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Abstract. The hyperstructures have applications in mathematics and other sciences such as biology, physics,
linguistics, sociology, to mention but a few. For this, mainly, the largest class of the hyperstructures, the Hv-
structures, is used, which satisfy the weak axioms where the non-empty intersection replaces the equality and they
are straightly related to fuzzy set theory. The fundamental relations connect the Hv-structures with the classical
ones, moreover, they reveal new concepts as the Hv-fields. Hv-numbers are called the elements of an Hv-field
and they are used in representation theory. We introduce the raised finite Hv-fields, and present some results and
examples on 2× 2 representations on them.
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1 Introduction

The hyperstructures called Hv-structures, introduced in 1990 [14] and [15] by Vougiouklis, satisfy the weak
axioms where the non-empty intersection replaces the equality. The h/v-structures are a generalization of
Hv-structures, where a reproductivity of classes, is valid instead of the reproductivity of elements [18] and
[21]. Some basic definitions:

Algebraic hyperstructure (H, ·), is a set H equipped with a hyperoperation (abbreviated by hope):

· : H ×H → P (H)− {∅}.

Denote
WASS the weak associativity: (xy)z ∩ x(yz) ̸= ∅, ∀x, y, z ∈ H
and
COW the weak commutativity: xy ∩ yx ̸= ∅, ∀x, y ∈ H.
The (H, ·) is called Hv-semigroup if it is WASS, it is called Hv-group if it is reproductive Hv-semigroup:
xH = Hx = H, ∀x ∈ H.
Motivation. The quotient of a group by any invariant subgroup, is a group. The quotient of a group by
any subgroup is a hypergroup, Marty 1934. The quotient of a group by any partition Hv-group, Vougiouklis
1990.

In an Hv-semigroup (H, ·), the powers are defined by

h1 = {h}, h2 = h · h, . . . , hn = h◦h◦ . . . h◦,

..
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where (◦) is the n-ary circle hope: take the union of hyperproducts n times, with all possible patterns of
parentheses on them. An (H, ·) is cyclic of period s if there is a generator h and the minimum s, such that

H = h1 ∪ h2 ∪ . . . ∪ hs.

Analogously, the cyclicity for the infinite period is defined. If there are h and s, the minimum one, such that
H = hs, then we say that the (H, ·), is a single-power cyclic of period s.

A hyperstructure (R,+, ·) is called Hv-ring if (+) and (·) are WASS, the reproduction axiom is valid for
(+), and (·) is weak distributive to (+):

x(y + z) ∩ (xy + xz) ̸= ∅ , (x+ y)z ∩ (xz + yz) ̸= ∅ , ∀x, y, z ∈ R.

Let (R,+, ·) be an Hv-ring, a COW Hv-group (M,+) is called Hv-module over R, if there is an external
hope

· : R×M → P (M)− {∅} : (a, x) 7→ ax

such that, ∀a, b ∈ R and ∀x, y ∈ M , we have

a(x+ y) ∩ (ax+ ay) ̸= ∅, (a+ b)x ∩ (ax+ bx) ̸= ∅, (ab)x ∩ a(bx) ̸= ∅.

In the case of an Hv-field F , which is defined later, instead of an Hv-ring R, then the Hv-vector space is
defined.

For more definitions and applications on Hv-structures one can see in books and papers as [1], [3], [6],
[15] and [16].

Let (H, ·) and (H, ∗) be Hv-semigroups, then the hope (·) is smaller than (∗), and (∗) greater than (·),
iff there exists an automorphism

f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H.

We say that (H, ∗) contains (H, ·). If (H, ·) is a classical structure then it is the basic structure, and (H, ∗)
is Hb-structure.

Minimal is called an Hv-group if it contains no other Hv-group on the same set. We extend this definition
to any Hv-structures with more hopes.

The little theorem. Greater hopes than the ones which are WASS or COW, are WASS or COW,
respectively.

The little theorem leads to a partial order on Hv-structures and posets. Therefore, we can obtain an
extremely large number of Hv-structures just putting more elements on any result.

The problem of enumeration and classification of Hv-structures is complicated because we have very great
numbers. For example, the number of Hv-groups with three elements, up to isomorphism, is 1.026.462. There
are 7.926 abelian; the 1.013.598 are cyclic.

A class of Hv-structures, introduced in [13] and [15], is the following:

Definition 1.1. An Hv-structure is called very thin iff all hopes are operations except one, which has all
results singletons except only one, which is a subset of cardinality more than one. Therefore, in a very thin
Hv-structure in a set H there exists a hope (·) and a pair (a, b) ∈ H2 for which ab = A, with cardA > 1, and
all the other products, with respect to any other hopes (so they are operations), are singletons.

Some large classes of Hv-structures are the following [19]:

Definition 1.2. Let (G, ·) be groupoid (resp., hypergroupoid) and f : G → G be any map. We define a hope
(∂), called theta-hope, we write ∂-hope, on G as follows:

x∂y = {f(x) · y, x · f(y)}, ∀x, y ∈ G (resp. x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G

If (·) is commutative, then ∂ is commutative. If (·) is COW, then ∂ is COW.
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The motivation for this definition is the map derivative where only the product of functions can be used.
The basic property is that if (G, ·) is a semigroup then ∀f, the (∂) is WASS.

Definition 1.3. (See [12], [15]) Let (G, ·) be a groupoid, then for every P ⊂ G, P ̸= ∅, we define the
following hopes called P -hopes: ∀x, y ∈ G

P : xPy = (xP )y ∪ x(Py), P r : xP ry = (xy)P ∪ x(yP ), P l : xP ly = (Px)y ∪ P (xy).

The (G,P ), (G,P r) and (G,P l) are called P -hyperstructures. The usual case is if (G, ·) is semigroup, then
xPy = (xP )y ∪ x(Py) = xPy and (G,P ) is a semihypergroup. In some cases, a depending on the choice of
P , the (G,P r) and (G,P l) can be associative or WASS.

A generalization of P-hopes is the following [4]:
Let (G, ·) be abelian group, P any subset of G with more than one element. We define the hope ×P as

follows:

x×P y =


x · P · y = {x · h · y | h ∈ P} ; if x ̸= e and y ̸= e

x · y ; if x = e or y = e

We call this hope Pe-hope. The hyperstructure (G,×P ) is an abelian Hv-group.
Let (H, ·) be hypergroupoid. We remove h ∈ H, if we take the restriction of (·) in H − {h}. h ∈ H

absorbs h ∈ H if we replace h by h. h ∈ H merges with h ∈ H, if we take as the product of any x ∈ H by h,
the union of the results of x with both h, h and consider them in the same class with representative h.

2 Fundamental Relations

The main tool to study the hyperstructures is the fundamental relation. In 1970 [8] M. Koskas defined in
hypergroups the relation β and its transitive closure β∗. This relation connects the hyperstructures with the
corresponding classical structures and is defined in Hv-groups as well. T. Vougiouklis [14], [15], [16] and [22]
introduced the γ∗ and ε∗ relations, which are defined, in Hv-rings and Hv-vector spaces, respectively. He also
named all these relations β∗, γ∗ and ε∗, fundamental relations because they play a very important role in the
study of hyperstructures, espicially in their representation theory of them. In 1991, D. Freni [7], proved an
open problem that for the classical hypergroups, where the equality is valid, we have β∗ = β. However, this
problem is open for Hv-groups, therefore, some special classes of them are investigated for which the β∗ = β,
is valid.

Definition 2.1. The fundamental relations β∗, γ∗, and ε∗ are defined in Hv-groups, Hv-rings, and
Hv-vector spaces, respectively, as the smallest equivalences so that the quotient would be group, ring, and
vector spaces, respectively.

Remark 2.2. Let (G, ·) be a group and R be any partition in G, then (G/R, ·) is an Hv-group, so the quotient
(G/R, ·)/β∗ is a group, the fundamental one. The classes of the fundamental group (G/R, ·)/β∗ are a union
of some of the R-classes.

The main theorem together with a way to find the fundamental classes is the following:

Theorem 2.3. Let (H, ·) be Hv-group and denote by U the set of all finite products of elements of H. Define
the relation β in H by xβy iff {x, y} ⊂ u where u ∈ U . Then β∗ is the transitive closure of β.

We present a proof for the analogous to the above theorem in the case of an Hv-ring [14], [15], [16] and
[6]:
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Theorem 2.4. Let (R,+, ·) be an Hv-ring. Denote by U the set of all finite polynomials of elements of R.
We define the relation γ in R as follows:

x γ y iff {x, y} ⊂ u, where u ∈ U.

Then, the relation γ∗ is the transitive closure of the relation γ.

Proof. Let γ be the transitive closure of γ, and denote by γ(a) the class of the element a. First, we prove
that the quotient set R/γ is a ring.

In R/γ the sum (⊕) and the product (⊗) are defined in the usual manner:

γ(a)⊕ γ(b) = {γ(c) : c ∈ γ(a) + γ(b)},

γ(a)⊗ γ(b) = {γ(d) : d ∈ γ(a) · γ(b)}, ∀a, b ∈ R.

Take a′ ∈ γ(a) and b′ ∈ γ(b). Then we have a′γ a iff ∃ x1, . . . , xm+1 with x1 = a′, xm+1 = a and
u1, . . . , um ∈ U such that {xi, xi+1} ⊂ ui, i = 1, . . . ,m and b′γ b iff ∃ y1, . . . , yn+1 with y1 = b′, yn+1 = b and
v1, . . . , vn ∈ U such that {yj , yj+1} ⊂ vj , j = 1, . . . , n.

From the above we obtain

{xi, xi+1}+ y1 ⊂ ui + v1, i = 1, . . . ,m− 1 and xm+1 + {yj , yj+1} ⊂ um + vj , j = 1, . . . , n.

The sums
ui + v1 = ti, i = 1, . . . ,m− 1 and um + vj = tm+j−1, j = 1, . . . , n,

are also polynomials, therefore tk ∈ U for all k ∈ {1, . . . ,m+ n− 1}.
Now, pick up elements z1, . . . , zm+n such that

zi ∈ xi + y1, i = 1, . . . , n and zm+j ∈ xm+1 + yj+1, j = 1, . . . , n,

therefore, using the above relations we obtain {zk, zk+1} ⊂ tk, k = 1, . . . ,m+ n− 1.
Thus, every element z1 ∈ x1 + y1 = a′ + b′ is γ equivalent to every element zm+n ∈ xm+1 + yn+1 = a+ b.
Thus γ(a)⊕ γ(b) is a singleton so we can write

γ(a)⊕ γ(b) = γ(c), ∀c ∈ γ(a) + γ(b).

In a similar way, we prove that

γ(a)⊗ γ(b) = γ(d), ∀d ∈ γ(a) · γ(b).

The WASS and the weak distributivity on R guarantee that the associativity and the distributivity are
valid for the quotient R/γ∗. Therefore, R/γ∗ is a ring.

Now let σ be an equivalence relation in R such that R/σ is a ring. Denote σ(a) the class of a. Then
σ(a)⊕ σ(b) and σ(a)⊗ σ(b) are singletons, i.e. ∀a, b ∈ R, we have

σ(a)⊕ σ(b) = σ(c), ∀c ∈ σ(a) + σ(b) and σ(a)⊗ σ(b) = σ(d), ∀d ∈ σ(a) · σ(b).

Thus we can write, ∀a, b ∈ R and A ⊂ σ(a), B ⊂ σ(b),

σ(a)⊕ σ(b) = σ(a+ b) = σ(A+B) and σ(a)⊗ σ(b) = σ(ab) = σ(A ·B).

By induction, we extend these relations on finite sums and products. Thus, ∀u ∈ U , we have σ(x) = σ(u),
∀x ∈ u. Consequently,

x ∈ γ(a) implies x ∈ σ(a), ∀x ∈ R.
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But σ is transitively closed, so we obtain:

x ∈ γ(x) implies x ∈ σ(a).

That means that γ is the smallest equivalence relation in R such that R/γ is a ring, i.e. γ = γ∗. □
An element is called single if its fundamental class is singleton [15].
Fundamental relations are used for general definitions. Thus we have [14]:

Definition 2.5. An Hv-ring (R,+, ·) is called Hv-field if R/γ∗ is a field.

The analogous to Theorem 2.4 on Hv-vector spaces, can be proved:
Let (V,+) be Hv-vector space over the Hv-field F . Denote U the set of all expressions of finite hopes on

finite sets of elements of F and V . Define the relation ε, in V , as follows: xεy iff {x, y} ⊂ u where u ∈ U .
Then ε∗ is the transitive closure of ε.

Definition 2.6. Let (L,+) be Hv-vector space over an Hv-field (F,+, ·); φ : F → F/γ∗ the canonical map;
ωF = {x ∈ F : φ(x) = 0}, the core, 0 is the zero of F/γ∗. Let ωL be the core of φ′ : L → L/ε∗ and denote
by 0 the zero of L/ε∗, as well. Take the bracket (commutator) hope:

[ , ] : L× L → P (L) : (x, y) 7→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:
(L1) The bracket hope is bilinear, i.e.

[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) ̸= ∅
[x, λ1y1 + λ2y] ∩ (λ1[x, y1] + λ2[x, y2]) ̸= ∅, ∀x, x1, x2, y, y1, y2 ∈ L and ∀λ1, λ2 ∈ F

(L2) [x, x] ∩ ωL ̸= ∅, ∀x ∈ L
(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL ̸= ∅, ∀x, y, z ∈ L

Definition 2.7. (See [18] and [21]) The Hv-semigroup (H, ·) is called h/v-group if H/β∗ is a group.

The Hv-group is a generalization of Hv-group, where a reproductive of classes, is valid: if σ(x), ∀x ∈ H,
equivalence classes, then xσ(y) = σ(xy) = σ(x)y, ∀x, y ∈ H. Similarly, h/v-rings, h/v-fields, h/v-vector
spaces etc, are defined.

The uniting elements method, introduced by Corsini & Vougiouklis in 1989, is the following [2]: Let
G be a structure and a not valid property d, described by a set of equations. Take the partition in G for
which put in the same class, all pairs of elements that cause the non-validity of d. The quotient by this
partition G/d is an Hv-structure. Then, quotient out G/d by β∗, is a stricter structure (G/d)/β∗ for which
the property d is valid.

Theorem 2.8. (See [15]) Let (R,+, ·) be a ring, and F = {f1, . . . , fm, fm+1, . . . , fm+n} be system of equations
on R consisting of subsystems Fm = {f1, . . . , fm} and Fn = {fm+1, . . . , fm+n}. Let σ, σm be the equivalence
relations defined by the uniting elements using F and Fm respectively, and σn the equivalence defined on Fn

on the ring Rm = (R/σm)/γ∗. Then

(R/σ)/γ∗ ∼= (Rm/σn)/γ
∗.

Theorem 2.9. Let (H, ·) be an Hv-group and H/β∗ its fundamental group. Suppose that H/β∗ is not
commutative or it is not cyclic, then (H, ·) is not COW or cyclic, respectively.

Proof. Straightforward since if (H, ·) is COW or cyclic then its fundamental group H/β∗ is commutative
or cyclic, respectively. □



Representations on Raised Very Thin Hv-fields-TFSS, Vol.1, No.1, (2022) 93

3 Hv-fields

Definition 3.1. We callRaised V ery Thin Hv-fields the ones obtained from classical rings by enlarging
only one result adding only one element, of the underline set, such that the fundamental structure is a field.

Combining the uniting elements procedure with the raise theory we can obtain stricter structures or
hyperstructures. So, raising operations or hopes we can obtain more complicated structures as we can see in
the following.

Theorem 3.2. In the ring of integers (Z,+, ·), we fix a number m > 1. We raise in the product the special
result 0 · m by setting 0 ⊗ m = {0,m} and the rest results remain the same. Then (Z,+,⊗) becomes an
Hv-ring, with a finite fundamental ring:

(Z,+,⊗)/γ∗ ∼= (Zm,+, ·).

If m = p, prime, then (Z,+,⊗) is a raised very thin Hv-field, with the finite fundamental field.
Raising only the result a · b of two fixed elements a, b ∈ Z−{0, 1}, by setting a⊗ b = {a · b, a · b+m}, then we
have the same results and (Z,+,⊗) is a raised very thin Hv-field, where the elements 0 and 1 are scalars.

Proof. Remark that the expressions of sums and products which contain more than one element are the
ones that have at least one time the 0⊗m. Adding to 0⊗m the element 1, several times we have the modm
equivalence classes. On the other side, by adding or multiplying elements of the same class the results are
remaining in one class, the class obtained by using only the representatives. Therefore, the γ∗-classes form a
ring isomorphic to (Zm,+, ·).

The rest of the proof is straightforward. Notice only that we can transfer the generalized raised case if
we consider the expression a⊗ b− a · b = {0,m}. □

Theorem 3.3. In the ring (Zn,+, ·), with n = ms we raise in the product only the result 0 · m by setting
0⊗m = {0,m} and the rest results remain the same. Then

(Zn,+,⊗)/γ∗ ∼= (Zm,+, ·).

If m = p, prime, then (Zn,+,⊗) is a raised very thin Hv-field.
Raising only the result a · b of two fixed elements a, b ∈ Zn − {0, 1}, by setting a⊗ b = {a · b, a · b+m}, then
we have the same results but (Zn,+,⊗) is a raised very thin Hv-field, where, moreover, the elements 0 and
1 are scalars.

Proof. Analogous to the above Theorem. □
Now, we focus on raised very thin minimal Hv-fields obtained by a classical field.

Theorem 3.4. In a field (F ,+, ·), we raise only the product of two elements a · b, by a⊗ b = {a · b, c}, where
c ̸= a · b, and the rest results remain the same. Then we obtain the degenerate, minimal very thin, Hv-field
(F ,+,⊗)/γ∗ ∼= {0}.
Thus, there is no non-degenerate Hv-field obtained by a field by raising any product.

Proof. Take any x ∈ F − {0}, then from a ⊗ b = {ab, c} we obtain (a ⊗ b) − ab = {0, c − ab} and then
(x(c − ab)−1) ⊗ ((a ⊗ b) − ab) = {0, x}. thus, 0γx, x ∈ F − {0}. Which means that every x is in the same
fundamental class with 0. Thus, (F ,+,⊗)/γ∗ ∼= {0}. □

Theorem 3.5. In a field (F ,+, ·), we raise only the sum of two elements a+ b, by setting a⊕ b = {a+ b, c},
where c ̸= a + b, and the rest results remain the same. Then we obtain the degenerate, minimal very thin,
Hv-field (F ,⊕, ·)/γ∗ ∼= {0}.
Thus, there is no non-degenerate Hv-field obtained by a field by raising any sum.
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Proof. Take any x ∈ F −{0}, then from a⊕ b = {a+ b, c} we obtain (a⊕ b)− (a+ b) = {0, c− (a+ b)} and
then [x(c− (a+ b))−1] · [(a⊕ b)− (a+ b)] = {0, x}. Thus, 0 γ x, x ∈ F − {0}. Which means that every x is
in the same fundamental class with the element 0. Thus, (F ,⊕, ·)/γ∗ ∼= {0}. □

The above two theorems state that all Hv-fields obtained from a field by raising any sum or product, are
degenerate.

Several results can be obtained by using ∂-hopes [19]: For example, consider the group of integers (Z,+)
and n ̸= 0 be natural number. Take the map f such that f(0) = n and f(x) = x, ∀x ∈ Z − {0}, then
(Z, ∂)/β∗ ∼= (Zn,+).

Theorem 3.6. Take the ring of integers (Z,+, ·) and fix n ̸= 0 a natural number. Consider the map f such
that f(0) = n and f(x) = x, ∀x ∈ Z − {0}. Then (Z, ∂+, ∂·), where ∂+ and ∂· are the ∂-hopes refereed to
the sum and the product, respectively, is an Hv-near-ring, with

(Z, ∂+, ∂·)/γ
∗ ∼= Zn.

We have the same result if we consider the map f such that f(n) = 0 and f(x) = x, ∀x ∈ Z − {n}.

A special case of the above is for n = p, prime, then (Z, ∂+, ∂·) is an Hv-field.

From the very thin hopes the Attach Construction is obtained [20]:

Definition 3.7. (a) Let (H, ·) be an Hv-semigroup, v /∈ H. We extend (·) into H = H ∪ {v} by:

x · v = v · x = v, ∀x ∈ H and v · v = H.

The (H, ·) is called attach h/v-group of (H, ·), where (H, ·)/β∗ ∼= Z2 and v is single. Scalars and units of
(H, ·) are scalars and units in (H, ·). If (H, ·) is COW then (H, ·) is COW.
(b) (H, ·) Hv-semigroup, v /∈ H, (H, ·) its attached h/v-group. Take 0 /∈ H and define in H◦ = H ∪ {v, 0}
two hopes:

hypersum(+) : 0 + 0 = x+ v = v + x = 0, 0 + v = v + 0 = x+ y = v, 0 + x = x+ 0 = v + v = H, ∀x, y ∈ H

hyperproduct (·) : remains the same as in H, moreover, 0 · 0 = v · x = x · 0 = 0, ∀x ∈ H.

Then (H◦,+, ·) is an h/v-field with (H◦,+, ·)/γ∗ ∼= Z3. (+) is associative, (·) is WASS and weak
distributive to (+). 0 is zero absorbing in (+). (H◦,+, ·) is the attached h/v-field of (H, ·).

Let (G, ·) be semigroup and v /∈ G be an element appearing in a product ab, where a, b ∈ G, thus the result
becomes a ⊗ b = {ab, v}. Then the minimal hope (⊗) extended in G′ = G ∪ {v} such that (⊗) contains (·)
in the restriction on G, and such that (G′,⊗) is a minimal Hv-semigroup which has a fundamental structure
isomorphic to (G, ·), is defined as follows:

a⊗ b = {ab, v}, x⊗ y = xy, ∀(x, y) ∈ G2 − {(a, b)}

v ⊗ v = abab, x⊗ v = xab and v ⊗ x = abx, ∀x ∈ G.

(G′,⊗) is very thin Hv-semigroup. If (G, ·) is commutative then (G′,⊗) is strong commutative.
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4 Representations and applications

Hv-structures used in Representation Theory (abbreviate rep) of Hv-groups can be achieved by generalized
permutations or by Hv-matrices [6], [15], [17].

Hv-matrix is a matrix with entries of an Hv-ring. The hyperproduct of two Hv-matrices (aij) and (bij),
of type m × n and n × r respectively, is defined in the usual manner and it is a set of m × r Hv-matrices.
The sum of products of elements of the Hv-ring is the n-ary circle hope on the hyper-sum.
Notation. In a set of matrices or Hv-matrices, we denote by Eij the matrix with 1 in the ij-entry and zero
in the rest entries.

The problem of the Hv-matrix reps is the following:

Definition 4.1. Let (H, ·) be Hv-group. Find an Hv-ring (R,+, ·), a set MR = {(aij) | aij ∈ R} and a map
T : H → MR : h 7→ T (h), called Hv-matrix rep, such that

T (h1h2) ∩ T (h1)T (h2) ̸= ∅, ∀h1, h2 ∈ H.

If T (h1h2) ⊂ T (h1)T (h2), then T is an inclusion rep.
If T (h1h2) = T (h1)T (h2) = {T (h) | h ∈ h1h2}, then T is a good rep.
If T is a good rep and one to one then it is a faithful rep.

The rep problem is simplified in cases such as if the Hv-rings have scalars 0 and 1.
The main theorem of the theory of reps is the following:

Theorem 4.2. A necessary condition to have an inclusion rep T of an Hv-group (H, ·) by n×n, Hv-matrices
over the Hv-ring (R,+, ·) is the following:

∀β∗(x), x ∈ H there must exist elements aij ∈ H, i, j ∈ {1, . . . , n} such that

T (β∗(a)) ⊂ {A = (a′ij) | a′ij ∈ γ∗(aij), i, j ∈ {1, . . . , n}}

The inclusion rep T : H −→ MR : a 7→ T (a) = (aij) induces a homomorphic

T ∗ : H/β∗ −→ R/γ∗ : T ∗(β∗(a)) = [γ∗(aij)], ∀β∗(a) ∈ H/β∗,

where γ∗(aij) ∈ R/γ∗ is the ij entry of T ∗(β∗(a)).

An important hope on non-square matrices is defined [5] and [6]:

Definition 4.3. Let A = (aij) ∈ Mm×n and s, t ∈ N , 1 ≤ s ≤ m, 1 ≤ t ≤ n. Define a mod-like map, called
helix-projection of type st, st : Mm×n → Ms×t : A → Ast = (aij), where A has entries the sets

aij = {ai+κs,j+λt | 1 ≤ i ≤ s, 1 ≤ j ≤ t and κ, λ ∈ N, i+ κs ≤ m, j + λt ≤ n}.

Ast is a set of s× t-matrices X = (xij) such that xij ∈ aij , ∀i, j. Obviously, Amn = A.
Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mu×v be matrices.
Denote s = min(m,u), t = min(n, u), then we define the helix-sum by

⊕ : Mm×n ×Mu×v → P (Ms×t) : (A,B) → A⊕B = Ast+Bst = (aij) + (bij) ⊂ Ms×t,

where (aij) + (bij) = {(cij) = (aij + bij) | aij ∈ aij and bij ∈ bij}.
Denote s = min(n, u), then we define the helix-product by

⊗ : Mm×n ×Mu×v → P (Mm×v) : (A,B) → A⊗B = Ams ·Bsv = (aij) · (bij) ⊂ Mm×v,

where (aij) · (bij) = {(cij) = (
∑

aitbtj) | aij ∈ aij and bij ∈ bij}.
The helix-sum is commutative and WASS. The helix-product is WASS.
The definition of a Lie-bracket is immediate, so, the helix-Lie Algebra is defined.
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Using several classes of Hv-structures one can face several representations [15]:
Let M = Mm×n be a module of m× n matrices over a ring R and P = {Pi : i ∈ I} ⊆ M . We define,

a kind of, a P-hope P on M as follows

P : M ×M → P (M) : (A,B) → APB = {AP t
iB : i ∈ I} ⊆ M

where P t denotes the transpose of the matrix P .
In last decades the hyperstructures had a variety of applications in other branches of mathematics and in

many other sciences. These applications range from biomathematics - conchology, inheritance- and hadronic
physics or on leptons to mention but a few. The hyperstructures theory is closely related to fuzzy theory;
consequently, hyperstructures can now be widely applicable in industry and production, too. In several books
and papers [1], [3], [4], [6] and [22], one can find numerous applications.

The Lie-Santilli theory on isotopies was born in the 1960s to solve Hadronic Mechanics problems. Santilli
proposed a lifting of the n-dimensional trivial unit matrix of a normal theory into a nowhere singular,
symmetric, real-valued, positive-defined, n-dimensional new matrix [9], [10], [11]. The original theory is
reconstructed such as to admit the new matrix as left and right unit. The isofields, needed in this theory
correspond to the hyperstructures, were introduced by Santilli & Vougiouklis in 1999 [4], [6], [11].

Definition 4.4. (F,+, ·), where (+) is operation and (·) hope, is an e-hyperfield if the following are
valid: (F,+) is an abelian group with unit 0, (·) is WASS, (·) is weak distributive to (+), 0 is absorbing:
0 · x = x · 0 = 0, ∀x ∈ F , there exist a scalar unit 1, i.e. 1 · x = x · 1 = x, ∀x ∈ F , and ∀x ∈ F there is a
unique inverse x−1 : 1 ∈ x · x−1 ∩ x−1 · x. If the relation: 1 = x · x−1 = x−1 · x, is valid, then we have a strong
e-hyperfield.

The Main e-Construction: Given a group (G, ·), e unit, define hopes (⊗) by:

x⊗ y = {xy, g1, g2, . . .}, ∀x, y ∈ G− {e} and g1, g2, . . . ∈ G− {e}

(G,⊗) is Hb-group which contains (G, ·). (G,⊗) is e-hypergroup. Moreover, if ∀x, y such that xy = e, so
x⊗ y = e, then (G,⊗) becomes a strong e-hypergroup.

Example 4.5. In the set of quaternions Q = {1,−1, i,−i, j,−j, k,−k}, with i2 = j2 = −1, ij = −ji = k,
we denote i = {i,−i}, j = {j,−j}, k = {k,−k} and we define hopes (∗) by enlarging few products. For
example, (−1) ∗ k = k, k ∗ i = j and i ∗ j = k. Then (Q, ∗) is strong e-hypergroup.

5 On 2× 2 Very Thin Hv-matrix representations

From now to the end we focus on the small non-degenerate Hv-fields on (Zn,+, ·), which in isotheory, satisfy
the following conditions:

1. very thin minimal,
2. COW (non-commutative),
3. they have the elements 0 and 1, scalars,
4. if an element has an inverse element, this is unique.
Therefore, we cannot raise the result if it is 1 and we cannot put 1 in enlargement.
We present some known results and examples on the topic [20], [21] and [23], along with some new ones.

Theorem 5.1. The multiplicative Hv-fields on (Z4,+, ·), with non-degenerate fundamental field, satisfying
the above 4 conditions, are the following isomorphic ones:
The only product which is set is 2⊗ 3 = {0, 2} or 3⊗ 2 = {0, 2}.
Fundamental classes: [0] = {0, 2}, [1] = {1, 3} and we have (Z4,+,⊗)/γ∗ ∼= (Z2,+, ·).
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Example 5.2. Take the 2×2 upper triangular Hv-matrices on the above Hv-field (Z4,+,⊗) of the case that
only 2⊗ 3 = {0, 2} is a hyperproduct:

I = E11 + E22, a = E11 + E12 + E22, b = E11 + 2E12 + E22, c = E11 + 3E12 + E22,

d = E11 + 3E22, e = E11 + E12 + 3E22, f = E11 + 2E12 + 3E22, g = E11 + 3E12 + 3E22,

then, for X = {I, a, b, c, d, e, f, g}, we obtain the following multiplicative table:

⊗ I a b c d e f g

I I a b c d e f g

a a b c I g d e f

b b c I a d, f e, g d, f e, g

c c I a b e f g d

d d e f g I a b c

e e f g d c I a b

f f g d e I, b a, c I, b a, c

g g d e f a b c b

The (X,⊗) is COW Hv-group where the fundamental classes are I = {I, b}, a = {a, c}, d = {d, f}, e = {e, g}
and the fundamental group is isomorphic to (Z2 × Z2,+). There is only one unit and every element has
a unique double inverse. Only f has one more right inverse element d, since f ⊗ d = {I, b}. (X,⊗) is not
cyclic.

Example 5.3. Consider the 2× 2 upper triangular Hv-matrices on the above Hv-field (Z4,+,⊗) of the case
that only 2⊗ 3 = {0, 2} is a hyperproduct:

a = E11 + E22, a1 = E11 + E12 + E22, a2 = E11 + 2E12 + E22, a3 = E11 + 3E12 + E22,

b = E11 + 3E22, b1 = E11 + E12 + 3E22, b2 = E11 + 2E12 + 3E22, b3 = E11 + 3E12 + 3E22,

c = 3E11 + E22, c1 = 3E11 + E12 + E22, c2 = 3E11 + 2E12 + E22, c3 = 3E11 + 3E12 + E22,

d = 3E11 + 3E22, d1 = 3E11 + E12 + 3E22, d2 = 3E11 + 2E12 + 3E22, d3 = 3E11 + 3E12 + 3E22,

then, for X = {a, a1, a2, a3, b, b1, b2, b3, c, c1, c2, c3, d, d1, d2, d3}, we obtain the following multiplicative table:
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⊗ a a1 a2 a3 b b1 b2 b3 c c1 c2 c3 d d1 d2 d3

a a a1 a2 a3 b b1 b2 b3 c c1 c2 c3 d d1 d2 d3
a1 a1 a2 a3 a b3 b b1 b2 c1 c2 c3 c d3 d d1 d2
a2 a2 a3 a a1 b, b2 b1, b3 b, b2 b1, b3 c2 c3 c c1 d, d2 d1, d3 d, d2 d1, d3
a3 a3 a a1 a2 b1 b2 b3 b c3 c c1 c2 d1 d2 d3 d

b b b1 b2 b3 a a1 a2 a3 d d1 d2 d3 c c1 c2 c3
b1 b1 b2 b3 b a3 a a1 a2 d1 d2 d3 d c3 c c1 c2
b2 b2 b3 b b1 a, a2 a1, a3 a, a2 a1, a3 d2 d3 d d1 c, c2 c1, c3 c, c2 c1, c3
b3 b3 b b1 b2 a1 a2 a3 a d3 d d1 d2 c1 c2 c3 c

c c c3 c2 c1 d d3 d2 d1 a a3 a2 a1 b b3 b2 b1
c1 c1 c c3 c2 d3 d2 d1 d a1 a a3 a2 b3 b2 b1 b

c2 c2 c1 c c3 d, d2 d1, d3 d, d2 d1, d3 a2 a1 a a3 b, b2 b1, b3 b, b2 b1, b3
c3 c3 c2 c1 c d1 d d3 d2 a3 a2 a1 a b1 b b3 b2
d d d3 d2 d1 c c3 c2 c1 b b3 b2 b1 a a3 a2 a1
d1 d1 d d3 d2 c3 c2 c1 c b1 b b3 b2 a3 a2 a1 a

d2 d2 d1 d d3 c, c2 c1, c3 c, c2 c1, c3 b2 b1 b b3 a, a2 a1, a3 a, a2 a1, a3
d3 d3 d2 d1 d c1 c c3 c2 b3 b2 b1 b a1 a a3 a2

The (X,⊗) is a COW Hv-group where the fundamental classes are a = {a, a2}, a1 = {a1, a3}, b = {b, b2},
b1 = {b1, b3}, c = {c, c2}, c1 = {c1, c3}, d = {d, d2}, d1 = {d1, d3}, with multiplicative table the following:

⊗ a a1 b b1 c c1 d d1

a a a1 b b1 c c1 d d1
a1 a1 a b1 b c1 c d1 d

b b b1 a a1 d d1 c c1
b1 b1 b a1 a d1 d c1 c

c c c1 d d1 a a1 b b1
c1 c1 c d1 d a1 a b1 b

d d d1 c c1 b b1 a a1
d1 d1 d c1 c b1 b a1 a

Moreover, in (X,⊗) there is only one unit and every element has unique double inverse. The element b2
is left inverse to b and b2 because a ∈ b2b and a ∈ b2b2. The element d2 is left inverse to d and d2 because
a ∈ d2d, a ∈ d2d2. (X,⊗) is not cyclic, since, from Theorem 2.9, the (X,⊗) is not cyclic.

Example 5.4. Consider the 2× 2 upper triangular Hv-matrices on the above Hv-field (Z4,+,⊗) of the case
that only 3⊗ 2 = {0, 2} is a hyperproduct:

a = E11 + E22, a1 = E11 + E12 + E22, a2 = E11 + 2E12 + E22, a3 = E11 + 3E12 + E22,

b = E11 + 3E22, b1 = E11 + E12 + 3E22, b2 = E11 + 2E12 + 3E22, b3 = E11 + 3E12 + 3E22,

c = 3E11 + E22, c1 = 3E11 + E12 + E22, c2 = 3E11 + 2E12 + E22, c3 = 3E11 + 3E12 + E22,

d = 3E11 + 3E22, d1 = 3E11 + E12 + 3E22, d2 = 3E11 + 2E12 + 3E22, d3 = 3E11 + 3E12 + 3E22,

then, for X = {a, a1, a2, a3, b, b1, b2, b3, c, c1, c2, c3, d, d1, d2, d3}, we obtain the following table:

The (X,⊗) is a COW Hv-group with fundamental classes: a = {a, a2}, a1 = {a1, a3}, b = {b, b2},
b1 = {b1, b3}, c = {c, c2}, c1 = {c1, c3}, d = {d, d2}, d1 = {d1, d3}, with table as the above example.
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⊗ a a1 a2 a3 b b1 b2 b3 c c1 c2 c3 d d1 d2 d3

a a a1 a2 a3 b b1 b2 b3 c c1 c2 c3 d d1 d2 d3
a1 a1 a2 a3 a b3 b b1 b2 c1 c2 c3 c d3 d d1 d2
a2 a2 a3 a a1 b2 b3 b b1 c2 c3 c c1 d2 d3 d d1
a3 a3 a a1 a2 b1 b2 b3 b c3 c c1 c2 d1 d2 d3 d

b b b1 b2 b3 a a1 a2 a3 d d1 d2 d3 c c1 c2 c3
b1 b1 b2 b3 b a3 a a1 a2 d1 d2 d3 d c3 c c1 c2
b2 b2 b3 b b1 a2 a3 a a1 d2 d3 d d1 c2 c3 c c1
b3 b3 b b1 b2 a1 a2 a3 a d3 d d1 d2 c1 c2 c3 c

c c c3 c, c2 c1 d d3 d, d2 d1 a a3 a, a2 a1 b b3 b, b2 b1
c1 c1 c c1, c3 c2 d3 d2 d1, d3 d a1 a a1, a3 a2 b3 b2 b1, b3 b

c2 c2 c1 c, c2 c3 d2 d1 d, d2 d3 a2 a1 a, a2 a3 b2 b1 b, b2 b3
c3 c3 c2 c1, c3 c d1 d d1, d3 d2 a3 a2 a1, a3 a b1 b b1, b3 b2
d d d3 d, d2 d1 c c3 c, c2 c1 b b3 b, b2 b1 a a3 a, a2 a1
d1 d1 d d1, d3 d2 c3 c2 c1, c3 c b1 b b1, b3 b2 a3 a2 a1, a3 a

d2 d2 d1 d, d2 d3 c2 c1 c, c2 c3 b2 b1 b, b2 b3 a2 a1 a, a2 a3
d3 d3 d2 d1, d3 d c1 c c1, c3 c2 b3 b2 b1, b3 b a1 a a1, a3 a2

Moreover, in (X,⊗) there is only one unit a, and every element has unique double inverse. The element
c2 is right inverse to c and c2 because a ∈ cc2, a ∈ c2c2. The element d2 is right inverse to d and d2 because
a ∈ dd2, a ∈ d2d2. (X,⊗) is not cyclic, since, from Theorem 2.9, the (X,⊗) is not cyclic.

Theorem 5.5. All multiplicative Hv-fields on (Z6,+, ·), with non-degenerate fundamental field, satisfying
the above 4 conditions, with one hyperproduct, are the following isomorphic cases:
(I) 2⊗ 3 = {0, 3}, 2⊗ 4 = {2, 5}, 3⊗ 4 = {0, 3}, 3⊗ 5 = {0, 3}, 4⊗ 5 = {2, 5}

Fundamental classes: [0] = {0, 3}, [1] = {1, 4}, [2] = {2, 5} and (Z6,+,⊗)/γ∗ ∼= (Z3,+, ·).
(II) 2⊗ 3 = {0, 2} or 2⊗ 3 = {0, 4}, 2⊗ 4 = {0, 2} or {2, 4}, 2⊗ 5 = {0, 4} or 2⊗ 5 = {2, 4}, 3⊗ 4 =
{0, 2} or {0, 4}, 3⊗ 5 = {3, 5}, 4⊗ 5 = {0, 2} or {2, 4}.

In all cases, fundamental classes are [0] = {0, 2, 4}, [1] = {1, 3, 5} and (Z6,+,⊗)/γ∗ ∼= (Z2,+, ·).

Example. In the Hv-field (Z6,+,⊗) where only the hyperproduct is 2⊗ 4 = {2, 5}, take the Hv-matrices of
type i = E11 + iE12 + 4E22, where i = 0, 1, . . . , 5, then the multiplicative table of the hyperproduct of those
Hv-matrices is

⊗ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 4 5 0 1 2 3

2 2, 5 0, 3 1, 4 2, 5 0, 3 1, 4

3 0 1 2 3 4 5

4 4 5 0 1 2 3

5 2 3 4 5 0 1
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Classes: [0] = {0, 3}, [1] = {1, 4}, [2] = {2, 5} and fundamental group isomorphic to (Z3,+). (Z6,⊗) is
h/v-group which is cyclic where 2 is generator of period 4 and 4 is generator of period 5.

Example 5.6. Consider the 2× 2 upper triangular Hv-matrices on the above Hv-field (Z6,+,⊗) of the case
that only 4⊗ 5 = {2, 5} is a hyperproduct. We set

a = E11 + E22, a1 = E11 + E12 + E22, a2 = E11 + 2E12 + E22,

a3 = E11 + 3E12 + E22, a4 = E11 + 4E12 + E22, a5 = E11 + 5E12 + E22,

b = E11 + 5E22, b1 = E11 + E12 + 5E22, b2 = E11 + 2E12 + 5E22,

b3 = E11 + 3E12 + 5E22, b4 = E11 + 4E12 + 5E22, b5 = E11 + 5E12 + 5E22,

c = 5E11 + E22, c1 = 5E11 + E12 +E22, c2 = 5E11 + 2E12 + E22,

c3 = 5E11 + 3E12 + E22, c4 = 5E11 + 4E12 + E22, c5 = 5E11 + 5E12 + E22,

d = 5E11 + 5E22, d1 = 5E11 + E12 + 5E22, d2 = 5E11 + 2E12 + 5E22,

d3 = 5E11 + 3E12 + 5E22, d4 = 5E11 + 4E12 + 5E22, d5 = 5E11 + 5E12 + 5E22,

then, for X = {a, a1, a2, a3, a4, a5, b, b1, b2, b3, b4, b5, c, c1, c2, c3, c4, c5, d, d1, d2, d3, d4, d5}, we obtain the table:

⊗ a a1 a2 a3 a4 a5 b b1 b2 b3 b4 b5 c c1 c2 c3 c4 c5 d d1 d2 d3 d4 d5

a a a1 a2 a3 a4 a5 b b1 b2 b3 b4 b5 c c1 c2 c3 c4 c5 d d1 d2 d3 d4 d5
a1 a1 a2 a3 a4 a5 a b5 b b1 b2 b3 b4 c1 c2 c3 c4 c5 c d5 d d1 d2 d3 d4
a2 a2 a3 a4 a5 a a1 b4 b5 b b1 b2 b3 c2 c3 c4 c5 c c1 d4 d5 d d1 d2 d3
a3 a3 a4 a5 a a1 a2 b3 b4 b5 b b1 b2 c3 c4 c5 c c1 c2 d3 d4 d5 d d1 d2
a4 a4 a5 a a1 a2 a3 b2, b5 b, b3 b1, b4 b2, b5 b, b3 b1, b4 c4 c5 c c1 c2 c3 d2, d5 d, d3 d1, d4 d2, d5 d, d3 d1, d4
a5 a5 a a1 a2 a3 a4 b1 b2 b3 b4 b5 b c5 c c1 c2 c3 c4 d1 d2 d3 d4 d5 d
b b b1 b2 b3 b4 b5 a a1 a2 a3 a4 a5 d d1 d2 d3 d4 d5 c c1 c2 c3 c4 c5
b1 b1 b2 b3 b4 b5 b a5 a a1 a2 a3 a4 d1 d2 d3 d4 d5 d c5 c c1 c2 c3 c4
b2 b2 b3 b4 b5 b b1 a4 a5 a a1 a2 a3 d2 d3 d4 d5 d d1 c4 c5 c c1 c2 c3
b3 b3 b4 b5 b b1 b2 a3 a4 a5 a a1 a2 d3 d4 d5 d d1 d2 c3 c4 c5 c c1 c2
b4 b4 b5 b b1 b2 b3 a2, a5 a, a3 a1, a4 a2, a5 a, a3 a1, a4 d4 d5 d d1 d2 d3 c2, c5 c, c3 c1, c4 c2, c5 c, c3 c1, c4
b5 b5 b b1 b2 b3 b4 a1 a2 a3 a4 a5 a d5 d d1 d2 d3 d4 c1 c2 c3 c4 c5 c
c c c5 c4 c3 c2 c1 d d5 d4 d3 d2 d1 a a5 a4 a3 a2 a1 b b5 b4 b3 b2 b1
c1 c1 c c5 c4 c3 c2 d5 d4 d3 d2 d1 d a1 a a5 a4 a3 a2 b5 b4 b3 b2 b1 b
c2 c2 c1 c c5 c4 c3 d4 d3 d2 d1 d d5 a2 a1 a a5 a4 a3 b4 b3 b2 b1 b b5
c3 c3 c2 c1 c c5 c4 d3 d2 d1 d d5 d4 a3 a2 a1 a a5 a4 b3 b2 b1 b b5 b4
c4 c4 c3 c2 c1 c c5 d2, d5 d1, d4 d, d3 d2, d5 d1, d4 d, d3 a4 a3 a2 a1 a a5 b2, b5 b1, b4 b, b3 b2, b5 b1, b4 b, b3
c5 c5 c4 c3 c2 c1 c d1 d d5 d4 d3 d2 a5 a4 a3 a2 a1 a b1 b b5 b4 b3 b2
d d d5 d4 d3 d2 d1 c c5 c4 c3 c2 c1 b b5 b4 b3 b2 b1 a a5 a4 a3 a2 a1
d1 d1 d d5 d4 d3 d2 c5 c4 c3 c2 c1 c b1 b b5 b4 b3 b2 a5 a4 a3 a2 a1 a
d2 d2 d1 d d5 d4 d3 c4 c3 c2 c1 c c5 b2 b1 b b5 b4 b3 a4 a3 a2 a1 a a5
d3 d3 d2 d1 d d5 d4 c3 c2 c1 c c5 c4 b3 b2 b1 b b5 b4 a3 a2 a1 a a5 a4

d4 d4 d3 d2 d1 d d5 c2, c5 c1, c4 c, c3 c2, c5 c1, c4 c, c3 b4 b3 b2 b1 b b5 a2, a5 a1, a4 a, a3 a2, a5 a1, a4 a, a3
d5 d5 d4 d3 d2 d1 d c1 c c5 c4 c3 c2 b5 b4 b3 b2 b1 b a1 a a5 a4 a3 a2

The (X,⊗) is a COW Hv-group with fundamental classes:

a = {a, a3}, a1 = {a1, a4} , a2 = {a2, a5}, b = {b, b3}, b1 = {b1, b4} , b2 = {b2, b5},

c = {c, c3}, c1 = {c1, c4}, c2 = {c2, c5}, d = {d, d3}, d1 = {d1, d4}, d2 = {d2, d5},

and the fundamental group (X,⊗) is defined with the table:

Theorem 5.7. All multiplicative Hv-fields defined on (Z9,+, ·), which have a non-degenerate fundamental
field and satisfy the above 4 conditions, are the following isomorphic cases: We have the only one hyperproduct,

2⊗ 3 = {0, 6} or {3, 6}, 2⊗ 4 = {2, 8} or {5, 8}, 2⊗ 6 = {0, 3} or {3, 6}, 2⊗ 7 = {2, 5} or {5, 8},

2⊗ 8 = {1, 7} or {4, 7}, 3⊗ 4 = {0, 3} or {3, 6}, 3⊗ 5 = {0, 6} or {3, 6}, 3⊗ 6 = {0, 3} or {0, 6},
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⊗ a a1 a2 b b1 b2 c c1 c2 d d1 d2

a a a1 a2 b b1 b2 c c1 c2 d d1 d2
a1 a1 a2 a b2 b b1 c1 c2 c d2 d d1
a2 a2 a a1 b1 b2 b c2 c c1 d1 d2 d

b b b1 b2 a a1 a2 d d1 d2 c c1 c2
b1 b1 b2 b a2 a a1 d1 d2 d c2 c c1
b2 b2 b b1 a1 a2 a d2 d d1 c1 c2 c

c c c2 c1 d d2 d1 a a2 a1 b b2 b1
c1 c1 c c2 d2 d1 d a1 a a2 b2 b1 b

c2 c2 c1 c d1 d d2 a2 a1 a b1 b b2
d d d2 d1 c c2 c1 b b2 b1 a a2 a1
d1 d1 d d2 c2 c1 c b1 b b2 a2 a1 a

d2 d2 d1 d c1 c c2 b2 b1 b a1 a a2

3⊗ 7 = {0, 3} or {3, 6}, 3⊗ 8 = {0, 6} or {3, 6}, 4⊗ 5 = {2, 5} or {2, 8}, 4⊗ 6 = {0, 6} or {3, 6},

4⊗ 8 = {2, 5} or {5, 8}, 5⊗ 6 = {0, 3} or {3, 6}, 5⊗ 7 = {2, 8} or {5, 8}, 5⊗ 8 = {1, 4} or {4, 7},

6⊗ 7 = {0, 6} or {3, 6}, 6⊗ 8 = {0, 3} or {3, 6}, 7⊗ 8 = {2, 5} or {2, 8}

In all the above cases the fundamental classes are
[0] = {0, 3, 6}, [1] = {1, 4, 7}, [2] = {2, 5, 8}, and we have (Z9,+,⊗)/γ∗ ∼= (Z3,+, ·).

Example 5.8. 8 Consider the 2 × 2 upper triangular Hv-matrices on the above Hv-field (Z9,+,⊗) of the
case that only 2⊗ 8 = {4, 7} is a hyperproduct. We set, for i = 1, 2, . . . , 8,

a = E11 + E22, ai = E11 + iE12 +E22,

b = E11 + 8E22, bi = E11 + iE12 + 8E22,

then, for X = {a, a1, . . . , a8, b, b1, . . . , b8}, we obtain the following table:
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⊗ a a1 a2 a3 a4 a5 a6 a7 a8 b b1 b2 b3 b4 b5 b6 b7 b8
a a a1 a2 a3 a4 a5 a6 a7 a8 b b1 b2 b3 b4 b5 b6 b7 b8
a1 a1 a2 a3 a4 a5 a6 a7 a8 a b8 b b1 b2 b3 b4 b5 b6 b7
a2 a2 a3 a4 a5 a6 a7 a8 a a1 b4, b7 b5, b8 b, b6 b1, b7 b2, b8 b, b3 b1, b4 b2, b5 b3, b6
a3 a3 a4 a5 a6 a7 a8 a a1 a2 b6 b7 b8 b b1 b2 b3 b4 b5
a4 a4 a5 a6 a7 a8 a a1 a2 a3 b5 b6 b7 b8 b b1 b2 b3 b4
a5 a5 a6 a7 a8 a a1 a2 a3 a4 b4 b5 b6 b7 b8 b b1 b2 b3
a6 a6 a7 a8 a a1 a2 a3 a4 a5 b3 b4 b5 b6 b7 b8 b b1 b2
a7 a7 a8 a a1 a2 a3 a4 a5 a6 b2 b3 b4 b5 b6 b7 b8 b b1
a8 a8 a a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5 b6 b7 b8 b
b b b1 b2 b3 b4 b5 b6 b7 b8 a a1 a2 a3 a4 a5 a6 a7 a8
b1 b1 b2 b3 b4 b5 b6 b7 b8 b a8 a a1 a2 a3 a4 a5 a6 a7
b2 b2 b3 b4 b5 b6 b7 b8 b b1 a4, a7 a5, a8 a, a6 a1, a7 a2, a8 a, a3 a1, a4 a2, a5 a3, a6
b3 b3 b4 b5 b6 b7 b8 b b1 b2 a6 a7 a8 a a1 a2 a3 a4 a5
b4 b4 b5 b6 b7 b8 b b1 b2 b3 a5 a6 a7 a8 a a1 a2 a3 a4
b5 b5 b6 b7 b8 b b1 b2 b3 b4 a4 a5 a6 a7 a8 a a1 a2 a3
b6 b6 b7 b8 b b1 b2 b3 b4 b5 a3 a4 a5 a6 a7 a8 a a1 a2
b7 b7 b8 b b1 b2 b3 b4 b5 b6 a2 a3 a4 a5 a6 a7 a8 a a1
b8 b8 b b1 b2 b3 b4 b5 b6 b7 a1 a2 a3 a4 a5 a6 a7 a8 a

The (X,⊗) is a COW Hv-group with fundamental classes: a = {a, a3, a6}, a1 = {a1, a4, a7}, a2 =
{a2, a5, a8}, b = {b, b3, b6}, b1 = {b1, b4, b7}, b2 = {b2, b5, ab}, and the fundamental group (X,⊗) is defined
with the table:

⊗ a a1 a2 b b1 b2
a a a1 a2 b b1 b2
a1 a1 a2 a b2 b1 b

a2 a2 a a1 b1 b2 b

b b b1 b2 a a1 a2
b1 b1 b2 b a2 a a1
b2 b2 b b1 a1 a2 a

Example 5.9. Consider the 2× 2 upper triangular Hv-matrices on the above Hv-field (Z9,+,⊗) of the case
that only 2⊗ 8 = {4, 7} is a hyperproduct. We set i = 1, 2, . . . , 8,

a = E11 + E22, ai = E11 + iE12 +E22,

b = E11 + 4E22, bi = E11 + iE12 + 4E22,

c = E11 + 7E22, ci = E11 + iE12 + 7E22,

then, for X = {a, a1, . . . , a8, b, b1, . . . , b8, c, c1, . . . , c8}, we obtain the following table:
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⊗ a a1 a2 a3 a4 a5 a6 a7 a8 b b1 b2 b3 b4 b5 b6 b7 b8 c c1 c2 c3 c4 c5 c6 c7 c8
a a a1 a2 a3 a4 a5 a6 a7 a8 b b1 b2 b3 b4 b5 b6 b7 b8 c c1 c2 c3 c4 c5 c6 c7 c8
a1 a1 a2 a3 a4 a5 a6 a7 a8 a b4 b5 b6 b7 b8 b b1 b2 b3 c7 c8 c c1 c2 c3 c4 c5 c6
a2 a2 a3 a4 a5 a6 a7 a8 a a1 b2, b8 b, b3 b1, b4 b2, b5 b3, b6 b4, b7 b, b6 b1, b7 b4, b7 c5 c6 c7 c8 c c1 c2 c3 c4
a3 a3 a4 a5 a6 a7 a8 a a1 a2 b3 b4 b5 b6 b7 b8 b b1 b2 c3 c4 c5 c6 c7 c8 c c1 c2
a4 a4 a5 a6 a7 a8 a a1 a2 a3 b7 b8 b b1 b2 b3 b4 b5 b6 c1 c2 c3 c4 c5 c6 c7 c8 c
a5 a5 a6 a7 a8 a a1 a2 a3 a4 b2 b3 b4 b5 b6 b7 b8 b b1 c8 c c1 c2 c3 c4 c5 c6 c7
a6 a6 a7 a8 a a1 a2 a3 a4 a5 b6 b7 b8 b b1 b2 b3 b4 b5 c6 c7 c8 c c1 c2 c3 c4 c5
a7 a7 a8 a a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 b7 b8 b c4 c5 c6 c7 c8 c c1 c2 c3
a8 a8 a a1 a2 a3 a4 a5 a6 a7 b5 b6 b7 b8 b b1 b2 b3 b4 c2 c3 c4 c5 c6 c7 c8 c c1
b b b1 b2 b3 b4 b5 b6 b7 b8 c c1 c2 c3 c4 c5 c6 c7 c8 a a1 a2 a3 a4 a5 a6 a7 a8
b1 b1 b2 b3 b4 b5 b6 b7 b8 b c4 c5 c6 c7 c8 c c1 c2 c3 a7 a8 a a1 a2 a3 a4 a5 a6
b2 b2 b3 b4 b5 b6 b7 b8 b b1 c2, c8 c, c3 c1, c4 c2, c5 c3, c6 c4, c7 c5, c8 c, c6 c1, c7 a5 a6 a7 a8 a a1 a2 a3 a4
b3 b3 b4 b5 b6 b7 b8 b b1 b2 c3 c4 c5 c6 c7 c8 c c1 c2 a3 a4 a5 a6 a7 a8 a a1 a2

b4 b4 b5 b6 b7 b8 b b1 b2 b3 c7 c8 c c1 c2 c3 c4 c5 c6 a1 a2 a3 a4 a5 a6 a7 a8 a
b5 b5 b6 b7 b8 b b1 b2 b3 b4 c2 c3 c4 c5 c6 c7 c8 c c1 a8 a a1 a2 a3 a4 a5 a6 a7
b6 b6 b7 b8 b b1 b2 b3 b4 b5 c6 c7 c8 c c1 c2 c3 c4 c5 a6 a7 a8 a a1 a2 a3 a4 a5
b7 b7 b8 b b1 b2 b3 b4 b5 b6 c1 c2 c3 c4 c5 c6 c7 c8 c a4 a5 a6 a7 a8 a a1 a2 a3

b8 b8 b b1 b2 b3 b4 b5 b6 b7 c5 c6 c7 c8 c c1 c2 c3 c4 a2 a3 a4 a5 a6 a7 a8 a a1
c c c1 c2 c3 c4 c5 c6 c7 c8 a a1 a2 a3 a4 a5 a6 a7 c8 b b1 b2 b3 b4 b5 b6 b7 b8
c1 c1 c2 c3 c4 c5 c6 c7 c8 c a4 a5 a6 a7 a8 a a1 a2 a3 b7 b8 b b1 b2 b3 b4 b5 b6
c2 c2 c3 c4 c5 c6 c7 c8 c c1 a2, a8 a, a3 a1, a4 a2, a5 a3, a6 a4, a7 a5, a8 a, a6 a1, a7 b5 b6 b7 b8 b b1 b2 b3 b4
c3 c3 c4 c5 c6 c7 c8 c c1 c2 a3 a4 a5 a6 a7 a8 a a1 a2 b3 b4 b5 b6 b7 b8 b b1 b2
c4 c4 c5 c6 c7 c8 c c1 c2 c3 a7 a8 a a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 b7 b8 b
c5 c5 c6 c7 c8 c c1 c2 c3 c4 a2 a3 a4 a5 a6 a7 a8 a a1 b8 b b1 b2 b3 b4 b5 b6 b7
c6 c6 c7 c8 c c1 c2 c3 c4 c5 a6 a7 a8 a a1 a2 a3 a4 a5 b6 b7 b8 b b1 b2 b3 b4 b5
c7 c7 c8 c c1 c2 c3 c4 c5 c6 a1 a2 a3 a4 a5 a6 a7 a8 a b4 b5 b6 b7 b8 b b1 b2 b3
c8 c8 c c1 c2 c3 c4 c5 c6 c7 a5 a6 a7 a8 a a1 a2 a3 a4 b2 b3 b4 b5 b6 b7 b8 b b1

The (X,⊗) is a COW Hv-group with fundamental classes: a = {a, a3, a6}, a1 = {a1, a4, a7}, a2 =
{a2, a5, a8}, b = {b, b3, b6}, b1 = {b1, b4, b7}, b2 = {b2, b5, ab}, c = {c, c3, c6}, c1 = {c1, c4, c7}, c2 = {c2, c5, c8},
and the fundamental group (X,⊗) is defined with the table:

⊗ a a1 a2 b b1 b2 c c1 c2
a a a1 a2 b b1 b2 c c1 c2
a1 a1 a2 a b1 b2 b c1 c2 c

a2 a2 a a1 b2 b b1 c2 c c1
b b b1 b2 c c1 c2 a a1 a2
b1 b1 b2 b c1 c2 c a1 a2 a

b2 b2 b b1 c2 c c1 a2 a a1
c c c1 c2 a a1 a2 b b1 b2
c1 c1 c2 c a1 a2 a b1 b2 b

c2 c2 c c1 a2 a a1 b2 b b1

Theorem 5.10. All multiplicative Hv-fields on (Z10,+, ·), with a non-degenerate fundamental field, and
satisfy the above 4 conditions, are the following isomorphic cases:
(I) We have the only one hyperproduct,

2⊗ 4 = {3, 8}, 2⊗ 5 = {0, 5}, 2⊗ 6 = {2, 7}, 2⊗ 7 = {4, 9}, 2⊗ 9 = {3, 8},

3⊗ 4 = {2, 7}, 3⊗ 5 = {0, 5}, 3⊗ 6 = {3, 8}, 3⊗ 8 = {4, 9}, 3⊗ 9 = {2, 7},
4⊗ 5 = {0, 5}, 4⊗ 6 = {4, 9}, 4⊗ 7 = {3, 8}, 4⊗ 8 = {2, 7},
5⊗ 6 = {0, 5}, 5⊗ 7 = {0, 5}, 5⊗ 8 = {0, 5}, 5⊗ 9 = {0, 5},

6⊗ 7 = {2, 7}, 6⊗ 8 = {3, 8}, 6⊗ 9 = {4, 9}, 7⊗ 9 = {3, 8}, 8⊗ 9 = {2, 7}.
In all these cases the fundamental classes are

[0] = {0, 5}, [1] = {1, 6}, [2] = {2, 7}, [3] = {3, 8}, [4] = {4, 9} and (Z10,+,⊗)/γ∗ ∼= (Z5,+, ·).
(II) The cases with classes [0] = {0, 2, 4, 6, 8} and [1] = {1, 3, 5, 7, 9}, and with fundamental field (Z10,+,⊗)/γ∗ ∼=
(Z2,+, ·), are described as follows: In the multiplicative table only the results above the diagonal, we raise
each of the products by putting one element of the same class of the results. We do not raise setting 1, and
we cannot raise only the 3⊗ 7 = 1. The number of those Hv-fields is 103.
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