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Abstract 

A comprehensive and integrated study of any supply chain (SC) environment is a vital requirement that can create various advantages for 
the SC owners. This consideration causes productive managing of the SC through its whole wide components from upstream suppliers to 
downstream retailers and customers.  On this issue, despite many valuable studies reported in the current literature, considerable gaps still 
prevail. These gaps include integration and insertion of basic concepts, such as queuing theory, facility location, inventory management, or 
even fuzzy theory, as well as other new concepts such as strategic planning, data mining, business intelligence, and information technology. 
This study seeks to address some of these gaps. To do so, it proposes an integrated four-echelon multi-period multi-objective SC model. To 
make the model closer to the real world problems, it is also composed of inventory and facility location planning, simultaneously. The 
proposed model has a mixed integer linear programming (MILP) structure. The objectives of the model are reducing cost and minimizing 
the non-fill rate of customer zones demand. The cost reduction part includes cost values of raw material shipping from suppliers to plants, 
plant location, inventory holding costs in plants, distribution cost from plants to warehouses or distribution centers (DCs), and shipping 
costs from DCs to customer zones. Finally, since the literature of SC lacks efficient Pareto-based multi-objective evolutionary algorithms 
(MOEAs), a new multi-objective version of the biogeography-based optimization algorithm (MOBBO) is introduced to the literature of the 
SC. The efficiency of the algorithm is proved through its comparison with an existing algorithm called multi-objective harmony search 
(MOHS).  
Keywords: Integrated supply chain management, Production-distribution, Facility location problem, inventory balancing, Planning 
problem, MOBBO, MOHS. 

1.  Introduction 

Different definitions have been proposed for supply chain 
(SC) in the literature. Generally, it is defined as an 
integrated system of facilities and activities that 
synchronizes inter-related business functions of material 
procurement, material transformation to intermediates and 
final products and distribution of these products to 
customers (Simchi-Levi, 2000). In other words, the goal 
of the supply chain management is to integrate suppliers, 
manufacturers, warehouses, and stores, so that the 
production of the merchandises and their distribution can 
be done at the right quantities, to the right locations, and 
at the right time. The total objective of the system is to 
minimize system-wide costs while satisfying service level 
requirements of the customers.  

Since SC covers a vast range of concepts and methods, 
various issues are evolved as the subjects of the industrial 
and academic research in SC. Some common issues 
include supplier selection, production-distribution 
planning, transportation and distribution, facility location  

 
 
 
 

of the distribution centers and logistic warehouse, queuing 
issues, inventory controlling and balancing. Some 
researchers have focused on only one of these items while 
others have considered the combination of two or more of 
them.  

One of the important combinations in the literature is 
the combination of production area of the SC with the 
distribution part of it, known as production-distribution 
problems. In this class, Jayarman and Pirkul (2001) 
considered factory, distribution center, and demand area 
within their multi-product deterministic SC. Yilmaz and 
Cagatay (2006) introduced a three-stage strategic 
planning for their production-distribution network. In this 
model, which considers one product, multi-suppliers, 
multi-manufacturers, and multi-distributers, demand is 
deterministic and the objective is to minimize cost of 
production, transportation, and inventory. Some review 
papers are also presented on this subject (Erenguc et 
al.,1999, Chen, 2004). Some papers focus on inventory 
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subject in their supply chain (Muckstadt and Roundy, 
1987; Chan et al., 2002; Levi et al., 2005). Inventory has 
considerable role in the studies of SCs as the main artery 
of any supply chain. The basic SC model that considers 
this item is generally known as single warehouse multi-
retailer (SWMR) problem (Muckstadt and Roundy, 1987). 
Federgruen and Zipkin (1984) studied single period, one 
warehouse, multi-retailer problem under uncertain 
demands. Roundy (1985) proposed a policy with 98% 

effectiveness in O(nlogn)  time for analyzing a problem 
which permits no shortage or backlogging. Chan and 
Kumar (2009 a, b) investigated a manufacturing 
environment that included warehouse-scheduling problem 
in a manufacturing environment. Poon et al. (2009) 
studied order picking operations in warehouses. Another 
important issue, which is inserted into SC models, is 
facility location. Javid and Azad (2010) solved an 
integrated model of facility location, capacity, inventory, 
and routing. Bidhandi et al. (2009) developed a mixed 
linear integer programming problem of multi-commodity 
supply chain. They solved their problem using 
decomposition methods. Rappold and Van Roo (2009) 
studied two-echelon supply chain, which combined 
facility location, inventory allocation, and capacity 
investment.   

Among the presented studies, most of the researches 
are single objective (Williams 1981, Gen and Syarif, 
2005; Tsiakis and Papageorgiou, 2008). Further, some 
studies focus on multi-objective problems in the SC areas. 
This class is more realistic, because most of the real world 
problems, specifically in the complex environment of the 
SC problems, cope with several goals. In this class, 
Altiparmak et al. (2006) developed a multi-objective 
shortage forbidden model that investigated network 
structure of manufacturers and customer area. Their 
model tried to minimize costs, deliver time and balance of 
the capacity of the factories. Jolai et al. (2011) proposed a 
linear multi-objective production-distribution model. 
Their model considered a SC with multi-products, levels, 
and periods. However, they changed their model into a 
single objective model in their solving approach. Sadeghi 
et al. (2011) developed a single-vendor single-retailer in a 
multi-product supply chain. Aliakbari and Seifbarghy 
(2011) introduced a social responsible supplier selection 
model. Songsong and Lazaros (2012) also studied a multi-
objective production-distribution model. Their model 
considered a universal SC with three objectives of costs, 
response, and service level. Taherkhani and Seifbarghy 
(2012) determined the material flows in a multi-echelon 
assembly supply chain.  Shankar et al. (2013), in their 
multi-objective production-distribution, proposed single-
product four-echelon supply chain architecture. They also 
considered facility location planning in their problem. 
However, they did not consider the inventory issue in 
their integrated model. They solved their model via a 
multi-objective hybrid particle swarm optimization 
(MOHPSO) algorithm. Their approach is a Pareto-based 

approach in which the multi-objective is not converted 
into a single objective model. These approaches are more 
popular these days (Deb et al., 2001). The number of 
these algorithms is not considerable in the literature of the 
SC though. Vahdani and Sharif (2013) developed an 
inexact-fuzzy-stochastic optimization model for a closed 
loop supply chain network design problem. 

According to the literature, this research proposes an 
integrated model which fills some gaps of the literature. 
To do so, since, in the literature of SC, specifically for 
production-distribution planning problem, fewer 
researches have studied the shortage permitted 
assumption, this item is considered in our model. 
Moreover, some other terms of the inventory issue, as the 
main artery of any SC model, are included in the 
developed integrated multi-echelon multi-period 
inventory parts of the model. In addition, to make the 
model more realistic, it is also encompassed facility 
location planning. The final structure of this model is as a 
mixed integer linear programming (MILP) problem. 
Furthermore, since the literature lacks efficient Pareto-
based multi-objective evolutionary algorithms (MOEAs), 
a new multi-objective version of the biogeography-based 
optimization algorithm (MOBBO) is introduced to the 
literature of the SC. Finally, this algorithm is compared 
with an existing algorithm called MOHS (Rahmati et al. 
2013). The results are also evaluated through different 
statistical and non-statistical tests, tables, and figures.  

The paper is organized as follow. The developed 
integrated model is described in section 2. This section 
includes problem definition including all parts of the 
model ranging from assumptions and indices to objective 
functions and constraints. Section 3 presents the required 
concepts and operators of the proposed MOEA. Section 4, 
through different computational experiments, proves 
efficiency of the proposed algorithms. Section 5 
concludes the paper and presents the future works. 
 

 

 

 

 

2. Problem Definition 

In this section, the integrated SC model is described. 
The proposed SC model of this research is a multi-
echelon multi-period model which encompasses inventory 
and facility location planning simultaneously. The 
inventory part of the model includes four-echelon multi-
period inventory cost as the objective function and 
inventory balancing among different echelon within 
different periods. The structure of the proposed model is 
as MINLP. Figure 1 illustrates a simple structure of this 
model, schematically. The rest of this section defines the 
required definitions and notations and then formulates the 
main model in different subsections.    

2.1. Notations 

l: Number of suppliers (h =1, 2, …, l) 
n: Number of potential plant locations (i = 1, 2, …, n) 
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t: Number of warehouse (DC) locations (e = 1, 2, …, 
t) 

m: Number of customer zones (markets) or demand 
points (j = 1, 2, …, m) 

p: Number of components (c = 1, 2, …, p) 
s: Number of time periods (k = 1, 2, …, s) 

 

2.2. Parameters 

jkD : Average demand from markets j at time period k 

ikK : Potential capacity of plant i at time period k  

ekK : Potential capacity of warehouse e at time period k  

chkS : Supply capacity by supplier h from component c at 
time period k  

iF : Annual fixed cost of keeping open of plant i  

eF : Annual fixed cost of keeping open of warehouse e 

hcikC : Cost of making and shipping a components c from 
supply source h to plant i at time period k   

iekC : Cost of producing and shipping one unit from plant 
i to warehouse e at time period k 

ejkC : Cost of throughput and shipping one unit from 
warehouse e to customer j at time period k 

ikIC : Inventory holding cost of one unit in plant i at time 
period k 

ekIC : Inventory holding cost of one unit in warehouse e 
at time period k 

cikIC : Inventory holding cost of component c in plant i at 
time period k 

c : Consume coefficient of component c  
 
2.3. Decision variables  

iY : 1, if plant i is open, 0 otherwise  
'
eY : 1, if warehouse e is open, 0 otherwise 

hcikX : Quantity of component c shipped from supplier h 
to plant i at time period k 

'
ejkX : Quantity shipped from warehouse e to customer 

zone j at time period k 
"
iekX : Quantity shipped from plant i to warehouse e at 

time period k 

cikI : Inventory quantity of component c in plant i at time 
period k 

'
ekI : Inventory quantity in warehouse e at time period k 
"
ikI : Inventory quantity in plant i at time period k 

2.4. The main model  

This subsection presents the main proposed model as 
follows.

 

' "
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In this model, Eq.1 models the first objective function, 
which minimizes the total cost in supply chain. Total cost 
includes raw material shipping from suppliers to plants, 
plant location, inventory holding costs in plants, 
distribution cost from plants to warehouses or distribution 
centers (DCs), throughput and shipping costs from DCs to 
customer zones.  
The objective function (2) is minimizing the non-filled 
rate of customer zones demand. 
Equation (3) ensures that the total quantity shipped from a 
supplier at each period cannot exceed the supply capacity.  
Equation (4) indicates that the demand at customer zone 
should be satisfied to the maximum extend.  
Equation (5) shows that no plant can supply more than its 
capacity if the plant is opened.  
The Equation in (6) represents that no warehouse can 
supply more than its capacity if the warehouse is opened.  
Equation (7) ensures that the quantity shipped out of a 
plant cannot exceed the component quantity received.  
Consequently, equation (8) ensures that the quantity 
shipped out of a warehouse cannot exceed the quantity 
received.  
Equations (9) and (10) represent the inventory balance 
constraint in plant.  
Equation (11) is the inventory balance equation for DC. 
For example, in this equation, inventory of one unit in 

warehouse e and at time period k ( '
ekI ) is equal to the 

inventory at one time unit of previous period ( '
1ekI  ) plus 

amount of one unit shipped from plants to DC e at time 

period "

1
( )

n

iek
i

k X

 minus amount of one unit shipped 

from DC e to customer zones (CZs), at time period 

'

1
( )

m

ejk
j

k X

 . Finally, constraint (12) shows positive and 

binary variables. 
Figure 1 illustrates the diagram of this supply chain 
schematically. 

3. Solving Methodology 

As mentioned earlier, the developed model of this 
research has MINLP structure. It is proved that simpler 
model than this model are NP-Hard (Shankar et al., 2013). 
Therefore, a meta-heuristic approach is proposed to 
solved the problem. This approach introduces MOBBO 
algorithm to the SC area. This algorithm is a MOEA 
based on biogeography optimization (BBO) algorithm as 
the single objective version. BBO is a population-based 
optimization algorithm (Simon, 2008). Therefore, it has 
different similarities with other existing population-based 
algorithms like genetic algorithm (GA) or particle swarm 
optimization (PSO). Generally, in this type of algorithm 
we have a set of individuals that is called population. The 
individual in this algorithm is called habitat or island. Any 
feature of the individual (like gene in GA) here is known 
as a SIV. The fitness value of the individuals here is 
measured by high suitability index (HSI). However, it has 
some distinctive differences with the existing population-
based algorithms. For instance, in this algorithm, instead 
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of fitness value migration rates are used to guide the 
algorithm. 

 

 

Fig. 1. A four layers diagram of the proposed supply chain  

Actually, in biogeography science migration is divided 
into two different performances of the species, including 
emigration and immigration. For each of these 
performances, a specific rate is also considered called 
emigration rate ( j ) and immigration rate ( i ). 
Emigration rate determines how likely a species 
(emigrating species) shares its features with other species 
(immigrating species). Likewise, immigration rate 
determines how likely a species (immigrating species) 
accepts features from other species (emigrating species). 
In a relation with HSI, it can be expected that features 
migrate from high-HSI habitats (emigrating habitat) to 
low-HSI habitats (immigrating habitat). Therefore, by 
using migration rates, the aim of the BBO is to guide the 
optimization process in a way that the HSI is maximized 
(Rahmati and Zandieh, 2012). 
 Now, before explaining the operators of this algorithm, 
since this paper is going to introduce multi-objective 
version of the BBO, the fundamental principles and 
definitions of MOAs are introduced.   

3.1. Multi-objective principles 

 In a multi-objective problem like 
 1( ) ( ),..., ( )mf x f x f x

  
 subject to

( ) 0, 1,2,..., ,ig x i c x X  
 

, solution a  can 

dominate solution ( , )b a b X
   if following two 

conditions are held simultaneously: 
1) ( ) ( ), 1, 2, ...,i if a f b i m  


  

2) {1, 2, ..., }: ( ) ( )i ii m f a f b  


 
Now, in different iterations of the MOEA, a set of 
solutions that cannot dominate each other is known as 
Pareto solutions set or Pareto front. Improving this Pareto 
front, during different iterations to achieve Pareto optimal 

front, is the goal of MOEA. Improvement in multi-
objective environment has two signs, including (1) 
improving the convergence to the optimal front, or (2) 
improving the diversity of the existing solutions of a 
Pareto front. Therefore, it is expected that the final 
obtained Pareto front of an MOEA has an appropriate 
convergence and diversity. To evaluate these two types of 
the improvement in a MOEA, different types of measures 
can be used, some of which will be introduced and used in 
the next section.  

3.2. Representation, Initialization and decoding scheme of 
the habitats   

In MOBBO, like any other population-based algorithm, 
the optimization process starts with initializing the initial 
population. The proposed habitat is composed of three 
rows by which some constraints are satisfied based on the 
values of decision variables. The first row represents that 
facilities such as plant and warehouse are open or close in 
binary representation. The second row includes the 
quantity shipped through suppliers, plants, DCs and CZs. 
The third row indicates the amount of inventory level in 
plants and warehouses. The general form of a habitat 
structure is represented in Figure 2. 
In the first row of this habitat, potential location of plants 
and warehouses are coded as binary variables. The 
amount of shipped components and one unit of product 
are calculated according to supply capacity of suppliers, 
plants, DCs and demand of markets at each time period in 
second row of solution. For example, quantity shipped 
from a plant to DCs at time period k is less than plant 
capacity. In addition, this amount should be less equal 
than the component amount shipped from suppliers to 
plant.  
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Fig. 2.  The habitat structure of the MOBBO  

In the third row of habitat, inventory levels in plants and 
warehouses are decoded considering the second row of 
the habitat. For example, the amount of one unit that is 
delivered to DC must be equal to the amount of one unit 
that leaves from and is stored in this DC. In order to 
prevent the negative and infeasible solutions in this part, 
until the inventory quantity is negative, a random number 
between zero and one is generated. If the value of this 
number is less than a predetermined value, a plant is 
selected randomly, and the amount of shipped items is 
equal to the minimum total of this value with inventory 
deficit and plant capacity to ship. Otherwise, a customer 
zone (CZ) is selected randomly and the amount of shipped 
from DC is equal to maximum difference of this amount 
with inventory deficit and zero value to generate feasible 
solutions of both states. 

3.3. Sorting strategy 

This operator is the first main factor that distinguishes 
MOBBO from its single version. In this part, after 
decoding the habitats and calculating their HSIs, instead 
of sorting the population according to the HSI’s values, a 
multi-objective strategy is used. This strategy is proposed 
by Deb et al. (2000). In this strategy, an operator called 
FNDS is used for assigning ranks to individuals of the 
population due to domination concept. Then, another 
operator called CD is used to estimate density of solutions 
which are laid surrounding a particular solution in the 
same rank. Now, according to these two operators the 
population is sorted. To do so, in the case of the different 
ranks (or the individuals from different fronts), the one 
with lower rank is better. However, if the ranks are the 
same, the one with higher CD is preferred.  

3.4. Selection strategy and migration operator 

This operator is the second main factor that distinguishes 
MOBBO from its single objective version. In this 
selection strategy, a binary tournament selection is used 

for selecting the emigrating habitat. To do so, after 
calculating of the CDs and FNDSs, if a specific habitat 
needs to be immigrated, two habitats are selected 
randomly. Then, if they are from different ranks (or 
different front), the one with lower rank is selected; 
otherwise, the one with higher CD is selected as the 
emigrating habitat. A scheme of this selection strategy can 
be seen in Figure 7. 
Now, to implement migration operator, it is necessary to 
calculate  i and j . The method of this calculation is the 
third (and the last) main factor that distinguishes MOBBO 
from its single version. After sorting the population, 
immigration rate  i and emigration rate j can be 
evaluated as Eq.13 and Eq. 14, respectively. In these 
equations, ik represents rank of ith  habitat after sorting 
all habitats according to multi-objective strategy and n 
represents size of the population. Of course, it should be 
mentioned that, ik  ranging from 1 to n and the higher 
values are of more interest.  

(1 )i
i

kI
n

                                                                (13) 

( )i
i

kE
n

                                                                   (14) 

The inverse relation between these two rates is shown in 
Figure 3. In this figure, E and I, represents maximum 
number of the migration rates and are usually set at zero, 
and Si denotes the state of the species amount. According 
to what was mentioned and this figure, by increasing of 
the number of species (or going for a more suitable 
habitat), the immigration rate is decreasing and the 
emigration rate is increasing. It means that the features in 
a more suitable habitat with miscellaneous species are 
more likely to be emigrated rather than to be immigrated. 
This is the main concept of the migration.  
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Fig. 3. The variation of migration rates toward number of the species 

(Simon, 2008) 

Figure 3 summarizes the concepts that were proposed in 
this sub section to do a quite migration process. 
According to this figure, it is clear that a good habitat 
(with low i ) is less likely to be immigrated, while as, a 

poor habitat (with high i ) is so likely to be. Finally, to 

perform migration operator, the structure introduced for 
the single objective BBO is used. The Uniform 
neighborhood structure is used for conducting the 
migration as Figure 4. In this figure, H represents habitat 
and n denotes number of the SIVs of each habitat. 
To show how Uniform migration works, a scheme is 
plotted in Figure 5. In this structure, the immigrating 
habitat accept features from sharing or emigrating habitat 
for those cells that their random vector numbers (Rand is 
0 or 1) is 1.   

3.5. Mutation operators 

In this research, for mutation structure Mask operator is 
implemented. The scheme of this operator is illustrated in 
Figure 5. 
 
 
 

 
Fig. 4. The migration operator and the selection strategy  

 
Fig. 5. Uniform migration operator scheme   

 
Fig. 6. Mask mutation operator scheme 

In this figure, a Mask vector is generated randomly with 
the number from the interval [0,1]. Now, for those cells of 
the Mask vector, which have the values less than 0.5, the 
habitat is mutated. For conducting this mutation, the 

mentioned cell is regenerated and its value is assigned 
randomly.    
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3.6. The MOBBO’s optimization process 

The evolution process of the MOBBO is illustrated 
schematically in Figure 7. This process is started by 
initializing the initial population of the habitat  tR . Then, 
BBO’s operators, including migration and mutation, are 
implemented on  tR  to create the new population  tQ . 

The blending of  tP  and  tQ  creates  tR . In this step, 

habitats of  tR are sorted in several fronts by means of the 
explained strategy in sub section 3.3. Now, to create 
population of the next iteration 1 tP , while the capacity of 

	 ௧ܲାଵ is not exceeded, the fronts are added to 1 tP , 
according to increasing order of their ranks. But, when 
without a front, 1 tP has fewer members than population 

size and with it, 1 tP has more members than population 
size, the habitats must be selected partially to reach the 
predetermined population size. In this situation, the 
habitats of the front are sorted in decreasing order of their 
CDs, and the habitats of next iteration are chosen from top 
of the front. 
In fact, the most differentiation of the MOBBO with the 
NSGAII (Deb et al., 2000) is their evolution operators. In 
other words, the searching heart of the NSGAII is GA, but 
the searching heart of MOBBO is BBO. In other terms, 
instead of some simple differences, they guide the multi-
objective process similarity. The pseudo code of the 
MOBBO is also presented in Figure 8. In this figure, the 
searching heart of the MOBBO, which is BBO, is 
separated in the middle of the pseudo code. 

3.7 The MOHS 

As mentioned above, MOBBO is compared with the 
MOHS from the literature (Rahmati, 2013).  MOHS is a 
Pareto-based multi-objective version of the single 
objective harmony search (HS) algorithm, which is 
reinforced by the same operators as the ones implemented 
in this study to get a multi-objective. This algorithm 
mimics the improvising process of musicians. In HS, 
three different operators are used, including harmony 
memory operator, pitching operator, and random operator. 
The more elaborate description of this algorithm is found 
in Rahmati et al. (2013). However, it is required to 
mention that for the pitching operator of the MOHS in 
this study, a structure just like what explained for the 
mutation of the MOBBO is used.  

4. Computational Results 

In this section, to assess the developed model and the 
proposed algorithm, first some test problems are 
generated. Then, the algorithms are compared based on 
the whole generated test problems. This comparison is 
made through utilizing different types of the statistical 
and non-statistical tests and various explanatory 
illustrations.    

4.1. Test problem generating 

In the model study, the parameters are generated as Table 
1. In this table, U(1000,1500)  represents a random 

number generated in the interval (1000,1500)  from 
uniform distribution. 
 

 

 
Fig. 7. Evolution process of the MOBBO 
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Fig. 8. The pseudo code of MOBBO 

 
Table1 
Input data of the model 

Parameter Distribution function Parameter Distribution function 

jkD  U(1000,1500) ejkC  U(30,50) 

iF  U(2000,8000) cikIC  U(5,10) 

eF  U(2000,8000) ikIC  U(8,12) 

hcikC  U(30,50) ekIC  U(10,15) 

iekC  U(40,70) c  U(0,1) 

 
Then, to test the generated model, 14 test problems were 
created via the information presented in Table 2. In this 
table, the factors that make a distinctive problem are 
number of suppliers (l), plant location (n), DCs (T), and 

CZs (m). Moreover, 5 raw material types and at 3 time 
periods are considered. 

Journal of Optimization in Industrial Engineering 16 (2014) 83-99

91



4.2. Outputs of the algorithms on the generated test 
problems 

In this subsection, after defining some required 
definitions, the outputs of the algorithms are evaluated. 
The definitions include the implemented metrics and the 
tests used.  
 
 

4.2.1. Multi-objective metric description 

Generally, two main features are considered to evaluate 
the performance of a MOEA. 
1) The first feature assesses whether the final Pareto 

front of the algorithm is converged to the Pareto 
optimal front or not.   

2) The second feature evaluates the diversification of 
the set of solutions of the Pareto front. 

 

Table 2 
Generated test problems 

Test Problem L N T M 
1 2 2 3 5 
2 3 3 4 6 
3 3 7 6 7 
4 5 7 7 10 
5 5 7 9 12 
6 7 9 12 15 
7 8 10 12 17 
8 8 12 15 20 
9 10 15 18 25 
10 12 18 20 30 
11 10 20 22 35 
12 10 20 25 40 
13 10 20 25 48 
14 10 20 25 70 

 
 
Table 3 
 Utilized performance measures 

Metric Metric calculation Metric brief description 

Diversity 
(Zitzler, 1999) (↑) 

m
i i 2

j j
i 1:ni 1:n

j 1

D (m ax f m in f )




   

It is used to evaluate the spread of the 
front. 

Spacing 
(Schott, 1995) (↓) 

2

1
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1 1
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It is used to measure the uniformity of the 
solutions within a front. 

Mean ideal distance (MID) 
(Rahmati et al., 2012) (↓) 

 

2

1

    ( )j

m
ii

i
j

c
MID where c f

NOS 

    

It is used to measure the closeness of 
solutions in a Pareto front with an ideal 

point which is usually considered as	(0, 0) 
. 

Simultaneous metric (SM) 
(Rahmati et al., 2013) (↓) 

MIDSM
D

  
This metric considers the two features of 

the MOEAs simultaneously. 

Number of the non-dominated 
solutions in final Pareto 

( )NOS (Rahmati et al., 
2012) (↑) 

- 

Measures number of the Pareto solutions. 

In the literature of MOEAs, different metrics are 
suggested to conduct the evaluation of these two features. 
In this paper, four metrics are implemented that are 
summarized in Table 3. Following notations are used in 
this table. Further information about the metrics can be 
found in the mentioned references in the Table3. 

di : denotes the space between two neighbor solutions n : 
denotes the number of the existing solutions in the Pareto 
fronts 
m: denotes the number of the objective functions 

i
jf  : denotes the jth objective function of the ith solution 

The notation ↑ in this table and the rest of the section 
indicates that higher values are superior, whereas ↓ 
indicates superiority of smaller values. 
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4.2.2. Multi-objective metric outputs 

In this subsection, by calculating the mentioned metrics of 
the previous subsection, for each metric, the algorithms 
are compared. To do so, different types of tests and 
evaluations are implemented. 
Initially, the outputs of the metrics are calculated and 
summarized in Tables 4 and 5. Table 4 presents the 
obtained outputs for the three metrics MID, Diversity (D), 

and Simultaneous metric (SM). This classification of the 
metrics into two different tables has two main reasons. 
First, the capacity of the page and the required 
explicitness of the table restrict us to bring all of the 
outputs in a single table. Second, since SM is calculated 
according to the MID and D, these three metrics are 
summarized in the same table.  

 

 
Table 4 
 Outputs of the algorithms for D, MID, and SM 

 MOBBO  MOHS  
# D  MID  SM  D  MID  SM  
1 37089919 116817607 3.15  4863111 140704362  28.9  
2 85258423.8 232383888.08 2.72  3931181 285549361  72.64  
3 100528185.8 244919108.29 2.44  1732035 270661007.4 156.27  
4 237305065.8 506813072.98 2.14  12412308 525206050.67 42.31  
5 218198676 418153581.68 1.92  10011440 487599249.5 48.70  
6 363509452.8 694231255.66 1.91  8793775 703080279.14 79.95  
7 240635984 765000430.47 3.18  17087936 1020700520.12 59.73  
8 396141571 833286334.48 2.10  17411574 1023289907.67 58.77  
9 401220433 841811371.28 2.1  12496975 1336703362.8 106.96  
10 608459886.8 1279128933.90 2.1  27712129 1862619510.43 67.21  
11 439634592.8 1086028563.19 2.47  16160360 343138292.67 21.23  
12 810747438.2 1130304421.07 1.39  4899421 320653169.4  65.45  
13 803906450.4 976073079.17 1.21  90112170 1702157889.67 18.89  
14 708410855.2 963197776.08 1.36  27649181 1471504243.33 53.22  

Av. 389360495.3 720582102 2.15  18233828 820969086.1 62.87  

 
Table 5 
 Outputs of the algorithms for the S and NOS  

 MOBBO MOHS 
# S  NOS  

 
S  NOS  

 1 4483419.29 9 562989.33 10 
2 2080295.65 12  198540.41 5  
3 3011930.48 21  302815.05 5  
4 10792034.16 20  2719804.73 6  
5 4535812.75 19  600856.05 6  
6 12228262.90 21  1109200.02 7  
7 9948226.54 15  1875813 8  
8 22566905.14 21  3312008.03 6  
9 10286308.40 21  882741.21 5  
10 17300678.64 21  1662489.19 7  
11 19858926.3 19  6428230.16 3  
12 48343852.17 22  383265.53 5  
13 78422484.49 21  17173029.98 6  
14 39535365.57 21  8660361.48 3  
Av. 20242464 18.78  3276582 5.86  

 

In these two tables, the last row, named average (Av.), 
calculates the average of each metric on all test problems 
for a specific algorithm. In this row, the superior 
algorithm is bolded. For example, for NOS in Table 5, 
MOBBO is superior and is bolded.  
According to these two tables, following results can be 
obtained: 
1. For NOS, MOBBO is superior. Figure 9 supports 

this superiority.   
This type of figure is also plotted for other metrics in 
Figures 9-13 to present the manner of the outputs for 
different algorithms on the test problems more explicitly. 
In fact, these figures present the same concepts and 

evaluations, as presented in Tables 5 and 6, graphically. 
These figures are called stacked column charts. Each 
column of these figures compares the obtained value of 
each metric by the algorithms. The columns are divided 
into two parts; the upper part is the value obtained from 
MOBBO whereas the beneath part represents the value 
obtained from the MOHS. Clearly, in each figure 15 
columns that are related to the outputs of the algorithms 
on the 14 test problems, on that specific metric, exist.  
2. For S, MOHS is superior. Figure 9 supports this 

superiority. It is clear that for most of the columns 
MOHS part has less value than MOBBO part. 
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3. For MID, MOBBO is superior. Figure 11 supports this 
superiority. It is clear that for most of the columns, 
MOBBO part has less value than MOHS part. 

4. For D, MOBBO is superior.  Figure 12 supports this 
superiority. In this metric, for most of the columns 
MOHS part has less value than MOBBO part 

considerably. In this metric, since the higher value 
shows superiority, MOBBO is superior.  

5. For SM, MOBBO is superior. Figure 13 supports this 
superiority. Again, in this metric, MOBBO has 
considerable superiority. 

 
   

 
Fig. 9. The outputs of the algorithms for NOS () 

 
Fig. 10.  The outputs of the algorithms for S () 

 
Fig. 11. The outputs of the algorithms for MID () 
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Fig. 12. The outputs of the algorithms for D () 

 

Fig. 13. The outputs of the algorithms for SM () 

Up to this part, the superiority of the proposed algorithms 
is recognized on different metrics. However, the 
superiority recognition requires statistical approval. 
Hence, two types of statistical tests are implemented 
which are called 2-sample t test and Mann–Whitney test. 
These two tests are alternative parametric and 
nonparametric tests that are used for comparing two 
populations of data statistically (Chambari et al., 2012). 
The outputs of the statistical tests are summarized in 
Table 6. This table presents the outputs of the two 
considered types of tests. In this table, P-values of the 
tests are reported. Theoretically, if the P-value is less than 
our considered significant level, which is 0.05, the null 
hypothesis (H0) is rejected.  
The outputs of this table are consistent with the previous 
obtained results and confirm them. It means both of the 
statistical and non-statistical tests approve that for NOS, 
D, and SM, MOBBO is superior whereas for the S, 
MOHS wins.  For MID, non-statistical tests and 

evaluations indicate the superiority of MOBBO. 
However, statistical tests show that this difference is not 
significant. Moreover, the accuracy of results is also more 
reinforced by checking the same outputs of the parametric 
and non-parametric tests.      
For illustrating the results of the statistical tests more 
explicitly, the box-plots are also plotted for each metric in 
Figure 14. According to this figure, it is clear that for the 
cases that null hypothesis is rejected, which algorithm is 
superior and shows why in MID there is no significant 
difference graphically. 
Finally, to have a better sense of the pattern of Pareto 
solutions in the final Pareto optimal front of each 
algorithm and comparing the front pattern of the 
algorithms, Figure 15 is plotted. In this figure, a sample 
final Pareto front is plotted for all test problems. Each 
section of the figure plots the front of the two algorithms 
for that specific test problem.  
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Table 6 
 The summarized statistical test results 

 Mann–Whitney test  t-Test 

P-value Result  P-value Result 

NOS 0.00    MOBBO outperforms MOHS  0.00    MOBBO outperforms MOHS 
S 0.012    MOHS outperforms MOBBO   0.0003   MOHS outperforms MOBBO  

MID 0.59 H0 is not rejected  0.7304 H0 is not rejected 
D 0.00    MOBBO outperforms MOHS  0.00    MOBBO outperforms MOHS 

SM 0.00 MOBBO outperforms MOHS  0.00 MOBBO outperforms MOHS 

 
Fig. 14.  The box plots of the statistical tests 

In this way, it is easy to assess and understand why the 
mentioned results are obtained in each part of the 
evaluations. Besides, it shows clearly that how much 

MOBBO is superior to reach to the mentioned two main 
features of the MOEAs in comparison with MOHS. 

          

Seyed Habib A. Rahmati et al./ Facility Location and Inventory...

96



 

Fig. 15.  A sample of the final Pareto front of the algorithms  
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5. Conclusion 

This study investigated an integrated four-echelon multi-
period multi-objective SC model, which includes 
inventory and facility location planning simultaneously. 
The model has two objective functions: the minimization 
of the total cost with miscellaneous cost terms and 
minimization of non-fill rate of customer zones demand. 
Then, since the proposed MINLP model belongs to NP-
hard class of the optimization problem, a new MOEA, 
called MOBBO was developed for solving the problem. 
MOBBO was validated through a comparison with an 
algorithm of the literature. This comparison was 
conducted via both statistical and non-statistical tests on 
various generated test problems by different multi-
objective metrics. Furthermore, different types of 
statistical and non-statistical figures were implemented. 
The results of these evaluations prove the high superiority 
of the MOBBO for solving the model. 
Future work can include other practical integrations in 
terms of queuing theory, facility location, inventory 
management, strategic planning, data mining, business 
intelligence, and information technology. Future research 
can also consider other terms such as queuing 
considerations, value chain optimization, green designing 
of the SC for making the model more realistic.     
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