are 

relatively cumbersome especially for systems of higher 
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dimensions. (See example 4.1, 4.2 and figures 1, 2 therein).  

In [23-26] computational methods are presented for 

approximating the reachable sets of linear time varying and 

time invariant continuous time systems. Reference [27] 

uses the notion of approximate constrained controllability 

to address the problem of model predictive control for a 

class of nonlinear systems. The authors of [28] addresses 

the finite controllability problem of stochastic and 

deterministic linear systems while [29] studies the 

constrained controllability of flat systems. 

In the present paper sufficient conditions are given for 

controllability and null-controllability of time varying 

systems when the control input vector is confined in a 

symmetric saturation constraint. The proposed conditions 

are different from previously given conditions and cover 

reachability and null-controllability of both stable and 

unstable systems. The result is then applied to the special 

case of single input time invariant linear systems with 

diagonal Jordan canonical form. The derived result is 

mathematically tractable and can be examined via simple 

algorithms. The rest of this paper is organized as follows. In 

the second section of this paper, the main results are given. 

The third section provides clarifying examples. The last 

section concludes the paper.  

2. Constrained Controllability of Linear 

Systems 

Consider a discrete time linear system described by the 

following state space description; 

x�k + 1� = A�k�x�k� + B�k�u�k� (2) 

Vectorsu�k� ∈ R��  and x�k� ∈ R�arethe control input 

and the state variable. Matrices A�×� and B�×��are the 

state and input distribution matrices. The following 

proposition states constrained controllability problem for 

the system described by (2).   

Proposition 1.The final state x�is controllable in l steps 

from the initial state x�by the system (2), with an input 

constraint set Ψ� if and only if there exists a vector U� = �u��0� … u��l − 1��� such that; 

%Φ�U� = x� − A�l − 1�A�l − 2� × … A�0�x�s. t.  U� ∈ Ψ� + (3) 

Where; 

,-= ���. − 1� × … ��1�	�0� … ��. − 1�	�. − 2� 	�. − 1�� 
                                           (4) 

The constraint set /- defines how the control input is 

restrained. Two constraint sets of positive inputs and 

saturated inputs are commonly used in the literature. Due to 

its wide industrial occurrence, we assume saturation 

constraint (5) similar to [8, 11-15] as; 

−
0 ≤ 
��� ≤ 
0 ;      � = 0,1, … ; 
0 > 0            �5� 

 In which 
0 ∈ 678  is a constant real-valued vector 

containing the saturation limit of each actuator as an entry 

and the inequalities are component wise in the same manner 

defined in [30] and references therein. Assuming (5), the 

constraint set shall be represented as; 

Ψ� = 9U�| −U;� ≤ U� ≤ U;�;  U;� = �u;�  … u;���∈ R���×�< 

(6) 

Remark 1. For a time invariant linear discrete time 

system described by (1), a similarity transformation 

(i.e. x= = T?�x, A@ = T?�AT, B@ = T?�B, Φ@ � = T?�Φ� ) do 

not affect constrained controllability problem (3). This will 

be used for the results provided for time invariant systems 

in the next section.  

Lemma 1. [30]Suppose that M, N are matrices, row 

vectorsv, w andz, column vectorsqand pare of appropriate 

dimensions. Exactly one of the alternatives (7, 8) or (9, 10) 

holds;  

∃v ≥ 0 ;  JMv = w
Nv ≤ z + (7) 

(8) 

∃ q ≥ 0, p ;   KpM + qN ≥ 0
pw + qz < 0 +  (9) 

(10) 

In which, the vector inequalities are component-wise.  

Lemma 1 is a variation of the well-known Farkas’ 

lemma of alternative inequalities [30]. Farkas’ lemma 

addresses solvability of linear inequalities [30]. This lemma 

is an alternative inequality lemma which states that exactly 

one of two alternative inequalities has a solution. The 

Farkas’ lemma and its generalizations have been used in 

linear and convex programming for several decades [31]. 
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The Farkas’ lemma can also be used to examine feasibility 

of optimization problems with linear constraints [31]. 

Several algebraic and geometric proofs have been 

mentioned for this lemma [30, 32-34].  

Lemma 1 states that there exists a vector (namely;v) 

with non-negative entries which simultaneously fulfills (7) 

and (8). If such a vector does not exist, then the other 

alternative (9, 10) holds. Many problems can be stated in 

the form of the first (second) alternative while it is more 

convenient to examine solvability in the second (first) form. 

The first alternative form is indeed a system of linear 

equations with a set of linear constraints. The second 

alternative is a set of two vector inequalities. 

Theorem 1. The final state �M is not controllable in . steps from the initial state �� by the system (2) with 

constraint (5), ifthere existrow vectors N ≥ 0 , O  which 

fulfill the following;  

% O,- + N ≥ 0O�−�M + ��. − 1���. − 2� × … ��0��� + ,-P0� + 2NP0 < 0+ 
                                          (11) 

Proof: Write the constrained controllability problem as; 

,-P- = �M − ��. − 1���. − 2� × … ��0���Q. R. % P- ≤ P0P- ≥ −P0 +  

                                          (12) 

In whichU; ∈ R�×�� is defined asU; = �u;� … u;���. 

Subtract both sides of the equality fromΦ�U;. Also subtract U; from the inequality to obtain;  

Φ��U; − U�� = −x� + A�l − 1�A�l − 2� × … A�0�x� + Φ�U;s. t. % U; − U�  ≥  0U; − U� ≤ 2U; +  

                                          (13) 

The problem (13) can be viewed as the first alternative 

problem of Lemma 1 shown by equations (7)-(8). Apply 

Lemma 1 to the problem after making the following 

identifications; 

 w → −x� + A�l − 1�A�l − 2� × … A�0�x� + Φ�U; 

M → Φ�, v → U; − U�, N → I, z → 2U; 

                                          (14) 

Therefore (10) reads;  

∃ N ≥ 0, O ; T O,- + N ≥ 0−O�M + O��. − 1���. − 2� × … ��0��� +O,-P0 + 2NP0 < 0 + 
                                         (15) 

Corollary 1. Assume that Φ� is rank deficient. Define p∗ as a row vector fulfillingp∗Φ� = 0. The final state x�is 

not controllable in lsteps from x�by the system (2) with 

constraint (6), if there exists a row vector q ≥ 0 such that;  

p∗�−x� + A�l − 1�A�l − 2� × … A�0�x�� + 2qU;< 0 

                                         (16) 

Proof: (16) is established by applying Theorem 1 and 

using the assumptionp∗Φ� = 0. ■ 

Theorem 2. The final state �Mis controllable in .steps 

from the initial state ��by the system (2) with constraint 

(6), if for any arbitrary row vectors  N ≥ 0, O , the 

statementO,- + N ≥ 0 implies; 

OV−�M + ��. − 1���. − 2� × … ��0���W + NP0 ≥ 0 

                                          (17) 

Proof: Recall (11); 

p�−x� + A�l − 1�A�l − 2� × … A�0�x� + Φ�U;�+ 2qU; ≥ 0 

 

                                          (18) 

Subtract the positive term  pΦ�U; + qU; to derive a 

sufficient condition as; 

p�−x� + A�l − 1�A�l − 2� × … A�0�x�� + qU; ≥ 0 

This completes the proof.    

     ■ 
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For the purpose of the next theorem, consider the 

following single input time invariant linear system in 

diagonal Jordan form (i.e.A = diag{λ�, … , λ�<);  

x�k + 1� = A�×�x�k� + b�×�u�k�;    −u; ≤ u�k�≤ u; 

                                          (19) 

Theorem 3. The final state x�is controllable in lsteps 

from the initial state x�by (19), if; 

H�?�¥ ≤ 0  (20) 

Where; 

H� = ab
bcλ��?�b� … λ��?�b�⋮ ⋱ ⋮λ� b� … λ� b�b�    …      b� fg

gh
�×�

   ,

¥ =
ab
bbb
bc x�� − λ�� x�� + λ�� − 1λ� − 1 b�u;⋮
x�� − λ�� x�� + λ�� − 1λ� − 1 b�u;fg

ggg
gh
 

                                        (21) 

In which λ� , … , λ�  are eigenvalues ofA and; 

x� = �x�� … x����, x� = �x�� … x���� 

Proof: Define q = �q� … q��� ≥ 0 such that; 

pΦ� + q = 0 (22) 

This corresponds to; 

qi = % −�pΦ��i   ;     �pΦ��i < 0    0            ;      �pΦ��i ≥ 0+   ; i = 1, … , l 
We will have; 

pΦ� + q
= 0 ⇒

klm
lnp�λ��?�b� + ⋯ + p�λ��?�b� + q� = 0⋮p�λ�b� + ⋯ + p�λ�b� + q�?� = 0p�b� + p�b� + ⋯ + p�b� + q� = 0 

+ 
 

 

(23) 

Note that according to (23), It is verified that; 

pΦ� = H�p� 

Rewriting (17) yields;  

pV−x� + A�x�W + qU;= −p�x�� − ⋯ − p�x��+ p�λ�� x�� + ⋯ + p�λ�� x��
+ p qiu;

�
iq�  

 

(24) 

Note that since q, u; > 0; 

p qiu;
�

iq� ≥ p qiu;
�

iq�  

 

(25) 

Substitute each qifrom (23), and using (25), (24) will 

yield; 

pV−x� + A�x�W + qU;≥ −p�x�� − ⋯ − p�x��+ p�λ�� x�� + ⋯ 

+p�λ�� x�� − p�λ��?�b� − ⋯ − p�λ��?�b� − ⋯− p�b� − ⋯ − p�b� 

 

(26) 

Rearrange the right hand side of (26) as; 

p� rx�� − λ�� x�� + b�u; p λ�i
�?�
iq� s …

+ p� rx�� − λ�� x��

+ b�u; p λ�i
�?�
iq� t 

 

(27) 

Writing the summation in its close form, (28) will be 

resulted; 

p� ux�� − λ�� x�� + b�u;Vλ�� − 1Wλ� − 1 v …
+ p� ux�� − λ�� x��
+ b�u;Vλ�� − 1Wλ� − 1 v 

 

(28) 

Rearranging in matrix form, (26) becomes; 
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pV−x� + A�x�W + qU; ≥ p¥ (29) 

Also note that; 

pH�� + q = 0 ⇒ p = −qH�?� (30) 

In which H�?� represents the right hand side inverse of 

the transpose of H�. Using (30), the right hand side of (29) 

will be non-negative, if; 

−qH�?�¥ ≥ 0 (31) 

This establishes (20) sinceq ≥ 0. The proof is complete. 

     ■ 

Remark 2. A diagonal Jordan form exists for system (19) 

if the system has either distinct real eigenvalues or repeated 

eigenvalues with linearly independent eigenvectors [35]. 

Also note that (20) requires that a right hand side inverse 

exists for  H�� which requires l ≥ n.  

Theorem 3 enhances existing results in the literature in 

many aspects. It states constrained controllability 

conditions for a system regardless of its stability. It also 

deals with both null-controllability and reachability. The 

provided condition (20) is simple to evaluate.  

3. Examples 

Example 1. Consider a memoryless system (i.e.A�k� =0 ; k = 0, … ) with a time varying input distribution 

vector b�k� , and a scalar input u�k� described by the 

following equation and input constraint; 

x�k + 1� = b�k�u�k�    ;   −u; ≤ u�k� ≤ u; 

It is inevitable to assume;l = 1 since the system is 

memoryless. Therefore, a sufficient condition for 

constrained controllability is derived as; 

pb�k� + q ≥ 0 ⇒ −px� + qu; ≥ 0   
Setting  x� = 0  (i.e. constrained null-controllability) 

results; 

pb�k� + q ≥ 0 ⇒ qu; ≥ 0   
Note that there exist many solutions to the left hand side 

inequality. (One solution isp = 0  and q > 0  arbitrarily 

chosen). Therefore, the memoryless linear system is 

constrained null-controllable for any u; > 0 and any x�. 

This is trivial as u�k� = 0  will suffice for null 

controllability. It is also in conformity with the result of [18] 

(Theorem IV, equation (8b)) for time invariant systems (i.e. b�k� = b; k > 0because (8b) in [18] is satisfied due to the 

fact that the memoryless system has no unstable eigenvalue.  

Example 2. Consider a scalar time invariant linear 

system as; 

x�k + 1� = ax�k� + bu�k�    ;  a, b > 0,−u; ≤ u�k� ≤ u; 

For any p, q fulfilling;  

p�a�?�b … b� + q ≥ 0 

Which implies; 

pa�?�b + q� ≥ 0⋮pb + q� ≥ 0  

Condition (17) reads; (Note that it is assumeda, b > 0 

andq ≥ 0) 

pV−x� + a�x�W + qU; ≥ pV−x� + a�x�W + p qi
�

iq� u;
≥ q�x�b − q�a�x�b + p qi

�
iq� u; 

The right hand side term equals; 

p qi
�?�
iq� u; + x� − a�x� + bu;b q� 

Therefore, a sufficient condition for constrained 

controllability from initial state x�  to the final state x� 
would be; 

x� − a�x� + bu;b ≥ 0 

Assigning x� = 0  (null-controllability case) and 0 < x < 1 (a stable system with a positive eigenvalue), 

this result conforms to that of [18] (where constrained null-

controllability is proved for all stable systems) since  a�x� 

can be made arbitrary small by increasing the number of 
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steps l until it fulfillsa�x� ≤ bu;. Note that this condition 

is an alternative to that resulted from applying Theorem 3 to 

the scalar single input system.  

Example 3. Assume the following system with zero 

initial conditionsx� = 0 withu; = 1; 

x�k + 1� = y1 0 10 −1 10 0 0z x�k� + y 11−1z u�k�  ;   Φ�
= y 02 × �−1��?�0

… 0   1… −2   1… 0 −1z 

Forl > 3, inequality pΦ� + q ≥ 0is equivalent to the 

following; 

−2p� + q� ≥ 0 , 2p� + q� ≥ 0,p� + p� − p| + q| ≥ 0 

Therefore, p = �1  0   1� with any q ≥ 0 fulfillpΦ� +q ≥ 0.A final state x�is not controllable from zero initial 

state if it fulfills: 

 −x�� − x�| + 2�q� + q� + q|� < 0 

Since q ≥ 0 may be chosen arbitrarily small, any final 

state fulfilling−x�� − x�| < 0 is not controllable from zero 

initial state. Also, by choosing p = �−1   0  − 1� any final 

state fulfilling −x�� − x�| > 0  is not constrained 

controllable withu; = 1as well. Now assumex�� + x�| = 0. 

Inequality (17) reads; 

−p�x�� + p|x�� − p�x�� + q� + q� + q| ≥ 0 

Using the last inequality in (19) results; 

 −p�x�� + p|x�� − p�x�� + q� + q� + q| ≥p��x�� − x��� + q� + q� 

Multiply the first and second inequalities in (19) by 

positive scalars  α, β > 0 , and add the two resulting 

inequalities to obtain; 

2�α − β�α + β p� + q� ≥ 0 

It is resulted that for −2 < x�� − x�� < 2, one has; 

−p�x�� + p|x�� − p�x�� + q� + q� + q|≥ p��x�� − x��� + q� ≥ 0 

As a result, any final state with x�� + x�| = 0  and  −2 < x�� − x�� < 2is constrained controllable withu; = 1, 

from zero initial state.  

Example 4. This example examines Theorem 3. 

Consider the following system; 

A = �1 00 0� , b = �12� , H� =
abb
bc1 0⋮ ⋮1 01 01 2fgg

gh ,
¥ = �x�� − x�� + 2u;x�� + 2u; � 

A choice for H�?�would be; 

H�?� =
ab
bb
bb
bb
c1l 0⋮ ⋮1l 01l 01l 12fg

gg
gg
gg
h
 

Which yields; 

H�?�¥ = 1l ab
bb
c �x�� − x�� + 2u;�⋮�x�� − x�� + 2u;�
�x�� − x�� + 2u;� + l2 �x�� + 2u;�fg

gg
h
 

Therefore, the following condition is achieved for 

constrained controllability; 

x�� − x�� + 2u; ≤ 0 ,
x�� − x�� + �l + 2�u; + l2 x�� ≤ 0 

 

Example 5. Consider the following time varying linear 

system: 

x�k + 1� = a�x�k� + V1 + �−1��Wu�k�    ;   −u; ≤ u�k�≤ u; ;  a > 0 

It can be shown that this (time varying) system is stable 

if  −1 < x < 1 and unstable if|a| > 1 . The system is 

affected by the input at every other time sample. This 

occurs when the control input is transmitted to the actuator 
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via a bandwidth limited communication medium or a 

switched channel without zero order hold as described in [4, 

36]. Scalar ais a system parameter. Note that: 

Φ� = �2a������/� … a�1 + �−1��?�� 1 + �−1��?�� 
This means: 

Φ� = % �2a������/� 0 … 2a 0�        ; l = 2,4,6, …�2a������/� 0 … 0 2�            ; l = 1,3,5, . . .+ 
Therefore: 

pΦ� + q
= J�2pa������/� + q 0 … 2pa + q 0�           ; l = 2,4,6, …  �2pa������/� + q 0 … 0 2p + q�               ; l = 1,3,5, . . .+ 

Inequality pΦ� + q ≥ 0 is equivalent to: 

pΦ� + q ≥ 0 ⇔ J2pa������/� > −N        ; � = 2,4,6, … .2pa������/� > −N      ; � = 1,3,5, . . . . + 
To apply Theorem 2, note that:  

p�−x� + A�l − 1�A�l − 2� × … A�0�x�� + qU;= pV−x� + a������/�x�W + qu; 

If:  

−x� + a������/�x� > 0 

Then from2pa������/� > −N , we deduce: 

pV−x� + a������/�x�W + qu;> q2a������/� Vx� − a������/�x� + 2u;W  ;  0< � < .   
Sinceq > 0 , a set of l-step constrained controllable 

initial /final states with even or odd lis: 

x� − a������/�x� + 2u; > 0 

Combining this condition with −x� + a�x� > 0 , we 

obtain the following sufficient condition:  

0 < −�� + a������/�x� < 2u; 

For the specific case of null-controllability (i.e.x� = 0) 

witha < 1, we can always fulfill the given inequality by 

increasingl; the number of steps. On the contrary, ifa > 1, 

increasing the number of steps does not help fulfill this 

condition. This conforms to the intuition that for stable 

systems, null-controllability is always fulfilled for 

sufficiently large number of steps. This is proved in [18] for 

general linear time invariant systems.  

Focusing on the problem of controllability from origin 

(i.e. x� = 0 ), the given condition only establishes 

constrained controllability for negative final states of 

specified magnitudes (i.e.0 < −�� < 2u;). This, however, 

does not rule out controllability of any positive final state. 

In other words, the given condition is not conclusive in this 

case. 

To numerically examine this result, assume u; = 1 , a ∈ �1.05,1.5�  and x�0� ∈ �−10,10� with the following 

control input: 

u�k� = − 12 a�x�k� 

This control input steers the system state to the origin in 

one step, if constraint existed. However, in the constrained 

case, this control input may not be able to steer the system 

state to the origin or may need a few number of steps. Note 

that this choice of control input does not necessarily result 

in minimum number of steps. Table 1 shows the simulation 

results. For each value of the parametera, a range of initial 

states which can be steered to the origin by the saturated 

version of the given control input in no more than 100 steps. 

Fora ≥ 1.35, the only constrained controllable initial state 

is the origin itself. Note that, in Table 1,  u;is assumed as 

unity.  

Table 1.Set of constrained null-controllable initial states with 
0 = 1 

x 1.05 1.1 1.15 1.2 1.25 1.3 1.35≤ 

��0� �−4,4� �−2,2� �−1,1� 0 
 

4. Conclusion 

In this paper, sufficient conditions are provided for 

reachability and controllability of time varying linear 

discrete time systems. The provided conditions are then 

applied to the case of single input, time invariant linear 

systems with diagonal Jordan form as a special case. 

Numerical examples are given to clarify the results. 
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