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In this paper, influence power-law distribution with pressure on 

frequencies of the supported functionally graded cylindrical shell is 

studied. This shell is constructed from a functionally graded material 

(FGM) with two constituent materials. FGMs are graded through the 

thickness direction, from one surface of the shell to the next. The 

supported FGM shell equations are created based on FSDT. The 

governing equations of the movement were utilized by the Ritz 

method. The boundary conditions are clamp-sliding and free-simply 

support. The influence of the various values of the power-law 

distribution with pressure supported and different conditions on the 

frequencies characteristics are studied. This study shows that the 

frequencies decreased with the increase in the amounts of the power-

law distribution with pressure. Thus, the constituent power-law 

distribution with pressure effects on the frequencies. The results 

show the frequencies with different power-law distribution under 

pressures are various for different conditions. 
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1. Introduction 
In all of the world, applications of cylindrical shells 

have developed in science. Cylindrical shells have 

extensive applications in engineering and industry. The 

study of the vibratory response of cylindrical shells is 

very significant for the behavior and applications of 

these structures. Some of these applications are found 

in the aerospace, civil, mechanical, and maritime 

construction development [1].  

Some researchers for eschew failure are used stiffener 

shells [2-7]. Vibration cylindrical shells are an 

important subject of research by scientists, and it was 

first presented via love [8]. Natural frequencies, several 

theories, and boundary conditions were introduced via 

Leissa [9], Blevins [10], Soedel [11], Chung [12], 

Reddy [13], and Forsberg [14]. 

Functionally graded materials (FGMs) are constructed 

by mixing various materials, and they are graded in 

thickness. These materials comprise a blend of metal 

and ceramic or other different materials. Also, the 

physical properties of one level vary from the other 

level, and these materials are generated by the 

composition of two or more materials.  

For the sample, one level has thermo resistant, and the 

other level has mechanical properties. The main benefit 

of FGMs is their application in environments with high 

temperatures. FGM structures are utilized as coatings 

space schemes, spacecraft, reactors, turbines, 

components in engines, and others [15]. Research on 

the shells made of FGM is significant in the 

engineering applications.  

The significant research on FGM shell was reported by 

Loy [16]. The finite element method on FGM 

cylindrical shells was used by Patel et al. [17]. Study 

frequencies with effects of radius published by Zhi and 

Hu [18]. Arshad et al. [19] and Shah et al. [20] 

investigated the frequency characteristic of FGM 

cylindrical shells. Hosseini et al. [21] investigated 

rotating functionally graded cylindrical shell. 

Amirabadi et al. [22] studied vibration FGM GPL-

reinforced truncated thick conical shells under different 

boundary conditions. They showed that dispersing 

more GPL reinforcements near the inner and outer 

surfaces of the rotating shells leads to a remarkable 

increase in both forward and backward wave 

frequencies. Mohammadi et al. [23] investigated 

numerical investigation of nonlinear vibration analysis 

for triple-walled carbon nanotubes conveying viscous 

fluid. Amirabadi et al. [24] studied wave propagation 

in rotating functionally graded GPL-reinforced 

cylindrical shells based on the third-order shear 

deformation theory. 

The object of this study is to the analysis influence of 

power-law distribution with pressure on frequencies of 

the supported functionally graded cylindrical shell. The 

analysis is done based on the first-order theory. The 

governing equations of the movement were utilized by 

Ritz method. The boundary conditions are clamp-

sliding (C-SL) and free-simply support (F-SS).   

The influence of the various values of the power-law 

distribution with pressure supported and different 

conditions on the frequencies characteristics are 

discussed. The accuracy of this procedure is confirmed 

by comparisons the present results with other ones that 

existed in literature. 

 

 2. Functionally Graded Materials 
FGMs are made of the variation of composition and 

different materials. The volume fraction distribution of 

each phase of material varies with a specific gradient. 

The E fgm, ν fgm and ρ fgm are given as: 
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3. First order Shear Deformation Theory 
 

Consider figure 1, in which a geometrical sketch of 

reinforced FGM cylindrical shell under pressure is 

given. The displacement field with first-order theory is 

written as 
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The strain displacement relationships are expressed by 
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where A1 and A2 are the parameters of Lame [25]. 
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Substituting Eq. (4) into Eqs. (5-9), thus 
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The stress-strain equations are written by 
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Fig. 1. The supported FGM cylindrical shell with pressure 
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Then equation (17) can be expressed as 
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The stiffness is written as 
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where K = 5/6 [26].  

The moment resultants are: 
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Applying Eqs.(12-16) into Eq.(21) and substituting in 

Eqs.(26) and (27) the following equation is got
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in which ijijij ZYX ,,  and ijV are 
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4 Energy Equations  
The strain energy is expressed as 
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The kinetic energy is given by 
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The potential energy of pressure is 
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Therefore, the energy functional can be written as 

VTUF 
                                         (36)

 

5 Boundary Conditions 

The displacement field can be expressed as 
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where )(x is beam function can be expressed as 
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6 Ritz Method 
The energy functional, F expressed with Lagrangian 

function  

maxmaxmax VTUF 
                                    (39)

 

 

Substituting Eq. (37) in Eqs. (33), (34) and (35) and 

minimizing: 
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The governing equation with matrix form is 
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The determinant of matrix C equals to zero 

0=ijC
                                                              (42)

 

 

with solution equation (42): 
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The equation (43) is consists of ten roots, and the 

smallest positive root is the natural frequency in the 

present research. The properties of materials are 

specified in Table 2. 
 

Table 1 Values of mi  ,  and m for asymmetric boundary conditions [5]. 
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Table 2 Mechanical properties of materials [16]. 

 

 

Coefficients of 

temperature 

Stainless Steel 

 

Nickel 

E(Nm
2

) 
ν )( 3kgm

 E(Nm
2

) 
ν )( 3kgm

 

      

Q 0  

 

 

201.04 109 

 

0.3262 

 

8166 

 

223.95 109 

 

0.3100 

 

8900 

Q 1  
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0 

 

0 

Q 1  

 

 

3.079 10-4 

 

-2.002 10-4 
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3.797 10-7 
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Q 

 

 

2.07788 1011 

 

0.317756 

 

8166 

 

2.05098 1011 

 

0.3100 

 

8900 

 
Table 3 Natural frequency of FGM cylindrical shell without support and pressure (R = 1, N = 1, L/R = 20). 

 

 

Fig. 2. Volume fraction of Nickel NfV with thickness variable Z/h  

 

 

h/R 

 

 

 

m 

 

 

n 

 

Natural frequency (Hz) 

 

Loy et al. [16] Present 

     

 

 

 

0.002 

1 1 13.211                                  13.186 

1 2 4.480                                  4.4200 

1 3 4.1569                                  4.0346 

1 4 7.0384                                  7.0240 

1 5 11.241                                  11.124 

1 6 16.455                                  16.221 

1 7 22.635                                  22.306 

1 8 29.771                                  30.111 

1 9 37.862                                  37.560 

1 10 46.905                                  46.397 
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Fig. 3. Changes of frequency with support and pressure for different power law under C-SL  

(P = 700 KPa, h/R = 0.002, L/R = 20, b= 0.5L) 
 

 
Fig. 4. Changes of frequency with support and pressure for different power law under F-SS  

(P = 700 KPa, h/R = 0.002, L/R = 20, b= 0.5L) 
 

7 Comparison Study 

To validate of the present study, the results of the FGM 

cylindrical shell without pressure and support are 

evaluated with the results in other literature. Table 3 

shows the variation of the frequency for the FGM 

cylindrical shell without pressure and support with two 

different h/R ratios. The comparisons presented in 

Table 3, show good agreeable results with published 

works.  
 

8 Results and Discussion 

Variation of volume fractions of Nickel is shown in 

Fig. 2. In this figure the volume fraction of nickel NfV

decreased from value 1 at z/h = -0.5 to its least value 0 

at z/h = +0.5.  For z/h < 0 and N < 1, the decrease of 

NfV is rapid. For z/h < 0 and N > 1, the rate of 

decrease of NfV is slow while for z/h > 0 and N > 1, 

it decreases rapidly. It is observed that the variations 

of the constituent material for FGMs are influenced by 

the volume fraction laws. 

Tables 4 and 5 show variations of the frequency with 

different power-law distribution with pressure. The 

frequencies are discussed for different (N). In these 

tables, different values of power-law with pressures 

efficacy frequency of supported FGM cylindrical 

shell. In these tables, m=1 and it is mean first axial 

wave mode used in this analysis. For m>1 simulation 

result was found to yield similar trends for two 

asymmetric boundary conditions. The decrease in the 

frequencies from N = 0.5 to N = 30 is about 3.156% at 

n = 1 and 3.095% at n = 10. Therefore, the arrangement 

of constituent materials in FGMs will determine the 
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increment and decrements in the natural frequency 

with power-law distribution. The results show the 

natural frequencies for various power-law with 

pressure are various for boundary conditions. 

Figures 3 and 4 depict a variation of frequency with 

support and pressure for a different power-law 

distribution. In both cases C–SL and F–SS, the 

frequencies for the different power-law with pressure 

increase with the circumferential wave number.  

In these figures, when reinforcement is used, 

significant changes in the natural frequency are 

observed at low circumferential wave numbers. It can 

be seen from these figures that the increase in natural 

frequency is significant when n increased from 1 to 2, 

and for n greater than 2, the natural frequency 

increases gradually as the circumferential wave 

number n is increased. The results show that power-

law distribution has an effect on the natural frequency, 

and frequencies decreased with the increase in the 

power-law distribution. 

 

Table 4 Variation of the natural frequency (Hz) with the different power-law exponent for C-SL boundary conditions  

(h/R = 0.002, L/R = 20) 

 
n 

 
m 

 
P = 700 kPa, a/L = 0.5 

 

   
     N = 0.5            N = 5            N = 15            N = 30 
 

 
1 1 342.546 334.567 332.903 331.509 
2 1 429.875 419.132 417.519 416.220 
3 1 456.345 445.094 442.763 442.729 
4 1 473.980 461.342 458.093 458.228 
5 1 487.124 475.228 473.773 472.541 
6 1 502.569 490.632 488.387 487.118 
7 1 519.320 506.096 504.531 503.539 
8 1 537.671 524.667 521.335 521.447 
9 1 556.905 543.491 541.822 540.731 

10 1 577.428 564.611 561.747 561.983 
 

 

Table 5 Variation of the natural frequency (Hz) with the different power-law exponent for F-SS boundary conditions 

 (h/R = 0.002, L/R = 20) 

 
n 

 
m 

 
P = 700 kPa, a/L = 0.5 

 

   
     N = 0.5            N = 5             N = 15          N = 30 
 

 
1 1 480.679 469.240 466.942 466.670 
2 1 800.226 780.754 777.405 775.051 
3 1 810.076 791.744 787.116 785.565 
4 1 817.676 797.311 793.242 792.111 
5 1 826.913 806.962 800.899 800.533 
6 1 833.346 812.670 808.920 807.872 
7 1 842.118 822.749 818.442 817.276 
8 1 853.842 833.286 829.091 827.878 
9 1 866.894 845.462 841.295 838.369 

10 1 879.643 858.961 854.581 853.665 
 

 
 

 

 
 

 
 

 

9 Conclusions 
This study presents the influence of power-law 

distribution with pressure on frequencies of the 

supported functionally graded cylindrical shell. The 

governing equations of the movement were utilized by 

the Ritz method. The boundary conditions are clamp-

sliding and free- simply support. Natural frequencies 

with different amounts of the power-law with pressure 

for different boundary conditions are affected by the 

variation of the circumferential wave number. This 

study shows that the frequencies decreased with the 

increase in the amounts of the power-law distribution 
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with pressure. Thus the constituent power-law 

distribution with pressure effects on the frequencies. 

The results show the frequencies with different power-

law distribution under pressures are various for 

different conditions.  
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