
 
 
 
 
 
 
 
 

1 

Journal of Structural Engineering and Geotechnics, 

7 (2), 1-13 , Summer  2017 

QIAU 

Prediction of mechanical and fresh properties of self-consolidating 
concrete (SCC) using multi-objective genetic algorithm (MOGA) 

Reza Jelokhani Niarakia, Reza Farokhzad*,b 

aDepartment of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran. 
bAssistance Professor, Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran. 

Received 14 April 2017, Accepted 26 June 2017 

Abstract 
Compressive strength and concrete slump are the most important required parameters for design, depending on many 
factors such as concrete mix design, concrete material, experimental cases, tester skills, experimental errors etc. Since 
many of these factors are unknown, and no specific and relatively accurate formulation can be found for strength and 
slump, therefore, the concrete properties can be improved to an acceptable level using the neural networks and genetic 
algorithm. In this research, having results of experimental specimens including soil classification parameters, water to 
cement ratio, cement content, super-lubricant content, compressive strength, and slump flow, using the MATLAB software, 
the perceptron neural network training, general regression neural network, and radial base function neural network are 
considered, and then, with regard to coefficient of determination (R2) criteria and mean absolute error, the above networks 
are compared, and the proper neural network was identified, and finally, using the multi-layer perceptron neural network as 
the chosen network as well as multi-objective genetic algorithm fitting function, the 28-day compression strength and 
slump flow of self-compacting concrete are simultaneously optimized. 

Keywords: Neural networks, Genetic Algorithm, Self-Compacting Concrete, Strength, Slump  

1. Introduction 

Concrete consists of two pulp and aggregate parts, 
the pulp contains cement and water, and chemical 
reaction between two substances, which is called 
hydration, leads to aggregates conjunction. There 
are many factors affecting concrete mixing design, 
including water to cement ratio, cement content, 
lubricant content, and types of aggregates and 
suitable granulation range of aggregates, which are 
obtained using the soil mechanic functional 
equations (coefficient of uniformity and coefficient 
of curvature). Self-compacting concrete is a new 
branch of medium to high strength concrete, and a 
new technology in the construction, filling the 
template without vibrations undergoing its own 
weight among the massive structural flowing 
components, not separating the aggregates from 
mortar [1-3]. Many numeral methods such as 
neural networks are used increasingly in civil 
engineering [4-8]. The concrete modeling is 
complex, due to its composite nature, however,  
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many regression equations are obtained using 
experimental results, but these equations have 
many errors for data that has not experienced it 
earlier. The artificial neural networks (ANN) have 
been highly effective in predicting the compressive 
strength of concrete in cases where the relationship 
between input and output data are nonlinear [9, 
10]. However, many studies have been performed 
in estimating compressive strength of concrete 
using neural networks [8, 9, 11-19]. The genetic 
algorithm is a statistical method for optimization 
and search. The genetic algorithm is a part of 
evolutionary calculations, which is a part of the 
artificial intelligence. The specific properties of 
this algorithm make it impossible to consider it as 
a simple random explorer. In fact, the idea of this 
method was first introduced by Netherlands in the 
optimization field. The genetic algorithm is a 
global technique of optimization for complex, 
nonlinear, and multi-dimensional problems, which 
is performed based on the natural selection, 
transplantation and mutation mechanism that is 
inspired by the nature [20]. In civil engineering, 
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many studies have been conducted using the 
genetic algorithm in the field of concrete [21-24]. 
In this research, using 38 experimental data with 
input results including water to cement ratio, 
cement content, lubricant content, and soil 
granulation parameters, and output results are 28-
day compressive strength and slump of self-
compacting concrete, which focus on single-layer 
and multi-layer perceptron neural networks 
training, general regression, and radial base 
function neural network, and then, the neural 
networks are compared with respect to R2 and 
MAE¸ and an appropriate neural network was 
selected, and finally, using the selected neural 
network as the multi-objective genetic algorithm 
fitness function, the compressive strength and self-
compacting slump were simultaneously optimized 
using the genetic algorithm. 

2. Neural network 

Artificial neural networks are among the methods 
that can estimate numerous nonlinear cases in the 
data as a flexible computational framework for a 
wide range of nonlinear problems. In fact, the 
neural networks are educational systems that are 
often trained from a dataset to solve complicated 
problems, and use the acquired knowledge to solve 
the unobserved data, therefore, they are called self-
organizing systems. In fact, the artificial neural 
network is a data processing system, by obtaining 
the idea from human brain, giving the data 
processes to many small processors that are 
interconnected in a network in parallel to solve a 
problem. In these networks, with the help of 
programming knowledge, a data structure is 
designed that can act like the neural neurons. 
In the neural network, in the input data layer, the 
input data is given to the network, and in the 
output layer, the results of network are calculated. 
The number of input and output network neurons 
are obtained with respect to number of input and 
output data, and the number of network layers and 
neurons are obtained using trial and error. In order 
to access the relationship between input and output 
data, the network must be trained. First, the 
network inputs enter the input layer neurons and 
transferred to the output layer through the 
connections (synaptic weights), and the output is 
calculated, then, the network compares the 
calculated output and objective output, and with 
regard to the differences, the network weights 
(inter-neuron relationship) are adjusted. The 
accuracy of the neural network is calculated using 

coefficient of determination (R2) and mean 
absolute error (MAE). 

 

Rଶ = 1 −
∑(y − y	ෝ)ଶ

∑(y − y)ଶ
																																														(1) 

 

MAE =
1
n
|y − yො|
୬

୧ୀଵ

																																													(2) 

 

In equations (1) and (2), y is the real value of the 
objective, yො	is the output value of the neural 
network, and yത	is the mean value of the objective 
function. The closer value of R2 to the number 
one, the value predicted by the network is closer to 
reality, and the network has less error.  

3. Genetic algorithm 
Genetic algorithm is an algorithm based on the 
natural selection and natural genetic mechanism. 
This algorithm chooses the most appropriate 
strings among randomly organized 
information[22]. In each generation, a new group 
of strings are created using the best parts of 
previous sequences and new random section to 
achieve a proper solution. At the time of event 
simulation, the genetic algorithms don’t pass the 
simple event simulation, but also mix the previous 
data with thought of choosing the new search 
points to achieve the desired progress. In the 
genetic algorithm, a series of design variables are 
encoded by strings that are called chromosomes in 
the biological system. In the simple genetic 
algorithm, the design variables are defined with 
strings containing 0 and 1, each of the numbers 0 
and 1 in each variable is called a gene, and value 
of 0 and 1 for each gene is called allele. For 
example, if an optimization problem has three 
design variables, and each design variable contains 
five genes, in general, the chromosome used in the 
genetic algorithm will contain 15 bits. Each string 
and chromosome contain design variables, 
representing a point in the problem search space. 
The genetic algorithms are a duplicate process, 
calling the repetitive step and a series of 
chromosomes in each generation as generation and 
population, respectively. The genetic algorithm 
performs the main search in the response space, 
which began with start of generation, which is 
responsible for creating a series of initial points 
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and determined randomly. Since the genetic 
algorithm uses statistical methods to direct search 
operations toward the optimal point, in a process 
that depends on natural selection, the existing 
population is selected for the next generation with 
regard to the fitness of individuals. The genetic 
operators include selection, transplantation, and 
mutation, after applying these operators to the 
initial population, a new population replaces the 
previous population and the cycle continues. 
Often, a new population has more fitness, which 
means that the population is improved based on 
statistical relationships from a generation to 
another generation. The search will be effective 
when the convergence is obtained, or the stopping 
criteria for genetic algorithms are achieved. For the 
production of the concrete mixtures a rotating 
planetary type cylindrical mixer with two blades 
was used. (Fig. 1) 

3. 1. Multi-objective genetic algorithm with 
non-dominated sorting 

This algorithm is turned into a multi-objective 
algorithm by adding two essential operators to a 
normal single-objective genetic algorithm, which 
finds a series of best solutions instead of the best 
solution, which are known as Pareto front[22]. 
These two operators including 1. An operator that 
gives a rank superior criteria to the population 
based on non-dominated sorting, 2. An operator 
that maintains the variety of solution among 
solutions with crowding distance.  

 

 

 

 
 

Figure.1, General schematic of genetic algorithm 
 

  
 

Genetic Algorithm 

Begin 

Choose initial population 

Evaluate the individual fitness of a certain proportion of the population 

Select pairs of best-ranking individuals to reproduce 

Apply crossover operator 

Apply mutation operator 

Continue until terminating condition 
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4. Experimental data 

Experimental data consists of 38 self-compacting 
mixing designs such as input parameters including 
cement, water to cement ratio, super lubricant, 
coefficient of curvature (cc), coefficient of 
uniformity (cu), and output parameters such as 28-
day self-compacting compressive strength of 
concrete and slump flow. For the purposes of the 
current study, Portland cement (type II) was used 

to build the concrete. The fine aggregate used was 
natural sand with the bulk specific gravity of 2640 
kg/m3 ranging from 0.075 mm to 4.75 mm. The 
coarse aggregate was the natural crushed gravels 
passed through 19 mm, retained on 4.75 mm with 
a specific gravity of 2580 kg/m3. In Table 1, the 
mixing designs, corresponding values of 
compressive strength, and slump flow have been 
shown[25]. 

 
Table 1. Mixing design[25] 

No. cu cc W/C 
Cement 
Content 
(Kg/m3) 

Super-
plasticizer 

(%) 

Slump 
flow (mm) 

Compressive 
Strength 28-
days (MPa) 

1 10 0.45 0.4 500 10 725 18.3 
2 9.06 0.49 0.4 500 7.5 790 22 
3 9.95 0.99 0.4 500 4.5 760 24.5 
4 9.31 1.06 0.35 450 1.5 735 32.2 
5 9.31 1.06 0.45 450 1.4 700 33 
6 9.31 1.06 0.4 550 1.8 700 50.8 
7 9.95 0.99 0.35 450 16 763 10.8 
8 9.95 0.99 0.4 450 6 670 28 
9 9.95 0.99 0.45 500 0.25 630 39.6 
10 9.95 0.99 0.4 550 0.5 810 44.9 
11 9.95 0.99 0.45 550 0.35 795 48.8 
12 11.64 0.96 0.4 500 1.3 725 38.3 
13 12.36 0.92 0.4 500 0.6 725 38.6 
14 14.36 0.78 0.4 500 0.6 740 34.4 
15 15.27 0.74 0.4 500 1 730 47 
16 15.27 0.73 0.4 500 1.1 710 48.7 
17 7.2 1.09 0.35 450 2.5 450 40.1 
18 7.2 1.09 0.4 500 0.5 697 44.3 
19 7.2 1.09 0.45 550 0.1 695 43 
20 8.4 1.01 0.4 450 0.45 605 31.4 
21 8.4 1.01 0.45 450 0.25 610 48.8 
22 8.4 1.01 0.45 500 0.25 630 39 
23 8.4 1.01 0.35 550 1.3 780 45.5 
24 8.4 1.01 0.45 550 0.25 550 59.9 
25 9.31 1.06 0.4 450 1.5 685 28 
26 9.31 1.06 0.35 500 1.4 720 31 
27 9.31 1.06 0.4 500 0.5 710 34.8 
28 9.31 1.06 0.45 500 0.4 650 39.9 
29 9.31 1.06 0.35 550 2.1 785 44.5 
30 9.95 0.99 0.35 550 1.25 780 50.7 
31 8.4 1.01 0.35 500 1.4 525 45.1 
32 9.31 1.06 0.45 550 1 800 48.7 
33 9.95 0.99 0.45 450 2 666 29.3 
34 9.95 0.99 0.35 500 4.5 733 45.4 
35 9.95 0.99 0.4 500 0.6 785 59.8 
36 8.4 1.01 0.35 450 1.6 500 34.7 
37 8.4 1.01 0.4 500 0.35 530 34.6 
38 8.4 1.01 0.4 550 0.55 680 45.9 

 



Journal of Structural Engineering and Geotechnics, 7 (2), 1-13, Summer 2017  

5 

 

4. 1. Coefficient of uniformity (Cu) 

This parameter  is  selected to express the 
distribution of particles based on their size, and 
expresses the quality of seed distribution, in other 
words, Cu expresses the degree of uniformity and 
granulation of particles and aggregates. The larger 
the Cu, the greater is the distribution of aggregates. 

 

(3)    Cu =	లబ
భబ
																																					  

 

where D60 is the sieve size that 60% of the 
aggregates can pass through it, and D10 is the sieve 
size that 10% of the aggregates can pass through it.  

4. 2. Coefficient of curvature (Cc) 

Since the coefficient of uniformity cannot 
precisely determine the certain size of the seeds at 
a distance of D60 and D10, the coefficient of 
curvature is used. The value of Cc shows the 
granulation curved shape between D60 and D10. 
The farther Cc from the unit suggests no grain size 
between D60 and D10. This parameter can also be 
used to detect the granulation that lacks a part of 
particles with specific size.  
where D30 is the sieve size that 30% of the 
aggregates have passed through it, D60 is the sieve 
size that 60% of the aggregates have passed 
through it, and D10 is the sieve size that 10% of 
the aggregates have passed through it.  
 

    Cc = ୈయబమ

ୈభబ	×ୈలబ
																																			(4)   

 

4. 3. Slump flow test 

Slump flow test is performed to determine the 
freedom of self-compacting concrete motion on the 
horizon when there is no obstruction. The test is 
based on the principles, which is the basis of 
typical slump test. The diameter of circle that 
concrete makes after dispersion will be the 
concrete impregnation criteria. (Fig. 2) 
  

 

(a) 
 

 
 (b) 

Figure. 2, A and B Slump flow test[25] 
 

5. Neural network training 

5. 1. Perceptron neural network training 

In order to achieve the desirable neural network, 
the single-layer perceptron neural network and 
multi-layer perceptron neural network (MLP) were 
studied. Determining the structure of ANNs in 
perceptron networks means to determine the 
number of the hidden layers and number of 
neurons per layer. In all networks, 60% of the data 
were considered and randomly selected as the 
training set, 20% as validation set, and 20% as 
testing set. In Table 2, for selecting the proper 
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numbers of the hidden layer neurons for modeling, 
using the perceptron neural network, number of 
100 replications were performed. Thus, in each 
replication, from the number of 1 to 20 neurons in 
the hidden layer, the number of neurons with better 
performance of the model based on the R2 
criterion was selected. A number of 100 of 
replications were considered for a decrease in 
effectiveness of results of the perceptron neural 
network models to the initial weights as well as 

recognizable the number of neurons with greater 
chance of better performance of the model.  

5. 2. GRNN and RBFNN Neural network 
training 

In Table 3, in the GRNN and RBFNN neural 
networks, the dispersion of networks parameter is 
obtained using trial and error (in order to 
determine the appropriate dispersion of models) 
with mutual accreditation approach (to prevent the 
exact fitting of the models).  

 

Table 2. Suitable number of neurons for neural network 

Number of best 
neuron Neural network Number of best 

neuron Neural network 

12 perceptron neural network with one 
hidden layer in prediction of slump 16 

perceptron neural network with two 
hidden layer in prediction of slump  

for the second layer 

1 
perceptron neural network with one 

hidden layer in prediction of 
compressive strength 

18 

Perceptron neural network with two 
hidden layer in prediction of 

compressive strength for the second 
layer 

10 
Perceptron neural network with one 

hidden layer in prediction of 
compressive strength and slump 

5 

Perceptron neural network with two 
hidden layer in prediction of 

compressive strength and slump for 
the first layer 

12 
Perceptron neural network with two 

hidden layer in prediction of slump  for 
the first layer 

8 

Perceptron neural network with two 
hidden layer in prediction of 

compressive strength and slump for 
the second layer 

 

Table 3. Dispersion parameter for RBFNN and GRNN neural networks 

GRNN neural network RBFNN neural network 

out put  spread parameter out put  spread parameter 

slump flow 1.1 slump flow 0.5 

compressive strength 1.5 compressive strength 0.2 

Slump flow and compressive 
strength  1.1 Slump flow and compressive 

strength   0.5 
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6. Statement and analysis of results 

In Table 4, the values of R2 and MAE have been 
shown for the perceptron neural network as a 
single-objective and multi -objective network. In 
single-objective networks, the values of R2 are 
higher than the multi-objective networks, and in 
general, for both network cases, the value of R2 in 
the training data is greater than validation and 
testing data. It can also be seen that the accuracy of 
perceptron network in predicting the slump flow is 

higher than 28-day compressive strength of self-
compacting concrete.  
In Table 5, the values of R2 and MAE have been 
shown for the GRNN and RBFNN neural networks 
as single-objective and multi-objective networks. 
In general, in single-objective networks, the values 
of R2 is higher than the multi-objective networks, 
in the RBFNN network, the values of R2 in the 
validation and testing data are very low and close 
to zero. Also, the value of R2 in GRNN network is 
also low for validation and testing data. 

  
Table 4. Values of R2 and MAE for the perceptron neural network 

neural network type out put 
R2 MAE 

train validation test train validation test 

Perceptron neural 
network with one  

hidden layer 

slump flow 0.90 0.78 0.77 17.59 29.33 57.47 

28- day compressive strength 0.77 0.73 0.64 4.1 4.24 11.64 

together 
slump flow 0.67 0.55 0.30 33.79 44.86 76.91 

28- day compressive 
strength 0.64 0.61 0.55 5.94 4.27 6.46 

Perceptron neural 
network with two 

hidden layer 

slump flow 1.00 0.88 0.78 0 48.94 40.89 

28- day compressive strength 0.68 0.83 0.66 4.57 6.14 7.75 

together 
slump flow 0.76 0.89 0.73 27.53 26.74 61.48 

28- day compressive 
strength 0.53 0.57 0.43 5.56 3.41 4.12 

 
Table 5. Values of R2 and MAE for the RBFNN and GRNN neural networks 

neural network 
type out put 

R2 MAE 
train validation test train validation test 

GRNN neural 
network 

slump flow 0.83 0.37 0.31 22.8 53.65 77.89 

28- day compressive strength 0.86 0.69 0.06 2.92 4.52 8.32 

together 
slump flow 0.83 0.37 0.31 22.8 53.65 77.89 

28- day compressive 
strength 0.88 0.70 0.08 2.52 4.43 8.2 

RBFNN neural 
network 

slump flow 1.00 0.01 0.03 0 59.17 98.97 

28- day compressive strength 1.00 0.39 0.00 0 5.56 10.29 

together 
slump flow 1.00 0.01 0.03 0 59.17 98.97 

28- day compressive 
strength 1.00 0.27 0.02 0 5.6 10.52 
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According to the results shown in Tables 4 and 5, 
and evaluating the values of MAE and R2 in the 
neural networks, it was determined that the multi-
layer single-objective perceptron neural network 
and 28-day compressive strength show better 
results. The suitable number of neurons in this 
network is 4 for the first layer and 18 for the 
second layer, which is selected as the proper neural 
network for modeling. Fig. 3 compares the 
Experimental and predicted results by multi-layer 
perceptron neural network for slump flow, the data 
of 1 to 38 are classified as training, validation and 
testing data, respectively. The data of 1 to 22 
belong to training data, the data of 22 to 30 belong 
to validation data, and data of 30 to 38 belong to 
testing data. First, in the training data, the 
deviation had been close to zero, indicating that 
the network training was highly ideal with respect 
to the training data, and the network has been very 
effective in this regard. However, in the validation 
and testing data, the deviation is increased since 
the network has not been trained undergoing these 
data. Fig. 4 shows the Experimental results 
predicted by the multi-layer perceptron neural 
network for 28-day compressive strength of self-

compacting concrete. In this figure, the data of 1 to 
38 have been classified as training, validation, and 
testing data. At the beginning of the figure, which 
is belonged to the training data, a small amount of 
deviation can be seen, however, moving towards 
validation and testing data, the deviation is 
increased. 
Fig. 5 shows dispersion of the predicted data by 
the multi-layer perceptron neural network and 
experimental data compared to the ideal status for 
28-day compressive strength of self-compacting 
concrete. Due to the higher frequency of 
experimental data in the compressive strength of 
30 MPa. to 50 MPa., the data dispersion is in 
desirable status, also the majority of points are 
located in ± 20% tolerance range of ideal status. In 
Fig. 6, the dispersion of predicted data using the 
multi-layer perceptron neural network and the 
experimental data can be seen by the ideal status 
for slump flow of self-compacting concrete. The 
majority of points for slump data are in range of ± 
10% of ideal status, having a better status 
compared to the compressive strength data.  

 

 

 
Figure. 3. Comparing the results of perceptron neural network data with experimental data for slump flow of self-

compacting concrete 
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Figure.4. Comparing the results of perceptron neural network data with experimental data for compressive strength of self-

compacting concrete 
 

 
Figure, 5. Dispersion of results of the neural network for compressive strength (MPa) compared to experimental data 
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Figure. 6. Dispersion of results of the neural network for slump flow (mm) compared to the experimental data 

 
Table 6 shows the variables of multi -objective 
genetic algorithm with the number of its cases. The 
number of variables of genetic algorithm is 
considered 4, including lubricant content, cement 
content, water to cement ratio, and soil mechanical 
parameters (coefficient of uniformity and 
coefficient of granulation). In order to determine 
the suitable genes for the multi-objective genetic 
algorithm, first, the frequency of input variables 
were determined, and then, for equal probability 
between variables, the number of the genetic 
algorithm was considered 6. In Table 7, a sample 
of the input chromosome to a multi-objective 
genetic algorithm shows that it is consisted of 4 
variables, and each variable contains 6 genes as 0 
and 1. For simultaneous optimization of the  

compressive strength and slump flow of self-
compacting concrete using genetic algorithm, the 
numbers of 1000 generations were used, and for 
selecting the best mixing design, for simultaneous 
increase in 28-day compressive strength and slump 
flow using trial and error, the different values of 
intersection, population, mutation, migration 
parameters of the genetic algorithm were used. In 
Table 8, values of the desirable parameters 
obtained from trial and the errors have been shown 
for multi-objective genetic algorithm. The 
maximum accumulation of solutions is limited to 
the range containing slump of 1050 to 1150 mm 
and compressive strength of 75 to 80 MPa. It can 
be seen that in the results with decrease in slump, 
the compressive strength is increased.

 
Table 6. Number of input variables cases 

Cu Cc W/C Cement Content (Kg/m3) Super-plasticizer (%) 

10 0.45 
0.35 450 

0.1 1.4 

9.06 0.49 0.25 1.5 
15.27 0.73 0.35 1.6 
15.27 0.74 

0.4 500 

0.4 1.8 
14.36 0.78 0.45 2 
12.36 0.92 0.5 2.1 
11.64 0.96 0.55 2.5 
9.95 0.99 0.6 4.5 
8.4 1.01 

0.45 550 
1 6 

9.31 1.06 1.1 7.5 

7.2 1.09 1.25 10 
1.3 16 

11 case   11 case   3 case   3 case   24 case 
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Table 7. A sample of input chromosome to multi-objective genetic algorithm as 0 and 1 data 

1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 

CU , CC W/C cement content  super plasticizer  

 

Table 8. Parameters obtained from multi-objective genetic algorithm 
cross over population size mutation migration selection 

0.85 50 3 2 2 

 

Table 9. Results obtained from the genetic algorithm 

No. Slump flow 
(mm) 

Compressive 
Strength 28-days 

(MPa) 
cu cc W/C 

Cement 
Content 
(Kg/m3) 

Super-
plasticizer (%) 

1 1094.8 78.34 15.27 0.73 0.4 550 2.5 

2 1073.1 80.02 15.27 0.73 0.4 550 4.5 

3 1108.5 62.7 15.27 0.74 0.45 550 4.5 

4 721.6 104.01 10 0.45 0.45 550 16 

5 1095.2 77.42 15.27 0.73 0.4 550 2.1 

6 1105.3 76.43 15.27 0.74 0.4 550 2.1 

7 1105 77.1 15.25 0.74 0.4 550 2.5 

8 809.9 95.03 10 0.45 0.45 550 10 

 

In Table 9, a series of solution obtained from the 
genetic algorithm, including eight solutions with 
different values of slump flow and 28-day 
compressive strength of self-compacting concrete 
along with input variables. The multi-objective 
genetic algorithm has simultaneously increased 
two output objectives, with regard to the input with 
increase in coefficient of uniformity, causing the 
separation of aggregates. Also, in the results that 
the compressive strength is increased, the 
coefficient of uniformity and coefficient of 
granulation are decreased, and lubricant content is 
increased. 

7. Conclusions 

Neural networks are a powerful tool to find a 
relationship between input and output data for the 
non-linear and complex problems. This methods  
 

 
 

are mixed with metaheuristic algorithms, which 
are not  
problem-oriented algorithms and used for a variety 
of problems. The benefit of the proposed approach 
are listed as follows 
1. It was observed that the perceptron neural 

network is more accurate than other neural 
networks in estimating the compressive 
strength of concrete, and superiority of all 
statistical indicators of this neural network to 
other neural networks indicated this fact.  

2. In order to obtain a more accurate solution of 
the neural networks approach, the number of 
cases and frequency of training variables are 
increased. 

3. Use of the multi-layer perceptron neural 
network as the fitness function of  
multi-objective genetic algorithm had a 
desirable result for the simultaneous 
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optimization of the slump flow and the 
compressive strength of self-compacting 
concrete, however, in order to prevent the 
excessive increase of slump by the multi-
objective genetic algorithm, the penalty rate 
should be written on the code of genetic 
algorithm. 

4. The advantage of using the multi-objective 
genetic algorithm is that instead of proposing 
an optimal response as the final solution of 
problem, a number of points are provided 
known as Pareto front as problem responses. 
This method also totally covered the weak 
points of solving multi-objective problems 
using the classic methods such as weighted 
sum. 

5. Dispersion of slump flow data is lower than 
the compressive strength, leading to higher 
accuracy of results of the neural network for 
predicting the slump flow compared to 28-day 
compressive strength of the self-compacting 
concrete.  
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