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ABSTRACT
Determination of the mechanical properties of carbon nanotubes is an essential step in their 
applications from macroscopic composites to nano-electro-mechanical systems. In this paper 
we report the results of a series of molecular dynamics simulations carried out to predict 
the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely 
the Young’s and shear moduli, of various single walled carbon nanotubes. Poisson’s ratios 
were also calculated. Three different methods were used to run the simulations: applying a 
predetermined strain and reading the resulted stress, applying forces and constraints to the 
end atoms and calculating the moduli by assuming an equivalent continuum tube, and lastly 
applying a predetermined stress and reading the consequent deformation. In each case, the 
effect of nanotube chirality and diameter was studied. In addition, loading conditions were 
altered in each method to study the effect of nonlinearity of interatomic interactions. The 
results of the three methods are compared, with each other as well as with the literature, and 
discussed to obtain reasonable concluding remarks.
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INTRODUCTION
Carbon nanotubes (CNTs) are the focus 

of a considerable percent of nanotechnology 
research. So far many properties of these 
nanostructures have been investigated either 
theoretically or experimentally including 
electrical, electronic, mechanical, chemical, 
optical and thermal properties. Among 
these, mechanical properties are of particular 
importance because numerous studies indicate 
that they are extraordinarily high in comparison 
with those of bulk engineering materials such 
as steels and alloys; see for example the review 
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papers [1-9]. This is promising in many fields, for 
example fabrication of high strength-to-weight 
ratio materials applied in aerospace industry, 
production of new composites, manufacture of 
excellent thermal conductors, etc. In addition 
to these practical applications, investigation of 
the mechanical properties of CNTs is important 
from the view point of fundamental science 
as well, because it provides the background 
for further research and advancement in the 
outstanding field of nanoscience.

Single walled carbon nanotubes (SWCNTs) 
are the simplest form of CNTs. An SWCNT 
can be thought of as a graphene sheet rolled 
into a hollow cylinder. In perfect structure, it 
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consists of hexagonal rings in which carbon 
atoms are placed on the vertices. Depending 
on the orientation of the rings, it is divided 
into three types: armchair, zigzag and chiral. 
Many researchers have devoted their effort to 
determine the elastic properties of CNTs using 
different methods such as molecular dynamics 
(MD), molecular density functional theory, 
nonlocal elasticity, experimental measurements 
by atomic force microscope, etc. However, they 
are mostly focused on the elastic moduli i.e. the 
axial Young’s modulus and the transverse shear 
modulus, rather than the elastic constants i.e. the 
elements of the stiffness tensor. The numerous 
reported results in the literature cover wide 
ranges of 270-5500 GPa for Young’s modulus and 
240-2300 GPa for shear modulus [1-32]. There 
are many reasons, discussed in some original 
and review papers, why the ranges are so wide. 
They include dependence on chirality, diameter, 
number of walls, length and temperature of the 
CNT, whether it is perfect or defective, whether 
the study is theoretical or experimental, what 
theoretical or experimental methods and 
parameters are used, etc. Nevertheless, from 
the statistical point of view most of the results 
are distributed close to a Young’s modulus of 
1000 GPa or 1 TPa and a shear modulus of 400 
GPa, so that these values are well-known and 
can be used as approximate expected values [1-
3,7,8,11-13,18-23,30,32].

Several research groups have developed new 
methods to study the mechanics of SWCNT such 
as Zhang et al. who established a continuum 
theory incorporating interatomic potentials to 
find the Young’s modulus of SWCNT through a 
constitutive model without any parameter fitting 
[29]. Based on two sets of interatomic potential 
parameters they obtained two values of 475 GPa 
and 705 GPa. Also, Chen and Cao developed a 
new structural mechanics approach for SWCNTs 
based on atomistic simulations [33]. In their 
MD simulations, they used the condensed-phase 
optimized molecular potential for atomistic 
simulation studies (COMPASS). Similarly, 
Chang and Gao presented an analytical model 
based on molecular mechanics and derived 
closed-form expressions for Young’s modulus 
and Poisson’s ratio of SWCNT as functions of 
tube diameter [34].

In one of the early MD simulations of 
SWCNT to predict its mechanical properties, 
Yao et al. simulated an armchair SWCNT 
applying the Brenner potential and computed 
its Young’s modulus and tensile strength to be 
3.62 TPa and 9.6 GPa respectively [35]. Making 
a comparison with experimental data (Young’s 
modulus of 0.45 TPa and tensile strength of 3.6 
GPa), they suggested that the large difference is 
due to the structure and size of the SWCNT and 
the errors of the applied force field. As another 
early research, Prylutskyy et al. carried out MD 
simulation of two SWCNT samples [36]. They 
reported a Young’s modulus of about 1.10 TPa 
and a Poisson’s ratio of 0.28.

Jin and Yuan derived some of the effective 
elastic moduli of armchair SWCNTs through 
MD simulations using both force and energy 
approaches [37].  They obtained values close 
to 1.3 TPa for both the longitudinal and hoop 
Young’s moduli. Also for the longitudinal-
hoop plane, values of approximately 0.26 for 
Poisson’s ratio and 0.5 TPa for shear modulus 
were obtained. Elastic and plastic properties 
of various CNTs under axial tension were 
studied using MD by Liew et al. [38].  Applying 
second-generation reactive empirical bond 
order (REBO) potential coupled with Lennard-
Jones potential, they obtained the stress-strain 
response and reported values near 1 TPa for 
the Young’s modulus of SWCNT. A Chinese 
group simulated the elastic response and the 
buckling modes of SWCNT by MD [39]. They 
found a range of 1.25-1.48 TPa for Young’s 
modulus. They also found that Young’s modulus 
decreases as the radius of SWCNT increases and 
that it is higher for zigzag SWCNTs than for 
armchair ones. Wang et al. ran MD simulations 
of the twist of CNTs employing the adaptive 
intermolecular REBO (AIREBO) potential [40]. 
They did not report any values for the elastic 
constants but concluded that bigger tubes are 
harder to be twisted while smaller tubes exhibit 
higher ultimate twisting ratio.

A comparison between five methods of 
determination of Young’s modulus of SWCNT 
via MD simulations was made by Agrawal et 
al. [30].  They consist of (i) determination of 
stress for a given strain (ii) determination of 
strain energy (iii) longitudinal vibrations (iv) 
transverse vibrations and (v) determination of 
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strain for a given stress. The conclusion is that 
the result of all methods are consistent (close to 
0.75 TPa for an armchair SWCNT) except that 
of method (iv) which yields lower value (0.55 
TPa for the same model). Solutions to solve 
this problem was suggested by the group. Also 
it was found that Young’s modulus is higher 
for zigzag tube than armchair tube (~0.85 TPa 
vs. ~0.75 TPa). An Australian team discussed 
the important issues in an MD simulation of 
the mechanical properties of CNTs including 
selection of appropriate potential, thermostat 
atoms and techniques, time step, etc. and taking 
them into account found the Young’s modulus 
and Poisson’s ratio for some models [41].

Motevalli et al. performed MD simulations 
of buckling of SWCNT under simultaneous 
combination of compressive and torsional loads 
employing the Tersoff-Brenner potential [42]. 
In case of pure compression, Young’s modulus 
of 0.76 TPa was obtained. Similarly in case of 
pure torsion, shear modulus of 0.28 TPa was 
calculated. Buckling of defective SWCNTs 
was also investigated with the aid of MD by 
another team [43]. Among their results an axial 
Young’s modulus of about 1.1 TPa is reported. 
Effect of Stone-Wales defect on the mechanical 
properties of SWCNTs was also examined by 
atomistic simulations [31]. In this study the 
Young’s modulus of perfect samples was close 
to 0.84 TPa and decreased when the density of 
defects increased. Finally, Duan et al. studied 
the fracture of CNT via molecular mechanics 
using the modified Morse and REBO potentials 
[44]. They found that with an increase in chiral 
angle, the tensile strength and fracture strain 
increase monotonously.

In none of the above mentioned works, one 
can find a comprehensive analysis of all of the 
elastic constants (not only the Young’s and shear 
moduli) of various SWCNTs of both armchair 
and zigzag types obtained through different 
methods. That is the motivation of this paper. 
Therefore, in the present work, we aim to 
determine all of the elastic constants and elastic 
moduli of various SWCNTs using MD via three 
methods and compare the results. The first 
method provides us with the elastic constants, 
from which Young’s and shear moduli as well 
as Poisson’s ratios are further derived. As stated 
before, elastic constants of SWCNTs are rarely 
found in the literature. Therefore, this method 

is of double importance. The second and third 
methods result directly in the Young’s and shear 
moduli. Overall, the results of these methods 
provide an insight into the elastic properties 
of SWCNTs and a basis for comparison with 
the values in literature obtained through other 
techniques. In addition, the way applied here 
for definition of the interatomic interactions (by 
developing MATLAB codes discussed below) 
differs from those of previous works including 
Brenner, Tersoff, REBO, COMPASS and Morse 
potentials.

Modeling 
In contrast to the common techniques used 

in mechanical engineering which are based 
on continuum mechanics, in MD the material 
is modeled as it is in fact, i.e. as a number 
of particles (atoms or molecules). Since in 
nanostructures the empty space between the 
particles is not negligible due to the small 
size, one cannot consider the medium to be 
continuous and thus continuum mechanics 
does not hold. Conversely since MD works with 
distinct and discrete particles, it inherently takes 
the discontinuity of material into account and is 
thus very suitable for modeling nanostructures.

The particles interact with each other. The 
interactions are divided into two groups: 
bonded and nonbonded [45]. Bonded 
interactions, which represent the behavior of 
particles having covalent bonds toward each 
other, are in turn categorized into bonds, angles, 
dihedrals and impropers. Bonds represent the 
tensile or compressive behavior between two 
atoms, angles represent the bending behavior 
between three atoms, dihedrals represent the 
torsional behavior between four linearly bonded 
atoms and impropers represent the torsional 
behavior between four centrally bonded atoms. 
Nonbonded interactions, which represent the 
behavior of particles lacking covalent bonds 
toward each other, are also in turn categorized 
into several types including van der Waals 
forces, electrostatic (Coulomb) effects, 
hydrogen bonds, many-body interactions such 
as the force acted upon a metallic atom (in the 
model of positive metallic ions in a sea of free 
electrons for metals) etc., each of which shows 
a phenomenon occurring between nonbonded 
atoms. Fig. 1 schematically illustrates bonded (a-
d) and common nonbonded (e-f ) interactions.
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Fig. 1. Some of the interactions used in MD including bonded interactions (a) bond (b) angle (c) dihedral and (d) improper along with 
nonbonded interactions (e) van der Waals force and (f) many-body interaction.

In order to implement these interactions, several 
MATLAB codes were developed. The codes first 
generated the coordinates of the carbon atoms. Then 
2-atom groups were distinguished for which a bond 
should be considered between the atoms. Similarly, 
3-atom groups were identified for which an angle must 
be taken into account. In a similar way, 4-atom groups 
were recognized for which a dihedral or an improper 
has to be provided. A number of small but influential 
points were identified and followed in the codes in 
order to correctly find all bonds, angles, dihedrals 
and impropers while rejecting repeated interactions. 
Since in SWCNTs we only deal with carbon atoms, we 
have electric charge symmetry, hence no electrostatic 
interaction need be considered. Also, as van der Waals 
forces are very much weaker than bonded interactions, 
no such interaction was modeled [27].

Simulation 
Here, we used the well-known MD package 

LAMMPS (Large-scale Atomic/Molecular 
Massively Parallel Simulator) to carry out the 
simulations. It is an open-source code for classical 
MD offering great advantages such as spatial 
decomposition of the simulation domain, parallel 
processing, easy modification or extension, and 
enhancement with graphics processing units [46]. 
Recently, it has been used to study the mechanical 
properties of various nanostructures [47-49]. 
However, similar to other MD software, it lacks 

graphical user interface and hence no image, 
video or diagram output can be directly obtained. 
Therefore, the codes AtomEye and ImageJ were 
additionally utilized to generate snapshots and 
simulation clips from the LAMMPS output 
files. Also, the output of MATLAB codes were 
first imported into EXCEL in order to be 
formatted in the form of LAMMPS commands 
and were then used in the input scripts. The 
force field functions and parameters used for 
the interatomic interactions are listed in Tab. 1 
[26,28,50,51].

Three different methods were utilized to run 
the simulations as explained below: constant 
strain, force-constraint and constant stress.

Constant Strain Method
In the first method, which we refer to as constant 

strain method, the SWCNT is subjected to a desired 
strain and the resulting stress is read from the 
simulation results, and then the elastic constants 
are found via the relationship between strain and 
stress. Let us briefly review some relations from 
the theory of linear elasticity required for our 
discussion. The stiffness tensor is a fourth rank 
tensor relating the second rank tensors of stress and 
strain through the equation

                                                        (1)

Table 1. Potential functions used in MD simulations

Potential Type Function Parameters

Harmonic Bond Er =Kr (r− r0)2 Kr =20.3378 eV/Å2       r0 =1.42 Å

Harmonic Angle Eθ =Kθ (θ −θ 0)2 Kθ =2.73194 eV/rad2    θ 0 =120°

2-Fold Dihedral Eϕ =Kϕ (1− cos(2ϕ)) Kϕ =0.157195 eV

2-Fold Improper Eχ =Kχ (1− cos(2χ)) Kχ =0.0477005 eV

a b C d e f
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Force-Constraint Method
In the second method, which we call force-

constraint method, the SWCNT is treated much 
like a macroscopic structure. The atoms placed 
on one end of the SWCNT are constrained such 
that they are not allowed to move, and the atoms 
on the other end are subjected to individual 
forces. The simulation is run until all atoms 
reach their equilibrium positions. Using the 
results of the simulation, the deformation of 
the SWCNT is calculated. Next, considering an 
equivalent continuum tube with a wall thickness 
equal to the van der Waals diameter of carbon, 
that is 3.4 Å [1,3,8,11,26,30,31,33], and applying 
the following relations from elasticity, Young’s 
and shear moduli are derived. Young’s modulus 
is found via

                                                            (6)                                                           

where F is the total axial force exerted on the 
end atoms, L is the initial length of SWCNT, A is 
its equivalent cross sectional area calculated as 
2πrt where r is its radius and t=3.4 Å, and finally   
is the average calculated axial deformation. 
Similarly, shear modulus is determined through

                                                           (7)
                                                     

where T is the total torque applied by exerting 
circumferential forces on the end atoms, J is 
the polar moment of inertia of the equivalent 
cross sectional area of SWCNT calculated as 
2πrt(r2+t2/4) and ϕ   is the average calculated 
torsional deformation.

Constant Stress Method
In the third method, which is referred to as 

constant stress method, the SWCNT is subjected 
to a specified stress and the consequent 
deformation is obtained from the simulation. In 
case of Young’s modulus, axial stress is applied 
and the equation

 
L

E
/∆

==
σ

ε
σ

                                                                              (8)

Using Voigt notation [52] it can be represented by a 
6×6 symmetric matrix as

                                                                             (2)

which yields

                                                                            (3)

In writing the second equality it has been noted 
that Cij is constant, only one strain is allowed to change 
at a time and the initial stress and strain tensors are 
assumed to be zero. Eq. (3) is used to compute the 
elastic constants. To do so, the SWCNT is subjected 
to a constant strain in a direction while other strains 
are kept zero, then the resulting six components of the 
stress tensor are obtained from the MD simulation 
and ultimately putting them in Eq. (3), six elements of 
the stiffness matrix are derived. By repeating the same 
procedure, each time with a different direction for 
strain, the whole stiffness matrix is gained.

On the other hand, SWCNT is axisymmetric and 
thus possesses transverse isotropy. For such a material 
there exist only five independent elastic constants and 
the stiffness matrix reduces to

    

                                                                                    (4)
   
                        
   

 (4)

In addition to the elastic constants, we may find 
the Young’s and shear moduli as well as Poisson’s 
ratios by calculating the compliance tensor and 
using the following equation

                                                                                    (5)
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is used where σ is the applied axial normal stress, 
while in case of shear modulus, torsional shear 
stress is applied and the equation

 
Lr

G
/ϕ
τ

γ
τ
==                                                                         (9)

is used in which τ is the applied torsional shear 
stress.

RESULT 
The simulations were carried out on armchair 

SWCNTs with chirality indices of (4,4), (6,6), 
(8,8), (10,10), (12,12) and (14,14) all having an 
initial length of 100.840 Å and zigzag SWCNTs 
with chirality indices of (8,0), (12,0), (16,0), 
(20,0), (24,0) and (28,0) all having an initial 
length of 100.820 Å at zero temperature. The 
smallest model is (4,4) possessing 664 atoms, 
988 bonds, 1960 angles, 3896 dihedrals and 
648 impropers while the biggest one is (28,0) 
possessing 2688 atoms, 4004 bonds, 7952 angles, 
15792 dihedrals and 2632 impropers. The axis 
of the SWCNTs was coincided with the z-axis of 
the coordinate system. The (8,8) SWCNT model 
is shown in Fig. 2 as an example.

Fig. 2. A snapshot of a typical simulated SWCNT produced 
by LAMMPS and AtomEye (a) full view (b) partial 
view.

The information of SWCNT topology for 
each model along with its defined interatomic 
interactions and simulation box properties were 
placed in a data file which was invoked by the 
input script of LAMMPS commands. Since 
the elastic properties have a static nature, the 
simulations were performed at zero temperature. 
The algorithm utilized in energy minimizations 
was the Polak-Ribiere version of the conjugate 
gradient algorithm. Fixed boundary conditions 
were applied. The simulations were run on an 
Intel Core 2 Duo CPU with 2 GB RAM on 64-bit 
Windows 8 platform. Output files were dumped 
from LAMMPS at regular intervals during the 
simulations to provide the data required for 
calculations and visualizations carried out by 
AtomEye and ImageJ. All models were first 
relaxed to insure the condition of zero initial 
stress and strain. Then the elastic constants and 
moduli were computed via the three methods. 
In order to get better results, in constant strain 
method both positive and negative strains were 
simulated and in the other two methods both 
tensile and compressive forces and stresses were 
applied. Then the results were averaged.

As typical examples, using strains equal to 
±0.1, constant strain method resulted in the 
following elastic constants for the (8,8) and 
(16,0) SWCNTs

which in turn give the following moduli and 
Poisson’s ratios.

Note that in both cases, (C11-C12)/2 ≈ C66 which 
verifies the transverse isotropy of SWCNT. Since 
the elastic constants obtained for the other models 
are very close to the above values, and also to enable 
comparison with the other methods we continue 
with Young’s and shear moduli. The results of 
constant strain method may be summarized as in 
Fig. 3. The magnitude of the applied strain in these 
simulations was 0.1.

a b
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Similarly, the results of force-constraint 
method are presented in Fig. 4. The applied force 
per end atom in these simulations was 1 eV/Å. 
Finally, the results of constant stress method are 
depicted in Fig. 5. In the associated simulations, 
the constant applied stress for each SWCNT was 
dependent on its size, ranging between 18.7-21.8 
GPa for axial normal stress and 9.1-18.9 GPa for 
torsional shear stress.

As we have used anharmonic nonlinear 
interatomic potentials, one may be interested to 
study the effect of this nonlinearity on the results. 
Thus in each method the loading conditions, i.e. 
the strain in constant strain method, the applied 
force per end atom in force-constraint method and 
the stress in constant stress method, were altered. 
The attained results for the typical (8,8) SWCNT 
are shown in Fig. 6.

Fig. 3. Results of constant strain method.

Fig. 4. Results of force-constraint method.
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Fig. 5. Results of constant stress method.

Fig. 6. Effect of loading conditions on the moduli in (a) constant strain method (b) force-constraint method and (c) constant stress method.

ba

c
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DISCUSSION
Looking back at Fig. 3 for constant strain 

method, we may deduce that for a typical SWCNT 
Young’s modulus is around 900 GPa and shear 
modulus is about 120 GPa. Although the moduli 
change with chirality and diameter, the changes 
are small. Compared to the literature, the attained 
value of 900 GPa is satisfactorily close to the well-
known Young’s modulus of around 1 TPa but the 
obtained shear modulus of 120 GPa is nearly 70% 
far from the expected value of about 400 GPa. It is 
also smaller than the minimum reported value of 
240 GPa. The reason behind that seems to be the 
different conditions of loading and deformation 
of the SWCNT. Usually, shear modulus is found 
by loading the SWCNT under torsion, but the 
method used here forces us to apply pure shear. 
In the former the cross section tends to remain 
close to a circle but in the latter it tends to become 
close to an ellipse. Clearly, the way that bonds, 
angles, dihedrals and impropers undergo changes 
are completely different in the two conditions. In 
torsion nearly all of the interactions are involved, 
resulting in a greater resistance against the load 
and thus a higher modulus. In shear, however, a 
limited percent of the interactions really feel the 
load, hence the deformation is more, resulting in 
a lower modulus. It seems that torsional loading 
is more reasonable because in practice pure shear 
is not likely but torsion is a very natural load. In 
fact, pure shear is of theoretical significance only 
but what we really deal with is torsion. Thus, in the 
second and third methods torsion was used.

Fig. 4 for force-constraint method suggests 
that Young’s modulus is nearly 800 GPa but 
shear modulus highly decreases by increasing the 
diameter. Chirality is not as influential as diameter. 
The value of 800 GPa is acceptable according to 
the literature. As mentioned above in this method, 
as well as the third method, torsion is used to 
derive the shear modulus. Therefore, although the 
values of shear modulus decrease by diameter but 
they are still much higher than those of constant 
strain method. These values are distributed well 
around the approximate expectation of 400 GPa. 
The authors believe that the high dependence 
of shear modulus on diameter goes back to the 
attribution of an assumptive wall thickness and 
hence cross sectional area to the SWCNT. The 
polar moment of inertia of this area which appears 
in the denominator of Eq. (7) is proportional to 
r3 while the torque appearing in the numerator is 

proportional to r2. Thus the shear modulus decreases 
due to increase in diameter. It is noteworthy 
that Eq. (6) does not suffer from such a problem 
because both the area in the denominator and the 
total force in the numerator are proportional to 
r. Based on this argument, one can conclude that 
since force-constraint method involves assumption 
of an equivalent wall thickness, care must be taken 
to avoid its artifacts.

One can observe in Fig. 5 for constant stress 
method that a Young’s modulus of approximately 
790 GPa is predicted which is a good outcome as 
the 800 GPa of the previous method. Also a value 
of about 310 GPa is derived for shear modulus. As 
can be seen, the effect of chirality and diameter 
is negligible. The obtained shear modulus of 310 
GPa is again much greater than that of constant 
strain method. Also it is admissible compared to 
the average value of 400 GPa of the literature. The 
main difference between this third method and 
the second method is that here no wall thickness 
is assumed. That is, in force-constraint method we 
compute the stress by manipulating the applied 
force and the equivalent cross sectional area, but 
in constant stress method we directly work with 
stress. In other words, constant stress method 
can be interpreted as a modified force-constraint 
method. This is why their results are close while 
the shear modulus of constant stress method does 
not suffer from the severe diameter dependence of 
force-constraint method.

Fig. 6 implies that generally the nonlinearity 
due to anharmonic potentials is not remarkable 
in all three methods, since changing the loading 
conditions does not alter the results significantly. 
This is mainly due to the weakness of nonlinear 
dihedral and improper terms compared to the 
linear bond and angle terms (derivatives of the 
potential functions) according to the parameters 
listed in Tab. 1. One exception in this figure is the 
shear modulus in force-constraint method which 
has large variations with respect to the applied 
force. But as discussed above, this is an artifact of 
assuming wall thickness and cross sectional area for 
SWCNT in such a way that the calculated torsional 
shear stress using the polar moment of inertia of 
the area becomes unboundedly large for large 
forces, resulting in high shear moduli. Therefore 
this is not an exception in fact and the results of 
the modified method, i.e. constant stress method, 
should be considered instead, which are calculated 
using the correct shear stress.
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CONCLUSION
Elastic constants, Young’s and shear moduli, and 

Poisson’s ratios of armchair and zigzag SWCNTs 
were derived through MD simulations via three 
methods: constant strain, force-constraint and 
constant stress. Broad ranges were obtained and 
their accuracy was discussed. Overall, based on 
the results and discussions one can conclude that 
values of 790-900 GPa for Young’s modulus and 
310-400 GPa for shear modulus of typical SWCNTs 
were obtained. These concluding values well agree 
with the expected values anticipated from the data 
reported in the literature, obtained via various 
theoretical or experimental techniques.

However, the applied methods also resulted in 
some unacceptable or incorrect results recognized 
by comparison with either each other or the 
literature. In particular, constant strain method 
works well for the determination of normal elastic 
constants and Young’s modulus but is not as good 
in the prediction of shear elastic constants and 
shear modulus. Anyway, it can be a powerful tool 
as far as the elastic constants are concerned rather 
than the elastic moduli. Force-constraint method is 
easy to understand and implement but may come 
with serious artifacts which need care when dealing 
with. Being a modified force-constraint method, 
constant stress method seems to be more reliable. 
It also results in conservative lower bound values.

Generally the structural details of SWCNT, 
namely chirality and diameter, do not affect its 
elastic properties significantly. The same statement 
is true for the nonlinearity of dihedral and improper 
interactions.
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