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Abstract – This research investigates a simple method for Direct Rotor Field-Oriented Control (DRFOC) of star-connected 3-

Phase Induction Motor (3Ph IM) drives under Single-Phase Open Fault (SPOF). The proposed control scheme includes a modified 

RFOC strategy in cooperation with a flux linkage observer. Most studies on this topic are intended for Indirect Rotor Field-

Oriented Control (IRFOC), and hence are not appropriate at low speed operation due to using a pure integration for the flux angle 

calculation. To this end, a rotor flux linkage observer is designed which alleviates the speed and torque ripples of the faulty motor 

during low speed operation. The observer is capable of estimation of the rotor flux during healthy and SPOF conditions by only 

some modifications in the 3Ph IM parameters. The proposed DRFOC approach is tested under different conditions and the 

effectiveness of the proposed system is confirmed by experimental results. The results show the good fault tolerant capability and 

tracking performance of the proposed controller during different speeds. 
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1. Introduction 

 

Due to the extensive merits of 3-Phase Induction Motor 

(3Ph IM) drives such as reduced price and size, low 

maintenance, and high reliability, these drives are used in 

different industrial applications [1-3]. In some industries 

e.g., electric propulsion, aerospace, and electric vehicles, 

the control of 3Ph IM drives during fault conditions is very 

crucial. For these applications, Fault-Tolerant Control (FTC) 

systems are appreciated. FTC systems are attracting more 

interests due to their ability of growing the reliability and 

safety of 3Ph IM drives [4-6]. In terms of the used 

components in a 3Ph IM drive, fault can happen in sensors 

(such as rotor speed sensor or stator phase current sensor), 

or inverter (such as power switch, DC-link), or motor (such 

as rotor bars or stator windings) [7].   

Failure of motor phases degrades the performance of 

3Ph IM drives due to high speed and torque ripples or even 

leads to the shutdown of the entire system. Single-Phase 

Open Fault (SPOF) is the most common type of failure in 

3Ph IM drives. This type of fault can happen in a 3Ph IM 

drive because opening of the stator windings or power 

switch short-circuit fault [8]. The percentage of motor 

failures produced by this fault is up to 37% [9].  It is worth 

noting that FTC of 3Ph IM drives against SPOF includes 

three aspects: fault diagnosis [10-12], inverter topology [13, 

14], and control strategy [4, 6, 7, 15-21]. In this research, a 

control strategy is presented, experimental results are given, 

and first of all, the related studies regarding control 

strategies for FTC of 3Ph IM drives against SPOF and their 

contribution will be reviewed. 

The control strategies for FTC of 3Ph IM drives under 

SPOF can be done by the reconfiguration of the remaining 

healthy stator currents. By rearranging the remaining 

healthy stator currents, the Magneto-Motive Force (MMF) 

of the faulty 3Ph IM can be obtained as the MMF of the 

motor before the fault [15]. Therefore, the faulty 3Ph IM 

can operate continuously. Based on the above idea, in [16, 

17] two scalar control strategies for star-connected and 

delta-connected 3Ph IM drives under SPOF were presented. 

The advantages of these techniques are simplicity and 

suitable for real time implementation. But, they are not 

appropriate for high performance control of 3Ph IM drives. 

In order to control 3Ph IM drives with high performances 

Field-Oriented Control (FOC) or vector control strategies 

are preferred.  

In literature, different FOC strategies for 3Ph IM drives 
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during SPOF were achieved [4, 7, 15, 18-21]. According to 

[4], vector control approaches for 3Ph IM drives during 

SPOF are divided into Indirect FOC (IFOC) and Direct 

FOC (DFOC). In IFOC methods, the motor flux is 

calculated based on dynamic model of the motor and in 

DFOC methods, the motor flux is measured using a sensor 

or it can be estimated using an observer. IFOC strategies 

such as [7, 15, 19, 20] due to using a pure integration for 

calculation of the flux suffer from some problems such as 

drift, saturation, and etc. To solve pure integration problems, 

DFOC methods are more preferable than IFOC methods. 

Paper [18] proposed a DFOC strategy for the faulty 3Ph IM 

drive based on Extended Kalman Filter (EKF). 

Nevertheless, this method is complex to implement. 

Another problem of the used EKF in [18] is the 

optimization of the covariance matrices. In addition to the 

above problems, due to using different unbalanced 

transformation matrices, the used control systems in [7, 18-

20] have complex calculations and their implementations 

are very difficult. In [21], a DFOC technique for the faulty 

3Ph IM drive using a flux observer was proposed. The 

proposed flux observer in [21] uses many pure differential 

terms. Furthermore, the proposed control system in [21] 

was only verified by simulations.   

In this paper, a simple method for Direct Rotor FOC 

(DRFOC) of star-connected 3Ph IM drives under SPOF 

using a flux linkage observer for the rotor flux estimation is 

proposed. Two advantages can be achieved in the proposed 

control system. Firstly, the proposed control method has 

good performances over a wide range of speed including 

low speed operation. Secondly, the used flux linkage 

observer has simple structure and with some changes can be 

utilized during normal and SPOF conditions. A 

DSP/TMS320F28335 based 1HP star-connected 3Ph IM 

variable speed system is setup for experiments. 

Experimental results validate the correctness of the 

proposed DRFOC algorithm. 

This research is divided into six sections. Section 2 

shows the used inverter topology.  Section 3 presents the 

dynamic model of the faulty 3Ph IM. The proposed FTC 

algorithm is discussed in Section 4. This section deals with 

the FOC equations of the faulty 3Ph IM, the proposed flux 

linkage observer, and the introduced FTC scheme. The 

effectiveness of the control method is verified by 

experiment tests in Section 5. The last section is the 

conclusion. 

 

 

2. The used inverter topology 

 

In literature, different inverter topologies for star-

connected 3Ph motor drives during SPOF were proposed. 

Generally, in order to control a star-connected 3Ph motor 

under SPOF, the Neutral Point of the Motor (NPM) should 

be accessible. To drive the faulty 3Ph motor, the NPM can 

be connected to the mid-point of the capacitor bank or it 

can be connected to the fourth leg of inverter [13, 14]. The 

used inverter topology in this paper is based on [15] and it 

is shown in Figure 1. It is worth noting that this topology is 

a cost-saving solution, no additional hardware power or 

electronics components are required. 

 

Figure 1. The used inverter topology 

 

According to Figure 1, the maximum motor speed of the 

3Ph IM drive during SPOF reduces to half of its nominal 

value as the applied voltage on the faulty 3Ph IM reduces to 

half of its original value. Moreover, under the limit of 

maximum currents in the inverter leg, the maximum torque 

of the 3Ph IM drive during SPOF reduces to 1/3 of the 

maximum torque of the healthy 3Ph IM drive [13]. 

3. Dynamic model of the faulty 3Ph IM 

 

Considering the availability of the NPM, the dynamic 

model of a star-connected 3Ph IM during SPOF in a 

stationary frame can be written as (1)-(6) [21]: 

0 0

0 0

s s ss ds dm
ds ds dr

s s s

qs qs qr
s qs qm

d d
r L L

v i idt dt
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r L L

dt dt

   +        
= +        

             +
      

                                              (1) 



Journal of Applied Dynamic Systems and Control, Vol.3, No.1, 2020: 1- 8                       

 
3 

 

 

0

0

s s sdm r qm r r r r
dr ds dr

s s s

qr qs qr
r dm qm r r r r

d d
L L r L L

v i idt dt

v i id d
L L L r L

dt dt

   Ω + Ω         
= = +         

               −Ω −Ω +
      

                                              (2) 

0 0

0 0

s s s
ds dmds ds dr

s s s
qs qmqs qs qr

L Li i

L Li i

ψ
ψ

        
= +        

               
     

                             (3) 

0 0

0 0

s s s
dmdr ds r dr

s s s
qmqr qs r qr

L i L i

L i L i

ψ
ψ

        
= +        

              
     

                            (4) 
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2 r
e l r

d
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P dt
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where, 
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1.5    ,    3 / 2

ds ls ms qs ls ms

dm ms qm ms

L L L L L L

L L L L

= + = +

= =
  

     

                                  (7) 

In (1)-(7), rs, rr are the stator and rotor resistances. Lds, 

Lqs, Lr, Ldm, Lqm denote the stator and rotor self and mutual 

inductances. vs
ds, v

s
qs are the stator (d-q) axes voltages. vs

dr, 

vs
qr are the rotor (d-q) axes voltages. is

ds, i
s
qs are the stator 

(d-q) currents. is
dr, i

s
qr are the rotor (d-q) currents. ψs

ds, ψ
s
qs 

are the stator (d-q) fluxes. ψs
dr, ψ

s
qr are the rotor (d-q) fluxes. 

τe, τl are electromagnetic torque and load torque. Ωr is the 

motor speed. P, J, B are the number of poles, moment of 

inertia, and viscous friction coefficient, respectively.  

It is worth noting that in this paper, superscripts “s” and 

“e” indicate stationary and rotating reference frames, 

respectively. 

 

4. Proposed FTC algorithm 

 

In this section, the proposed FTC algorithm for DRFOC 

of the faulty 3Ph IM is presented. Firstly, FOC equations of 

the faulty 3Ph IM using a suitable unbalanced 

transformation matrix is presented. Then, the proposed flux 

linkage observer for estimation of the rotor flux is discussed. 

Finally, the introduced FTC scheme is given. 

 

4.1.  FOC equations of the faulty 3Ph IM 

 

The stator (d-q) MMF of a 3Ph IM in the rotating 

reference frame and during normal mode (Fen
ds, F

en
qs) are as 

follows: 

cos sinen sn sn

ds ds e qs eF F Fξ ξ= +
  (8) 

sin cosen sn sn

qs ds e qs eF F Fξ ξ= − +
  (9) 

where, Fsn
ds, F

sn
qs are the stator (d-q) MMF of a 3Ph IM 

in the stationary reference frame and during normal mode. 

Moreover, eξ is the rotor flux angle. The 3Ph IM during 

SPOF is equivalent to a 2Ph IM with different turn numbers 

[21]. Consequently, Fsf
ds, Fsf

qs(the stator (d-q) MMF of a 

3Ph IM in the stationary reference frame and during SPOF) 

can be written as (10) and (11): 

sf s

ds d dsF T i=
    (10) 

sf s

qs q qsF T i=
    (11) 

where, Td and Tq are the turn numbers of (d-q) axes. 

According to (8)-(11) and using 
sn sf
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 and 

sn sf

qs qsF F=
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sin cosen s s

qs d ds e q qs eF T i T iξ ξ= − +
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connected 3Ph IM drives under SPOF 
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It is worth noting that Figure 3 can be used for a healthy 

star-connected 3Ph IM drive using the following parameters 

and transformation matrix [22]: 

1.5   ,     1.5ds qs ls ms dm qm msL L L L L L L= = + = =
 

             (21) 

[ ]
1 0.5 0.5

2 / 3
0 3 / 2 3 / 2

sk
− − 

=  
−    

             (22) 

Moreover, Figure 3 can be used for a faulty star-

connected 3Ph IM drive using the parameters as shown in 

(7). 

The proposed control technique of Figure 3 which is 

based on an unbalanced transformation matrix for the stator 

current components introduces an efficient method to 

control the faulty drive system, avoiding the complexity of 

calculating of the backward voltages. 

5. Experiment tests  

 

In order to check the theoretical study shown in the 

previous sections some experiments have been performed. 

In tests, fast fault detection based on Ref. [18] is considered. 

The photograph of the test bench is illustrated in Figure 4. 

The used test bench for assessment of the performance of 

the proposed drive system consists of three main sections: 

• A 1HP star-connected 3Ph IM which is coupled to a 

DC generator and it is supplied by a three-leg voltage 

source inverter   

• Three Hall-effect current sensors and an incremental 

encoder 

• The control strategy is implemented using PSIM and  

DSP/TMS320F28335  

 

Figure 4.The photograph of the test bench 

 

The parameters of the 3Ph IM are listed in Table 1. 

Table 1.The parameters of the 3Ph IM 
F  

5

0Hz  

rs 

10

.44Ω 

rr 
14

.64Ω 

Ld

m 

0.

597H 

Lls= 

Llr 

0.0

167H 

J 

0.016k

g.m2 

P 

2 

 

This part shows the different experimental results 

obtained with the introduced FTC system in this research, 

the presented FTC system based on Ref. [7], and the 

classical IRFOC strategy based on Ref. [22]. The 

experimental tests have been performed under different 

operating conditions: normal state and SPOF.  

An experimental result for FTC of the 3Ph IM is shown 

in Figure 5. As shown in this figure, the 3Ph IM speed 

changes from 50rad/s to 120rad/s and from 120rad/s to 

50rad/s. Furthermore, in this figure, τl=1N.m (50% of the 

permissible load). In addition, 

*
1wbrψ =

. Figure 5 shows 

the experimental results of the rotation speed, stator phase 

currents, torque, rotor flux amplitude, and rotor flux angle 

during healthy and SPOF modes. In this test, at first the 3Ph 

IM operates without abnormalities in the operation of the 

drive. Then, a SPOF happens in phase “c”. 
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Figure 5.Experimental result for FTC of the 3Ph IM 

The results of Figure 5 show that the steady-state speed, 

rotor flux amplitude, and torque responses of the faulty 

drive are close enough to the healthy drive system with 

slightly higher ripples. In addition, the results demonstrate 

that the transient time for speed, rotor flux, and torque 

responses of the healthy and faulty drives are almost the 

same. The healthy and faulty 3Ph IM phase currents are 

sinusoidal. Moreover, the steady-state peak phase currents 

of the faulty drives are bigger than healthy drive as 

expected. This figure shows the good performance of the 

proposed FTC approach under load condition and speed 

changes. 

In the second scenario, for the faulty 3Ph IM different 

experiments have been carried out to evaluate the 

performance of the proposed controller at low speed 

operation. The experimental results for the proposed 

controller in this paper, the presented method in Ref. [7], 

and the classical IRFOC strategy based on Ref. [22] are 

shown in Figure 6(a)-Figure 6(c), respectively. It is worth 

noting that, in the experimental results of Figure 6(a)-

Figure 6(c) the NPM is connected to the mid-point of the 

capacitor bank. As exposed in this figure, the 3Ph IM speed 

is 1rad/s. Additionally, 

*
1wbrψ =

. Figure 6 shows the 

experimental results of the rotation speed, torque, and rotor 

flux amplitude for the faulty 3Ph IM. 

 

 

 

 

(a) (b) (c) 

Figure 6. Experimental result of different control 

methods for the faulty 3Ph IM at low speed operation; (a) 

proposed controller in this paper, (b) presented method in 

Ref. [7], (c) classical IRFOC strategy based on Ref. [22] 

As expected, using the classical IRFOC strategy severe 

speed, flux, and torque oscillations appears (see Figure 

6(c)). In addition, the results confirm the efficiency of the 

proposed real-time FTC system for SPOF in the 3Ph IM 

drive at low speed operation (see Figure 6(a)). The 

comparison between Figure 6(a) and Figure 6(b) show that 

after the presence of SPOF, the ripples of the speed, flux, 

and torque of the presented method in Ref. [7] are bigger 

than that of the proposed FTC strategy in this paper. 

6. Conclusion 

This research proposes a simple approach for FTC of 

SPOF in star-connected 3Ph IM drives. The proposed 

approach is based on a modified RFOC technique in 

cooperation with a flux linkage observer. The FTC 

approach by only some modifications in the 3Ph IM 

parameters and the transformation matrix can be shared 

during normal and SPOF modes. The experimental results 

show that the proposed FTC strategy permits the 

continuous operation of the 3Ph IM drive during low and 

high speeds even under a load condition. The proposed FTC 

method of the 3Ph IM has good fault tolerant capability and 

tracking performance and is appropriate for high 

performance and high reliability driving cases. The 

proposed method can also be extended to FTC of 

multiphase IMs in the case of SPOF.  
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