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Abstract. This work presents an approach to taxi demand forecasting and classification. The proposed approach
uses historical data from taxi rides and meteorological data. The Kruskal-Wallis variable ranking method is used
to identify the most relevant variables. The selected variables are used as input to an evolving fuzzy system to
perform the prediction. Once the forecast is made, the demand results are classified by value ranges. Those ranges
are also identified by colors that compose a heatmap, displayed at each time interval. In this work, to perform the
prediction, four evolving systems are evaluated: Autonomous Learning Multi-Model (ALMMo); evolving Multivari-
able Gaussian Fuzzy Modeling System (eMG); evolving Fuzzy with Multivariable Gaussian Participatory Learning
and Recursive Maximum Correntropy eFCE and; evolving Neo-Fuzzy Neuron (eNFN). Computational experiments
were carried out to evaluate the evolving systems in predicting Pick-Up and Drop-Off, at intervals of 15 and 30
minutes, for 86 zones in New York, covering the period from 01/01/2018 to 31/ 10/2018. The results obtained by
the evolving systems are compared with each other and state of the art. Among the evolving models, ALMMo
presented the best results compared to the state of the art and other evolving models. Performance obtained by
the evolving models suggests that the proposed approach is promising an alternative to forecasting and classifying
passenger demand.
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1 Introduction

Problems related to urban mobility in large centers have constantly been increasing. The popularization
of private vehicles, added to the inefficiency and precariousness of public transport (buses, subways, etc.),
has contributed to the increase in urban traffic, negatively impacting the lives of millions of people [13].
One of the main challenges for transport agencies in these cities is managing strategies to mitigate these
problems [59]. In this context, taxi rides are viable alternatives to traditional public transport. They provide
personalized services and easy access to passengers, allowing a more comfortable journey and less dependence
on pre-established schedules [19]. However, a pertinent and constant problem for this transport system still
needs to be resolved: passenger supply and demand.

Passenger supply and demand lead to the following problem: reducing an existing gap between the pool
of available vehicles (taxis) and passenger demand in a given region and time [38]. While taxi drivers spend
time looking for passengers, some passengers do not find taxis available, increasing customer dissatisfaction
with the services provided and the excessive fuel expenditure in taxi vehicles [37]. However, once the demand
of their customers is known in advance, taxi companies can logistically organize their fleet, increasing or
decreasing their offer, reducing the waiting time of passengers, reducing the idle time of taxi drivers without
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customers, and serving more passengers, and consequently, obtaining higher profits [52]. In addition, the cost
of fuel, vehicle depreciation, and time in transit also decrease, reducing the costs of a taxi fleet[54].

According to [37], it is possible to extract knowledge from several available data sources. Using urban
traffic data is the primary way to aggregate demand information. Taxi companies’ applications can use
information from the tracking technology known as Global Positioning System (GPS) to obtain information
such as boarding location, average vehicle speed, trajectory and time traveled, and disembarkation location,
among others. Several companies use these technologies to control their fleet and have consistent records.
With this, through computational techniques, it is possible to transform this data into useful information,
which will serve as support to understand the flow of demand in a given region.

Several machine learning techniques have been used to solve or minimize the problem of passenger supply
and demand. Autoregressive Integrated Moving Average (ARIMA) [37, 36], Convolutional Neural Networks
(CNN) [64, 67], Long Short-Term Memory (LSTM) [21, 55], and Support Vector Machine (SVM) [19, 58]
are examples of some of the main techniques used. Most of these techniques use offline learning to train and
validate their models. Offline learning, also known as a batch, represents the training of traditional machine
learning models done by samples accumulated over a period of time. That is, their training is done in batches.
According to [69], the main characteristics of this type of learning include:

• needs to have the entire dataset previously available;

• the training of the models is done using several iterations in the data to find the best set of weights
and/or parameters;

• systems, once trained, are no longer updated.

In offline learning, the dataset is usually divided into training and testing for this type of learning. Training
data is run in batches on models to update parameters. The test data are executed with the model already
trained to evaluate its performance [11]. In some approaches, the division of data sets is done by training,
validation, and testing, with validation being a necessary period to assess whether the model training was
satisfactory.

However, these techniques, for the most part, have certain limitations inherent to their nature, namely:
they need periodic revisions of the models, training them and adapting them again to the reality of the data;
they do not deal with situations in which there are changes in environmental conditions, typical of online
configurations with non-stationary data and; they rarely manage to handle complex systems where there
are multiple modes of operation [4]. These limitations create methodological gaps that make it challenging
to predict taxi demands accurately. This is mainly because demand is simultaneously related to several
exogenous factors with high volatility. Temperature, time of day, important events in the region, and traffic
are some examples of these factors [31]. Given this context, it is desirable that the techniques used to
forecast taxi demand have continuous and incremental learning, adapting to external factors present in traffic.
Additionally, these systems must preferably supply the restrictions inherent to the previously mentioned
traditional techniques.

The concept of online learning deals with data processing in a continuous flow. Therefore, the models
that use this learning process are the samples incrementally, as they are presented. Furthermore, the training
of these models is constant. That is, there is no interruption in learning while new data samples are available
[45]. The processing of continuous data streams brings some characteristics inherent to its nature, namely:

• samples arrive continuously, and data streams can be infinite [48];

• systems have no control over how or when data will arrive [47];

• after processing, a sample should ideally be discarded to avoid scalability issues [16].



Evolving Fuzzy Systems in Taxi Demand Forecasting and Classification-TFSS-Vol.2, No.1-(2023) 103

Online learning is also advantageous in computational terms, as it uses low memory, processor, and disk
resources [45]. Evolving Fuzzy Systems (EFS) are a class of algorithms that use this type of learning. EFS
can simultaneously adapt its structure and parameters as new samples are made available [42]. This type of
system is suitable for situations where data is non-stationary, arrives as a datastream, and the environment
is subject to change.

Taxi demands have characteristics that identify them as a data stream, as the ride information is gener-
ated uninterruptedly and may undergo changes in its pattern due to an accident, road works, weather, etc.
Therefore, the application of EFS is feasible for the problem of forecasting and classifying passenger demand.

In this context, this work aims to present an approach to forecasting the demand for taxi passengers.
In this approach, the forecast is performed by an evolving fuzzy system using historical information from
taxi rides and weather data as input. Computational experiments evaluate four evolving systems forecasting
Pick-Up and Drop-Off. In addition to the forecast, the classification of taxi demands is performed considering
four classes.

The rest of the paper is organized as follows. Section 2 presents the concepts of evolving fuzzy systems, and
the models used in this work are described. The preliminary concepts necessary for a better understanding
of this work are presented in Section 3. Section 4 introduces a literature review of works focused on taxi
demand. The proposed approach is introduced and detailed in Section 5. The computational experiments
and their respective results and analyzes are presented in Section 6. Finally, Section 7 illustrates the final
considerations and proposals for future studies.

2 Evolving Fuzzy Systems - EFS

Evolving intelligent systems can be seen as a combination of systems with expandable structures (in this
specific case, fuzzy rules) and online machine learning methods [1, 32]. EFS is a type of evolving intelligent
system which shares the following characteristics:

• its structure is not fixed, that is, it naturally expands and retracts as the system evolves [24];

• its parameters are continuously adapted as the system evolves [2];

• its operation is uninterrupted, allowing learning in online mode and, if necessary, in real-time [42].

Due to the online and incremental learning, the EFS demonstrate fast data processing since the samples
are processed and discarded soon after they are discarded [32]. This feature allows the execution of massive
data sets without incurring high computational costs, which would not occur in offline [20] processing models.
Thus, EFS are a viable alternative for uninterrupted data processing and continuous learning.

Once the concepts of evolving fuzzy systems have been discussed, the subsequent sections deal with the
four systems used as tools in this work: ALMMo [5], eMG [25], eNFN [46], and eFCE [41].

2.1 ALMMo - Autonomous Learning Multi-Model System

ALMMo, proposed in [5], is a multi-model evolving fuzzy system with fuzzy rules of the AnYa [3] type. The
antecedent of the AnYa rules is based on the concept of data clouds. The principle of data clouds is similar to
that of clustering algorithms, that is, each cloud represents a set of samples with similar characteristics. The
shape of each cloud is formed by the data that constitute it, and focal points represent its centers. Each new
sample is classified in a data cloud, and this classification is performed using an empirical analysis method
(EDA) [6]. The EDA assigns, for each sample, a discrete density level based on the distance of this sample
from the others, classifying them closer or further away from the focal points of each cloud.
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ALMMo fuzzy rules are as follows:

IF

(
j∗ = argmin

i=1,2,...,G

(
∥xt − cit ||

))
THEN(Ξj∗ ← xt) ,

where xt = [x1, x2, . . . , xE ]
T a data sample in Euclidean space defined as RM , argmin the method that

searches for the nearest data cloud, Ξi the ith data cloud and cit its corresponding focal point. The number
of data clouds is represented by G in the observed universe RM , which also represents the number of rules.

To change its structure, ALMMo evolves its data clouds, modifying, creating, or deleting them as new
samples are presented to the model. At each new sample, the scalar average of the products Xt and the
global average µt at the instant t are computed recursively by

Xt =
t−1
t Xt−1 +

1
t ∥xt∥

2 , (1)

and

µt =
t−1
t µt−1 +

1
txt. (2)

Subsequently, the unimodal density D is calculated between the current sample xt and all identified focal
points of the i-th class by

Dt (xt) =
1

1+
|xt−µt∥2

Xt−∥µt∥2
. (3)

ALMMo checks whether to create, merge, modify or delete rules for each new sample x in time t presented
to the algorithm. Condition 1 verifies whether a new rule should be created.

Condition 1: IF (Dt+1 (xt+1) > max
i=1,2,...,Gt

(
Dt+1

(
cit
))
)

OR (Dt+1 (xt+1) < min
i=1,2,...,Gt

(
Dt+1

(
cit
))
).

If Condition 1 is not accepted, the sample is assigned to the closest data cloud that has its parameters
updated. Otherwise, a new rule is created with the focal point at xt, and Condition 2 is checked. This
condition tests whether the created cloud overlaps with an existing cloud.

Condition 2 : IF (Dt+1,i ≥ (
1

1 + n2
)).

If Condition 2 is satisfied, the overlapping cloud will be replaced by the newly created one, and the new
cloud will inherit the consequent parameters of the overlapping cloud.

Subsequently, the quality of the rule base is verified by a utility measure, aiming to exclude rules that are
little activated. This measure is calculated based on the accumulated sum of the rule’s contribution to the
calculation of the output from the moment of its creation to the current sample, that is, it is the measure of
the importance of a given fuzzy rule concerning other rules (i = 1, 2, ..., Gt+1). Its calculation is obtained by
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ηit+1 =
1

t+1−activatedi

∑t+1
l=activatedi δ

i
l , (4)

where activatedi represents the time the rule/data cloud was activated and δil is the activation level of the
ith rule/data cloud at the instant l. The activation level δil is calculated for each rule (i = 1, 2, ..., Gl) in:

δil =
D

i
l(xl)∑Gl

j=1 D
i
l(xl)

. (5)

The variable η0 is a constant that defines a threshold for excluding rules with a low activation rate. A
rule is excluded by Condition 3. If Condition 3 it’s met, the jth rule/data cloud is excluded, along with the
consequent parameters.

Condition 3 : IF (ηjt + 1 < η0).

In addition to excluding rules, ALMMo develops a method to exclude variables with a high correlation
index to avoid redundancy, improve processing time and improve the algorithm’s overall performance.

2.2 eMG - evolving Gaussian Multivariable Fuzzy System

eMG [25] is an evolving fuzzy system based on first-order Takagi-Sugeno rules. Its rule base is built through
a clustering algorithm with participatory learning. Participatory learning refers to using what has already
been learned to verify the impact of including a new sample in the model, that is, a new sample is evaluated
based on the knowledge already acquired [56].

The antecedent of the rules is represented by multivariable Gaussian membership functions H, defined by

H(x) = exp

[
−1

2
(x− c)Σ−1(x− c)T

]
, (6)

where x is an input vector, Σ is a positive-definitive symmetric matrix, c is a vector with modal values
(centers) and represents an element present in H(x) and Σ represents the dispersion level of H(x). Both
c and Σ are parameters that are part of the membership function and are associated with the center and
dispersion of the function, respectively [25].

eMG evolves its structure by creating, updating, or merging clusters. The model output is obtained by
the weighted average of the contributions of each rule. Each rule belongs to a cluster, and for each new
sample presented to the model, eMG updates its structure through a compatibility measure calculated per
cluster. The compatibility measure pit ∈ [0, 1] is calculated by the distance between the current input xt and
the centers of the existing clusters cit, that is, p

i
t is obtained by

pit = exp

[
−1

2
M
(
xt, c

i
t

)]
, (7)

where the distance M can be calculated by
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M
(
xt, c

i
t

)
=
(
xt − cit

)( t∑
i

)−1 (
xt − cit

)T
, (8)

where xt is the current sample and cit the center of the i-th cluster. An alert threshold is defined for the
compatibility measure Tp, which is obtained by

Tp = exp

[
−1

2
χ2
m,α

]
, (9)

where χ2
m,a is a Chi−Square distribution with m degrees of freedom and α the one-sided confidence interval.

After calculating the compatibility measure and the new sample for all clusters, the index of the cluster with
the highest degree of compatibility i∗ is chosen.

An alert mechanism is used to find clusters whose structure does not correctly represent the current
knowledge of the system. Therefore, this cluster must undergo a review [25]. For each new sample xt inserted
into the model, the alert index ait ∈ [0, 1] is calculated for all clusters and estimated through the cumulative
probability of Vt, in

ait = p(Vt < z), (10)

where p(Vt = z) is a binomial distribution. A threshold of the alert index Ta is also defined, which is used in
creating clusters. The threshold Ta is calculated by

Ta = 1− α

ω
, (11)

where α is a parameter that defines the significance level and ω is the observation window for calculating the
alert index.

A cluster is created when the compatibility measure pit is less than the compatibility threshold Tp for all
clusters and the alert index for the cluster with the highest degree of compatibility ai

∗
t is greater than its

respective threshold Ta. In other words, a cluster will be created if

pit < Tp, ∀i = 1, , cti and ai
∗
t > Ta for i∗ = maxi(p

i
t).

Otherwise, if

pit > Tp, ∀i = 1, , cit and ai
∗
t < Ta for i∗ = maxi(p

i
t),

the sample is inserted into the cluster with the most similarity. Soon after, the center of this cluster is
updated in

ci
∗
t+1 = ci

∗
t + λ(pi

∗
t )

1−ai
∗
t (xt − ci

∗
t ), (12)

where λ ∈ [0, 1] represents the learning rate. The eMG consequent parameters are updated by a weighted
least squares recursive algorithm.

2.3 eNFN - evolving Neo-Fuzzy Neuron

The eNFN [46] is an evolving fuzzy system built upon a structure composed of a set zero-order Takagi-Sugeno
models, one for each input variable. The eNFN structure uses triangular and complementary membership
functions and evolves based on the modeling error calculated recursively. A gradient descent algorithm with
an optimal learning rate updates the rules’ consequent parameters.
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The learning algorithm starts with two membership functions for each input variable. With each new
sample, new functions can be created and included using the global average error of the model and the average
local error of the most active membership function. The mean value µ̂t and the global error variance σ̂2

t are
recursively computed by

µ̂t = µ̂t−1 − β (µ̂t−1 − et) , (13)

and

σ̂2
t = (1− β)(ô2t−1 + β(µ̂t − et)

2), (14)

for input xt at time t, where error in t is defined by et = yt − ŷt and β is the learning rate.

The average value of the local error to the most active membership function µb∗ti
is calculated recursively

by

µb∗ti
= µb∗ti−1

− β(µb∗ti−1
− et). (15)

A threshold τ is used to limit the number of rules, avoiding complex models and overfitting. This threshold
τ is compared to the smallest distance (dist) allowed between the modal value of the function to be created
and adjacent functions. A new membership function will be created and included if

µb∗ti
> µ̂t + σ̂2

t and dist > τ. (16)

The procedure to the exclusion of membership functions is based on the concept of age [33]. A membership
function will be excluded if it remains inactive for a long time. The age of a j-th membership function is
calculated by

agej = t− activatedj , (17)

in which t is the current time interval and activatedj represents the interval of activation of the j-th member-
ship function. Let b−i be the index of the least active membership function at time t. Then, the membership
function indexed by b−i will be excluded if b−i > ω, where ω is a parameter that indicates the time limit for
deleting a function.

2.4 eFCE - evolving Fuzzy with Multivariable Gaussian Participatory Learning and
Recursive Maximum Correntropy

The eFCE [41], as the eMG, is an evolving system that builds its structure by including, merging, or exclud-
ing clusters and rules based on a recursive clustering algorithm with participatory learning and multivariable
Gaussian membership functions. The clustering algorithm uses the compatibility measure computed recur-
sively to add a new cluster. The compatibility measure is calculated by Euclidean and Mahalanobis distances.
The age and population concepts are used to exclude inactive clusters and rules, and the merge procedure is
based on the remarkably overlapping of a cluster pair. The consequent parameters are updated based on the
Recursive Maximum Correntropy.

The distance measure is defined as follows:

• If ni
t < Nmax, uses the Euclidean distance computed by:

D = (xt − µi
t)
T Imxm(xt − µi

t). (18)
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• If nt
t > Nmax, uses the Mahalanobis distance obtained by

D = (xt − µi
t)
T (
∑

)−1(xt − µi
t), (19)

in which ni
t is the number of samples from the i-th cluster, Nmax is the limit for creating microclusters or

clusters, Imxm is an identity matrix m x m,
∑

is a scatter matrix (Mahalanobis distance) or an identity
matrix (Euclidean distance).

The cluster’s age defines the inactivity time of the cluster, and the population represents the number of
samples attributed to a cluster. Thus, the least active cluster (indexed by i) is found for each sample. The
cluster indexed by i is excluded if

ageit > ω and
ni
t

t
< 0.01.

in which t is the number of samples.
In the merge procedure, if two clusters i∗ and i have the norm of the difference in distance between their

centers, µi∗ and µi, less than or equal to a predefined threshold, then they are merged, i.e.,

||µi∗
t − µi

t|| ≤ ρ (i = 1...ct and i ̸= i∗), (20)

in which ρ is the threshold for merging clusters. The center of the new cluster is defined by the weighted
average as follows:

µi∗∪i
t = µi∗

t −
ni
t

ni∗
t + ni

t

(µi∗
t − µi

t), (21)

in which n is the number of samples of the clusters. The new cluster depends on the number of samples of
the merged clusters. The dispersion matrix of the resulting cluster is updated to the average value of the
dispersion matrices of the merged clusters by

i∗∪i∑
t

=

∑i∗

t +
∑i

t

2
. (22)

3 Preliminary Concepts

This section introduces some concepts and terminology necessary to understand the context of passenger
demand forecasting. First, Section 3.1 presents the definition of passenger demand forecast and illustrates
some terminology on the subject. Then, Section 3.2 describes the main techniques used to divide regions.
Next, the relationship between passenger demand forecasting and the classification process is introduced in
Section 3.3. Finally, the concepts of heatmaps are detailed in Section 3.3.

3.1 Passenger Demand Forecasting

Passenger demand forecasting is considered a time series problem [64, 67, 49]. A time series can be described
as a set of observations organized sequentially over time. Assuming that we have a set of observed variables
(xt, xt−1, xt−2, ..., xt−P ) of P past observations up to the instant t, we want to predict the next value (xt+1)
[11]. To understand how demand forecasting is performed, it is first necessary to introduce some terminologies:

• Taxi Zone: a taxi zone can be defined as the partition of a L region into smaller K regions, defined
as zones. Each zone is defined by an index z, where 1 ≤ z ≤ K;
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• Time Interval: continuous time partitioned into identical sequential intervals. Consider the observed
period of 30 days and an interval of 60 minutes. This period would then represent 720 (24 x 30)
observations;

• Taxi Ride: a taxi ride represents an event where the driver pick-up the passenger in a certain region
and at a certain time (Pick-Up) and drops him off at his destination also in a certain region and time
(Drop-Off) [67];

• Taxi Passenger Demand: literature works, such as [67, 21, 8], classify passenger demands as the sum
of Pick-Ups and/or Drop-Offs in a given time interval t, in a given zone z. Figure 1 shows an example
of the demand for Pick-Up and Drop-Off for taxis in zones 8, 11, and 18 between 08:00 and 9:00 am.

08:00 to 09:00

Regions Pick-Up Drop-Off

8 30 20

11 10 50

18 80 30

11
18

8

Pick-Ups Drop-Offs

Figure 1: Pick-Up and Drop-Off demand in a certain region and time.

3.2 Region Division Techniques

Efficiently dividing a region on the map can improve the accuracy of predictor models by shaping specific
formats for each region based on regional empirical studies. Some works in the literature, such as those by
[64, 67, 51] perform the division as follows: choosing a given region L, delimiting its maximum latitudes and
longitudes, and dividing it into K similar polygons, rectangles, or hexagons being the commonly used shapes.
A set of latitudes and longitudes defines each polygon threshold. Therefore, a taxi zone z can be described
as Lz, where 1 ≤ z ≤ K. You can find several tools to assist in the process of delimiting and dividing zones,
such as QGIS 2, ArcGIS 3 and the GeoPandas4 library.

Other division forms include identifying high-demand density centers through clustering algorithms such
as K-Means. These densities are determined with delimitation techniques, such as the Voronoi diagrams [14].
The work of [38] proposes an evolving origin and destination matrix, dividing the city of Porto, Portugal,
into regions shaped by the density of taxi requests. The algorithm that generates these regions works in an
evolving way, shaping the format of each region in the matrix according to the seasonality of the city.

2https://qgis.org/
3https://www.arcgis.com
4https://geopandas.org
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Additionally, the selection of tourist sites (Stadiums, Museums, etc.) is also used to delimit the regions
[40, 50]. For this, a predefined distance radius is determined starting from the central latitude/longitude of
the location. There is also the spatial division by predefined neighborhoods or irregular shapes, for example,
by the city hall [67]. Figure 2 illustrates three techniques for dividing zones, namely: (A) division by polygons;
(B) division by Voronoi diagrams, and; (C) irregular division in New York City (United States of America).

(B) (C)

(A)

Figure 2: Examples of zone divisions: (A) rectangular division in Mianyiang City (China); (B) division based
on Voronoi diagrams and; (C) division into irregular zones in New York City (United States of America).

Source: Figure (B) adapted from [14].

3.3 Forecasting and Classification

Introduced the aforementioned concepts, given a number P of observations of past demands (Dt, Dt−1, Dt−2,
Dt−3, ..., Dt−P ), the objective is to forecast passenger demand F steps ahead (Dt+F ). The demand forecast
can be set for short periods (short-term) and long periods (long-term). The number of steps ahead in which
the prediction is performed differentiates a demand from short to long periods. Long-term demands increase
the step window, predicting F demands ahead, where F > 1. In the short-term, demands ahead are defined
as F = 1, that is, one step ahead [64].
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Classification is one of the most common tasks in machine learning. The classification consists of rec-
ognizing and categorizing patterns, given certain characteristics that are predetermined in different classes
[39]. In the context of passenger demand, one of the ways to classify demand is to define a range of values
in which the discrete value of demand fits. Each range would represent a class, which nomenclatures would
define, thus becoming a multi-class problem [61].

3.4 Heatmaps

Heatmaps are two-dimensional graphical representations of data where colors represent the values of a given
variable. Its way of presentation minimizes the amount of learning needed to understand it. For example, in
a heatmap, it is easy to identify that the proportion of a specific color is relative to the level of the represented
variable. In addition, heatmaps show information directly about the stimulus, making its visualization and
interpretation easy [9].

Choropleth heatmaps are maps generally used to represent information in a given geographic region. The
main difference between the choropleth maps and conventional ones is the limit of representation of colors
in the image. While traditional heatmaps represent colors without a boundary, choropleth maps present
information in colors limited by a predefined format, whether irregular or not [7]. Among its applications,
we can mention: traffic flow; vehicle routes and density; population density; spread of disease; to name just a
few [12]. Figure 3 illustrates the example of a choropleth heatmap, representing the number of taxi requests
from 263 predefined regions of the boroughs of New York City. The black circles show the regions with the
highest density of requests.

4 Literature Review

This section presents a summary of the main works related to the context of passenger supply and demand.
First, Section 4.1 discusses studies that used consolidated statistical techniques for time series and historical
data of the races to forecast demand. Next, in Section 4.2, works that use exogenous variables (time of day,
weather conditions, regional events, etc.) to help improve the results produced by the models are presented.
Then, in Section 4.3, approaches that extract knowledge through maps (spatial) combined with historical
data of races (temporal) are discussed. Finally, Section 4.4 presents a compendium of the 30 main works
researched in this study and their main objectives.

4.1 Forecast with Temporal Analysis

To address the problem of passenger supply and demand works in the literature focus on understanding and
possible modeling solutions. Data mining techniques are used to create knowledge from diverse databases.
Initial results indicated that time slots better distributed the quantification of passengers and that stratifying
a city or region into micro-regions (zones) helped to understand the peculiarities in each [26]. In addition, the
influence of traffic at certain times of the day, weekends, and days of the week were identified as influential
factors in taxi drivers’ strategies to get passengers [65].

With the advancement of research, the concepts of aggregation of passenger requests by time interval are
consolidated, and new approaches emerge to perform demand forecasting. For example, in [36], a hybrid
statistical model is created to predict passenger demand for the next 30 minutes at 63 booths in the city of
Porto (Portugal). Additionally, the model of [36] is modified in [37] to simulate the demand forecast in real-
time. Furthermore, [61] forecasts taxi demand in Stockholm city (Sweden) using Artificial Neural Networks.
Finally, in [19], models based on Support Vector Machine (SVM) are created to forecast demands in the next
5, 10, and 15 minutes in China.
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Figure 3: Example heatmap of taxi requests in New York.

Intuitively, it is assumed that the demand forecast aims to predict the adequate number of Pick-Up at a
given time. However, it was found that understanding the pattern of Drop-Off also adds knowledge. Once
it is known how many taxis have arrived in a given region, it is possible to know in advance the number of
vehicles that will be available, allowing taxi companies to dispatch them to places where services are needed
[57]. Therefore, it is understood that both Pick-Up and Drop-Off predictions are relevant.

4.2 Forecast with Inclusion of Exogenous Variables

In some works, it is possible to find authors researching how external factors affect the result of demand.
Temperature, weather conditions, air humidity, and time of day are examples of these factors [21]. In the work
of [27], information about wind speed, amount of snow, and temperature are used to forecast demand in New
York (United States of America), testing the performance of two models: Fusion Convolutional Long Short-
Term Memory Network (FCL-Net) and Spatio-Temporal Residual Network (ST-ResNet). In [55], different
combinations of characteristics (weather data, Pick-Up, Drop-Off, day of the week) are tested to forecast
demand within a 60-minute interval. A model dubbed Multi-Level Recurrent Neural Networks (MLRNN)
based on Long Short-Term Memory (LSTM) is the subject of work by [66]. The model receives, as input,
meteorological information and historical data to forecast demands in the next 30 minutes in New York.
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Other authors analyze the impact of points of great interest (stadiums, hospitals, etc.) and events
(concerts, presentations, games) on the region’s traffic. For example, the study by [35] gathers information
from events held in two popular areas of New York (Terminal 5 and Barclays Center). It includes these events
as input variables in their models, performing demand prediction in these two areas. Still in this context, other
approaches explore the forecast of taxis in regions of great interest, such as airports, hospitals, tourist sites,
subway, etc. [50]. [30] created a model dubbed Context-Aware Attention-Based Convolutional Recurrent
Neural Network (CACRNN), combining points of interest (Points Of Interest - POI) with meteorological
data to forecast demands in the next 15 minutes in Chengdu (China) and New York. In [68] studies, a
framework is proposed combining Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) to
capture the temporal dependencies of runs. At the same time, convolutional layers are used to interpret
event data and convert it into useful information to forecast demand in New York in two centers where major
events occur in the city (Terminal 5 and Barclays Center). In [29], a model is developed with the combination
of Random Forest and Ridge Regression techniques to predict passenger demand at points of great interest
in Xian (China) for the interval of 1 hour.

In the literature, it is possible to find works that gather customer information through mobile applications.
These applications inform you by GPS triangulation of your location. These data are used as input to
increase the accuracy of the models. For example, in [18], an experiment is conducted using data from mobile
customer applications to forecast demand for the next 30 minutes in the city of Tokyo (Japan). Taxi drivers
who participated in the experiment achieved an average profit of 3.9% higher than those who did not.

4.3 Combinations of Spatial and Temporal Techniques for Forecasting

Some researchers suggest creating models that unify temporal and spatial information, determined as Spatio-
Temporal models. Map analysis (spatial) combined with historical ride data (temporal) creates more robust
hybrid models capable of predicting passenger demand more accurately. Some models, such as [59] and [31],
aggregate taxi demand into images converted into heatmaps and process them with Convolutional Neural
Networks (CNN). CNN’s output is input to a second model that predicts passenger demand. The work by [27]
also presents a similar proposal, aggregating map analysis, meteorological data, and historical information in
a framework to test various models in the literature to forecast demand in New York. The work of [28] uses
weather data, moving averages, and historical data from races to feed a model that uses three deep learning
techniques: Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent
Unit (GRU). This study predicts demands on points of interest (site of tourist attractions, hospitals, etc.)
in the city of Kaohsiung (Taiwan). Other works share approaches similar to those mentioned above, such as
those by [15] and [22].

The relationship between regions is also part of studies in the literature. Closer regions tend to share
similar demand patterns. For example, [64] proposes a feature selector named Spatio-Temporal Dynamic
Time Warping - ST-DTW, based on the Euclidean distance between the zones. This method is compared
to other feature selectors available in the literature. [51] proposes adding weights to each region, in which
regions closer to each other gain greater weight and, consequently, are classified differently by the model.
Unlike other works, the demand forecast in this approach is done using an origin-destination tuple, that is,
the number of rides that left a given region X and had their destination in a given region Y. On the other
hand, the study by [8] measures similarities between zones by analyzing user preferences. Therefore, places
with similar themes tend to have similar demand patterns. In [34], a variable selector based on a statistical
method known as Augmented Dickey-Fuller (ADF) is used. After selection, the Multi-Task Deep Learning
(MTDL) model forecasts demand in the next 10 minutes in New York.

A combination of classification and regression models can be seen in the work of [67], which presents two
approaches: one based on classification and the other on time series prediction. The authors understand that
passenger demand can be transformed into a classification problem. Each demand is classified by a label
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(demand from 00:00 to 02:00 is classified as 1, the demand from 02:00 to 04:00 as 2, etc.). This classifier is
an input variable to a regression model that predicts taxi demands at 30-minute intervals in New York City.

Data from competing companies can help to increase the accuracy of the models. This can be seen in the
study by [62], in which they proposed a framework named Unified Spatial-Temporal Network (USTN), using
maps processed in convolutional layers, together with historical data from Uber 5 and information from New
York yellow taxis to forecast demand at 1-hour intervals.

4.4 Summary of Works

In a complementary way, this section summarizes 30 of the main studies analyzed in this work related to
forecasting passenger demand. Table 1 presents the authors, the technologies used, the main objectives, and
the cities where the forecast was made.

Table 1: Abstracts of literature works.

Autor Models e Techniques Objectives City
[21] FCL-net Demand forecast - 1-hour intervals Hangzhou - China
[49] LinUOTD Demand forecast - 1-hour intervals Beijing and Hangzhou - China
[57] Poisson Regression Identify demand and supply patterns New York - USA
[14] Voronoi Tesselation, Geohash e K-Means Optimize demand forecast New York - USA
[55] LSTM Demand forecast - 10, 20 and 60-minutes intervals New York - USA
[35] Gaussian Process Demand forecast - 1-hour intervals New York - USA
[27] Residual Neural Networks - ResNet Demand forecast - 1-hour intervals New York - USA
[50] Combined Model with GRU Demand forecast - 1-hour intervals Bangkok - Thailand
[59] LSTM and CNN Demand forecast - 30-minute intervals Guangzhou - China
[18] Autoencoders Demand forecast 30-minute intervals Tokyo - Japan
[19] SVM Demand forecast 10-minute intervals City not informed - China
[8] CRNN Demand forecast 1-hour intervals Shenyang - China
[51] GCN Demand forecast (origin-destination) - 1-hour intervals Chengdu and Beijing - China
[63] ST-Ann - Encoders e Decoders Demand forecast - 30 and 60-minute intervals Beijing - China and New York - USA
[60] DBSCAN Demand forecast - 1-hour intervals Beijing - China
[31] Convolutional LSTM Demand forecast - 30-minute intervals New York - USA
[15] Vector Auto Regression and Least Absolute Demand forecast - 15-minute intervals New York - USA

Shrinkage Selection Operator
[43] LSTM Trajectory forecast of possible taxi clients San Francisco/New York - USA and

Porto - Portugal
[64] RNN and Dynamic Time Warping Demand forecast - 15-minute intervals Chengdu - China and New York - USA
[22] TBI2Flow Passenger and traffic forecast - 30-minute interval Shanghai, China
[53] None Survey - traffic and demand forecast None
[67] LSTM Demand forecast - 30-minute intervals New York - USA
[17] LSTM and Fuzzy Neural Networks Traffic forecast = 5-minute intervals San Diego - USA and Beijing - China
[62] USTN Demand forecast - 1-hour intervals New York - USA
[30] Context-Aware Attention-Based and CACRNN Demand forecast - 15-minute intervals Chengdu - China and New York - USA
[29] Random Forest and Ridge Regression Demand forecast - 1-hour intervals Xian - China
[34] Multi-Task Deep Learning Demand forecast - 10-minute intervals New York - USA
[66] MLRNN Demand forecast 30-minute intervals New York - USA
[68] MLP and LSTM Demand forecast - 30-minute intervals New York - USA
[28] CNN and LSTM Demand forecast - 30-minute intervals Kaohsiung - Taiwan

5 Proposed Approach

This section details the approach to forecasting and classifying taxi passenger demand. First, the method
to demand forecast is detailed in Section 5.1. Next, Section 5.2 describes the methodology for classifying
demand.

5.1 Demand Forecasting

The demand forecast process consists of 4 steps, as shown in Figure 4. Obtaining and extracting the rides
database is the first step described in Section 5.1.1. Later, Section 5.1.2 details the input variables and how

5Private ride company (https://www.uber.com).
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the dataset is constructed. Next, the feature selection is illustrated in Section 5.1.3. Finally, Section 5.1.4
shows how an evolving fuzzy system makes forecasting.

Feature 
SelectionDataset Definition Demand 

Prediction
Feature 

Construction

Pick-Up

Drop-Off

1, 2, 3 …. N 

1, 2, 3 …. N 

Figure 4: Steps of the approach for demand forecasting.

5.1.1 Dataset Definition

The extraction of relevant information that will serve as input for the evolving models starts with the rides
database. These bases are data from the neighborhood, district, or city rides. In these bases, the following
information is usually found: date and time of Pick-Up, date and time of Drop-Off, and Pick-Up and Drop-Off
regions. Additional information can also be found on these bases, such as the amount charged, number of
passengers, probability of cancellation, payment method, etc.

Once the ride’s base is determined, the study region is chosen. This region is then delimited and divided
into smaller regions, defined as zones (z). This division aims to frame the study region in predefined limits
and cluster the ride locations. A summary of the main region division techniques available in the literature
is detailed in Section 3.2. After delimiting the region into zones, the locations of Pick-Up and Drop-Off are
identified and converted into their respective zone.

After the zones have been delimited and the locations converted, the next step is the generation of
datasets. A dataset for Pick-Up and another for Drop-Off is built in each of the k zones, delimiting each
demand D for a taxi by time interval t. For a better understanding of the concepts mentioned above, see
Section 3.1.

5.1.2 Feature Construction

As described in Section 3.1, passenger demand forecasting is considered a time series problem. The concept
of time series can be defined by a set of observations generated sequentially over time [10]. In this work, the
values passed to be used to model the series are characterized by the following:
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• Historical Demand of Intervals (dhi): taxi demand of the last 8 time intervals. The historical
demand of the z zone intervals is represented by

dhiz,t = dhiz,t−1, dhiz,t−2, ..., dhiz,t−8. (23)

• Historical Demand of the Days (dhd): demand from the previous 8 days. The historical demand
for days in the z zone can be described as

dhdz,tr = dhdz,tr−1, dhdz,tr−2, ..., dhdz,tr−8, (24)

for the same relative time interval, where tr represents the previous day’s relative time interval of the
demand to be forecast.

• Average Historical Demand Intervals (mdhi): the simple average of the last 8 lags of historical
demand (dhi). The mdhiz is obtained for the z zone by

mdhiz,t = 1/8

8∑
i=1

dhiz,t−i. (25)

• Average of Historical Demand of Days (mdhd): simple average of the last 8 lags of previous
days’ historical demand (dhdz). Its calculation is represented as

mdhdz,tr = 1/8
8∑

i=1

dhdz,tr−i. (26)

Then, 18 variables extracted from historical values of rides (series lags) are generated. Furthermore, using
information extracted from taxi rides, the following 3 variables are obtained by

• Day of Week (ds): Sunday (1), Monday (2), ..., Saturday (7).

• Weekend (fs): day of week (0) weekend (1).

• Time of Day (hd): divided into three periods: rest time (0), normal time (1), and peak time (2).
Rest time is from 20:00 to 06:00. Peak hours include the following periods: [06:00 - 09:00, 12:00 - 15:00,
17:00 - 20:00]. The remaining times of the day are determined as normal times.

The exogenous variables are obtained from meteorological information, as suggested in [21, 49]. The me-
teorological data were extracted from the platform Wheater Underground6. On this platform, meteorological
data are made available every hour, being inserted into the dataset in the interval before the demand is
forecast. The following list details the 5 variables used in this work:

• Temperature (te): measure in Fahrenheit.

• Relative humidity (ur): measure in percentage.

• Precipitacion (pr): measurement in millimeters.

• Wind speed (vv): measurement in miles per hour (mph).

6https://www.wunderground.com/
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• Time Condition (ct): textual description that was represented by indices of 1 (Fog) to 50 (Windy).

Each data set has 26 input variables, 21 extracted from information in the rides database, and 5 exogenous
variables obtained from meteorological information. Thus, at the end of this stage, each zone has a set of
data containing the indexes of the intervals, the 26 variables, and their respective taxi demands.

5.1.3 Feature Selection

The next step after constructing the datasets is the selection of input variables. This step aims to identify
which variables are the most relevant among the 26 created in Section 5.1.2. In this work, Kruskal-Wallis
[23] is used, a statistical method that compares variables among themselves and ranks them by their degree
of relevance.

Once sorted, the most relevant N variables that will be part of the new datasets are chosen. As the
Kruskal-Wallis method only ranks the variables in order of relevance, the value of N must be found by an
alternative method or empirically. Finally, datasets for each zone are built with the most relevant N variables
and the respective taxi demands.

5.1.4 Demand forecasting

In this approach, the taxi demand forecast is done by an evolving fuzzy system. This forecast is made for
t+1, that is, for the next time interval. The forecast is made by zone for each set of Pick-Up and/or Drop-Off,
using the N variables selected in the selection step as input.

5.2 Demand Classification

The demand classification process is illustrated in Figure 5. The steps for building the dataset are, mutatis
mutandis, the same as described in Section 5.1, so it will not be necessary to describe them again. Next,
Section 5.2.1 describes the definition of classes. Then, Section 5.2.2 deals with how demand is classified. In
this work, demand classification is performed using the outputs obtained in the forecast, transforming the
forecasting task into a classification problem, as in [44]. Finally, Section 5.2.3 describes the generation of
heatmaps.

5.2.1 Classes Definition

To start the classification process, the number of classes is defined. In this work, four classes of demand were
defined: (i) Very Low; (ii) Low; (iii) Medium, and; (iv) High. Then, the ranges of values that will identify
each class are determined. These ranges are limited to their upper and lower limit. Finally, the demands of all
zones are used to identify the boundaries by class. For simplification purposes, in this work, the boundaries
of all classes are always multiples of 5. The limits identification can be performed with the aid of a histogram.

5.2.2 Demand Classification

In this step, the transformation of the prediction task into a classification problem is performed. First, the
values predicted by the evolving model are treated and converted into one of the classes. In other words,
it checks which lower/upper bound (domain) the predicted value (ŷt) fits. The conversion is carried out as
follows:
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Constructed
Dataset

Classes 
Definition
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Figure 5: Steps for classification.

Class =


V ery Low, If 0 ≤ ŷt ≤ UBVery Low,

Low, If LBLow ≤ ŷt ≤ UP Low,

Medium If LBMedium ≤ ŷt ≤ UP Medium,

High If LBHigh ≤ ŷt ≤ UP High,

(27)

where LB and UP are the lower and upper bounds of the class, respectively.

5.2.3 Heatmaps generation

In this last step, the demands already converted into classes will be part of a heatmap (for more details on
heatmaps, see Section 3.4). The heatmap will identify each zone by its geographic format and color, with the
zones with higher demands represented by warmer colors and those with lower demands by cooler colors.

6 Experiments and Results

This section presents the computational experiments to evaluate the proposed approach in forecast and
classification contexts, both for Pick-Up and Drop-Off demands. In this study, we chose to use a dataset
derived from the running database of the city of New York. The database is provided by the NYC Taxi
and Limousine Commission7. The experiments were conducted in a subset of 86 zones (out of 263) from
01/01/2018 to 10/31/2018. The datasets were divided into 60% (01/01/2018 to 06/30/2018) for selecting
variables by Kruskal-Wallis and defining the classes. The base’s other 40% (07/01/2018 to 10/31/2018) was
used to validate the models. The datasets were normalized between 0 and 1. To compare results, the settings
described above were the same used in work by [67]. In their work, Zhang et al. [67] evaluated demand

7Available at: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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forecasting performance by comparing 5 models with offline learning: ARIMA, MLP, sLSTM, mLSTM, and
pmLSTM. The best result was obtained by pmlLSTM, which will be used as a benchmark.

The time intervals used were 15 and 30 minutes, as in [37, 36, 64, 67]. To carry out the experiments,
4 datasets were constructed for each z zone, namely: (i) 15-minute Pick-Up; (ii) 30-minute Pick-Up; (iii)
15-minute Drop-Off and; (iv) 30-minute Drop-Off. The feature selection was conducted by Kruskal-Wallis,
considering the 5, 10, and 20 most relevant variables. The dataset with 26 variables is also considered.

In carrying out the forecasting experiments, the evolving models ALMMo [5], eMG [25], eFCE [41], and
eNFN [46] were used. The four models are deterministic; their results do not change with each new iteration.
Therefore, each algorithm was executed only once. The processing of the samples was carried out online; that
is, the models evolved their structure and parameters for all samples. It is noteworthy that no procedure
was performed for fine-tuning the models’ hyperparameters. It was decided to use the same parameters in
all experiments to maintain the generalist approach. The hyperparameter values for each evolving model
followed the metric limits defined by their respective authors, listed as follows:

• ALMMo: forgettingfactor = 0,1; densitythreshold = 0,8; ω = 10.

• eMG: α = 0,01; λ = 0,05; w = 40, Σ = 10−1.

• eFCE: α = 0.01; λ = 0.05; w = 40, Σ = 10−1, Nmax = 3, ρ = 0.12.

• eNFN: η = 10; β = 0,01; w = 100.

To measure the performance of the proposed approach, forecasting experiments were performed and
compared with alternative approaches through the RMSE (Root Mean Square Error) [64, 67]. The results
are presented as the average of the errors of the zones. As for the classification experiments, Accuracy was
used, a metric already consolidated to evaluate this type of problem.

Section 6.1 deals with the results obtained in the prediction task. Then, Section 6.2 presents the results
of demand classification and heatmaps generation. Finally, Section 6.3 presents a detailed analysis of the
input variables selected by the Kruskal-Wallis method.

6.1 Demand Forecasting

Table 2 demonstrates the performance of predictors for the 15-minute interval. The table presents the best
results obtained by each of the models, with the best performance obtained by ALMMo (with 20 input
variables) followed by eFCE (with 10 input variables), eMG (with 10 input variables), and eNFN (with 5
input variables). Figure 6 illustrates the forecast by ALMMo (with 20 input variables) for the 15-minute
interval from 10/24/2018 to 10/30/2018 in Times Square (zone 230).
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Table 2: Performance in forecasting Pick-Up and Drop-Off demand for the 15-minute interval.

Model Pick-Up Drop-Off

RMSE RMSE

ALMMo {N = 20} 13.329 12.460

eFCE {N = 10} 14.592 13.887

eMG {N = 10} 14.793 15.466

eNFN {N = 5} 15.464 14.580

pmlLSTM [67]8 —— ——

Figure 6: ALMMo forecasts (with 20 input variables) for Times Square (Zone 230), in 15-minute intervals,
for the last 7 days (10/24/2018 to 10/30/2018).

Table 3 describes the best results for the 30-minute interval. ALMMo (with 20 variables) got the smallest
error for Pick-Up. For Drop-Off, the best results were obtained by pmlLSTM. The ALMMo (with 20 variables)
proved to be competitive, presenting a difference of only 3% concerning the Drop-Off results obtained by
pmlLSTM. Then follows the eFCE (with 10 variables), eMG (with 10 variables), and eNFN (with 5 variables).
Figure 7 illustrates the forecast by ALMMo (with 20 input variables), in the interval of 30 minutes, for the
last 7 days in Times Square (Zone 230).

6.2 Demand Classification

Table 4 illustrates, for Pick-Up and Drop-Off, the range of values of each class for the 15 and 30-minute
intervals in New York, where D represents the demand and the number of samples in each class is defined in

8Em Zhang et al. [67] there were no experiments that performed the demand forecast with an interval of 15 minutes.
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Table 3: Performance in forecasting Pick-Up and Drop-Off demand for the 30-minute interval.

Model Pick-Up Drop-Off

RMSE RMSE

ALMMo {N = 20} 25.072 22.957

pmlLSTM [67] 26.311 22.411

eFCE {N = 10} 27.150 25.461

eMG {N = 10} 28.512 26.473

eNFN {N = 5} 29.017 25.358

Figure 7: ALMMo forecasts (with 20 input variables) in Times Square (Zone 230), in 30-minute intervals,
for the last 7 days (10/24/2018 to 10/30/2018).

parentheses. The histograms in Figure 8 graphically represent the data described in Table 4.

Table 5 shows the best accuracy and standard deviation of the evolving models for New York in the
interval of 15 minutes. The results suggest that the best accuracy was obtained by ALMMo (with 20 input
variables), followed by eFCE (with 10 input variables), eMG (with 10 input variables), and eNFN (with 5
input variables).

To represent the classification performance, Figure 9 presents the heatmap for Pick-Up and Drop-Off,
with 15-minute intervals in New York with 86 zones, from 10/31/2018, covering the interval from 12:00 to
12:15. In 9A and 9C is shown the map generated by the classification performed by ALMMo (with 20 input
variables). Figures 9B and 9D show the desired heatmap for the same period.

The best performance of accuracy and standard deviation of the evolving models for New York, in the
interval of 30 minutes, is illustrated in Table 6. ALMMo (with 20 input variables) was the model that
obtained the best results, followed by eFCE (with 10 input variables), eMG (with 10 input variables), and
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Table 4: Classifications for New York.

Type Interval Ranges and Quantity
Very Low Low Medium High

PU 15 D ≤ 25 25 > D ≤ 50 50 > D ≤ 100 D > 100
(287283) (318128) (389045) (433832)

PU 30 D ≤ 60 60 > D ≤ 120 120 > D ≤ 240 D > 240
(173844) (182183) (185552) (172565)

DO 15 D ≤ 25 25 > D ≤ 50 50 > D ≤ 100 D > 100
(313466) (300727) (391842) (422253)

DO 30 D ≤ 60 60 > D ≤ 120 120 > D ≤ 240 D > 240
(185395) (169884) (196772) (162093)

Demand
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Figure 8: Histograms with the ranges of values in New York.

eNFN (with 5 input variables).

Figure 10 represents the heatmap for Pick-Up and Drop-Off, with 30-minute intervals in New York with
86 zones, on 10/31/2018, covering the 12:00 interval until 12:30. In 10A and 10C, the value predicted by
ALMMo is shown (with 20 input variables). Figures 10B and 10D show the desired heatmap for the same
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Table 5: Accuracy for the 15-minute interval.

Modelo Pick-Up Drop-Off

Accuracy (%) ± STD Accuracy (%) ± STD

ALMMo {N = 20} 84.796 4.334 84.865 4.593

eFCE {N = 10} 83.431 4.493 83.197 4.882

eMG {N = 10} 83.368 4.426 82.790 5.137

eNFN {N = 5} 81.950 5.101 81.824 5.373

(B)(A)

Pick-Ups - ALMMo {N = 20} Pick-Ups - Desejada

(D)(C)

Drop-Offs - ALMMo {N = 20} Drop-Offs - Desejada

Muito Baixa

Baixa

Média

 Alta

Figure 9: Heatmap for Pick-Up and Drop-Off in New York on 10/31/2018 from 12:00 to 12:15 (15-minute
interval). In A and C the forecast by ALMMo is shown (with 20 input variables) for Pick-Up and Drop-Off.
The actual output is shown in C and D.

period.
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Table 6: Accuracy for the 30-minute interval.

Model Pick-Up Drop-Off

Accuracy (%) ± STD Accuracy (%) ± STD

ALMMo {N = 20} 86.529 3.538 87.256 3.329

eFCE {N = 10} 85.556 3.696 86.161 3.405

eMG {N = 10} 85.203 3.732 85.843 3.530

eNFN {N = 5} 83.579 4.666 85.084 3.865

(B)(A)

Pick-Ups - ALMMo {N = 20} Pick-Ups - Desejada

(D)(C)

Drop-Offs - ALMMo {N = 20} Drop-Offs - Desejada

Muito Baixa

Baixa

Média

 Alta

Figure 10: Heatmap for Pick-Up and Drop-Off in the 86 zones in New York on 10/31/2018 from 12:00 to
12:30 (30-minute interval). In A and C the forecast by ALMMo is shown (with 20 input variables). The
actual output is shown in B and D.
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6.3 Feature Selection Analysis

This section presents the analysis of the input variables identified by the Kruskal-Wallis method. Heatmaps
are used to show the percentage of selection of each variable. Warmer colors indicate higher percentages and
cooler colors lower percentages. To make it easy to understand how the percentage calculation is performed,
consider the following example: take a study made in 25 zones for a 15-minute Pick-Up, and the selection
considering the most relevant N = 5 variables. Therefore, there are 25 data sets. Assuming that the Kruskal-
Wallis identified dhdtr−2 among the most relevant N = 5 variables in 24 of the 25 zones, its percentage will
be 96% (24/25 * 100), and a warmer color will illustrate it.

Figures 11 and 12 show the heatmaps in 15-minute intervals for Pick-Up and Drop-Off, respectively.
When N = 5, all demands from previous days showed some percentages, indicating great relevance as
possible candidates for the models. From N = 5 to N = 10, the variable dhi increases in times t− 1 to t− 5.
When N = 20, all historical demand variables proved relevant. Regarding exogenous and auxiliary variables,
the weekend (fs), day of the week (ds), and temperature (te) showed relevant percentages.

Figure 11: Heatmap of input variables for Pick-Up in New York at 15-minute intervals.

Figure 12: Heatmap of input variables for Drop-Off in New York (86 zones) at 15-minute intervals.

Figures 13 and 14 represent the heatmaps at 30-minute intervals for Pick-Up and Drop-Off, respectively.
Compared to the 15-minute maps, it can be seen that in N = {5, 10}, in addition to the demands of the
previous days, there is a greater selection of the historical demands of the intervals (dhi). At N = 20, we
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only have the weekend (fs), day of the week (ds), and temperature (te) with some selection percentage.

Figure 13: Heatmap of input variables for Pick-Up in New York (86 zones) at 30-minute intervals.

Figure 14: Heatmap of input variables for Drop-Off in New York (86 zones) at 30-minute intervals.

7 Conclusions

This work presented an approach for forecasting and classifying taxi passenger demand using evolving fuzzy
systems. This approach uses historical data and meteorological information as input to the models. First,
these variables are ordered according to relevance using the Kruskal-Wallis method. Then, they are used
as inputs in an evolving fuzzy system to forecast demand for the next time interval. Demand classification
converts the forecast outputs into one of the four classes defined in this work. This classification is represented
by a color, which will compose a heatmap.

The approach was evaluated by computational experiments considering four evolving systems: ALMMo,
eMG, eFCE, and eNFN. Demand forecasting and classification were performed in 86 zones in New York City
for Pick-Up and Drop-Off at 15 and 30-minute intervals. The evolving models for prediction were compared
to results obtained in another work in the literature. ALMMo presented the best results compared with
other evolving models and in contrast with state of the art. In terms of accuracy, ALMMo was also the
model that showed the best performance in all experiments. All algorithms demonstrated accuracy above
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80%, which indicates good results from the classification approach. The results obtained and the analyses in
this work suggest that the proposed approach is promising for forecasting and classifying passenger demand.
Furthermore, it can be noted that the incremental processing of samples by evolving systems and the use of
heatmaps as a form of visualization are approaches that differ from most works with the same theme in the
literature.

A detailed analysis of the input variables made it possible to identify higher selection rates by historical
demands (dhd and dhi), along with their respective means. The exogenous and auxiliary variables were the
least selected by the Kruskal-Wallis method, indicating little relevance of these as candidates for the models.
For future experiments, a possible suggestion would be to discard the exogenous and auxiliary variables as
potential inputs to the models, submitting only the historical demands to the Kruskal-Wallis method.

As future work proposals, expanding the experiments to more rides databases in other cities is suggested.
Another suggestion for future work would be to consider fuzzy sets to classify demands as an alternative to
histograms. Finally, evaluating the proposed approach in more evolving systems consolidates its applicability.
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