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Abstract 

Considering the increasingly high attention to quality, promoting the reliability of products during designing process has gained significant 
importance. In this study, we consider one of the current models of the reliability science and propose a non-linear programming model for 
redundancy allocation in the series-parallel systems according to the redundancy strategy and considering the assumption that the failure 
rate depends on the number of the active elements. The purpose of this model is to maximize the reliability of the system. Internal 
connection costs, which are the most common costs in electronic systems, are used in this model in order to reach the real-world 
conditions. To get the results from this model, we used meta-heuristic algorithms such as genetic algorithm and simulation annealing after 
optimizing their operators’ rates by using response surface methodology.  
Keywords:  Reliability, Redundancy allocation problem, Genetic algorithm, simulated annealing, Response surface methodology. 

1. Introduction 

   Industries providing services for human beings use 
expensive and complicated systems; this makes them 
vulnerable because a minor failure or problem may have 
great impacts on customer services and the cost of the 
industry. Industries like Power generation, aerospace 
industry, petrochemical industry, military, and automotive 
industries, etc. are examples of complicated industries 
(kuo et al. (2001) & Elegbede et al. (2003)).  
   As humans' ordinary life tends to rely on advanced 
technology , e.g. GPS, the Internet, and sensor networks, 
the reliability of either a hardware system or a software 
service turns into one of the most critical concerns in a 
system design. Generally, system reliability can be 
enhanced either by incremental improvements of the 
component reliability or by the provision of the 
redundancy components in parallel; both methods result 
in an increase in system costs. Redundancy allocation 
problem is one of the important and applicable problems 
in the reliability science (Ebling et al. (1997) &Arulmozhi 
et al. (2002) &Prasad et al. (1999). 
Redundancy Allocation Problem (RAP) is a mathematical 
model for evaluating series-parallel system reliability 
under some given constraints such as cost and weight. In 
other words, it is a combinatorial optimization problem,  
which focuses on determining an optimal assignment of 
 

 
 
 
the components in a system design. This problem is 
broadly used in a variety of practical circumstances, 
especially in the field of electrical engineering and 
industrial engineering [6-8]. The practical application of 
RAP is usually involved in circuit design, power plant 
components replacement, consumer-electronics industry, 
etc. Engineers put redundancy at some critical parts to 
ensure the success of launching. Due to the diverse 
combination of components, RAP known to be NP-hard, 
proved in (Fyffe et al. (1968) & Chern et al. (1992)). 

1.1. Literature review 

   In recent years, researchers developed reliability 
models, especially in series-parallel and redundancy 
problems. The origin and development of the redundancy 
problem in series-parallel problems is presented in Table 
1.  
The literature and concepts related to the redundancy 
allocation problem in series-parallel systems are 
explained briefly in this section. The proposed model and 
the coding procedure will be discussed in the next section. 
The main concept of the response surface methodology 
and the results of this methodology for optimizing the.    
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operators of the genetic algorithm and simulated 
annealing algorithm for solving the proposed model will 
be reviewed in section 3. Test results of the genetic 
algorithm and simulated annealing algorithm are 
presented in section 4. Section 5 concludes the study and 
provides suggestions for further researches 
 
 
 

2. Problem Formulation 

    In this section, initially, model assumptions are briefly 
described. Then indexes, parameters and decision 
variables are discussed. 

2.1. Model assumptions 

 The system consists of some series subsystem in 
which redundant elements are parallel 

 Only one kind of element can be assigned to each 
subsystem 

 Each subsystem can only choose on strategy between 
active or cold standby in redundancy allocation 

 For each redundancy strategy, the failure rate of 
elements depends on active elements 

 Elements of system and subsystem have intact or 
failed state. 

 For redundant elements, internal connection cost will 
be used 

 Costs and weights of the elements are definite  
 The reliability of the elements is deterministic and 

definite  
 None of the elements use preventive maintenance 

strategy 

 
 
 
 

 The failure of the elements is independent 
 Inactive elements do not harm the system 
 The failure of the switch only happens in response to a 

failure 

2.2. Indexes and parameters and the decision variables 

:i subsystems index  si ,,2,1   

:j redundant element index 
 imj ,,2,1     

:ik 
The kind of the element assigned to i th 
subsystem index   ii mk ,,2,1    

:k  skkk ,, 21  

Table 1 
Classification of the Studies on the Issue of redundancy allocation problem 

The development of the single-objective model for the Redundancy Allocation Problem (RAP) 

Authors  Decision/Subject  

solving methodology  

Year  Reference 
No.  Exact  Approximate 

Heuristic/ 
Meta-

heuristic 
Fyffe et al. RAP and a Computational Algorithm(Dynamic Programing)     1968  [9]  

Misra and Sharma A Geometric Programming Formulation for RAP    1973  [11]  
Nakagawa and Miyazaki Surrogate Constraints Algorithm for RAP     1981  [8]  

Bulfin and Liu Optimal Allocation for RAP in Large Systems    1985 [12]  
Mohan and Shanker RAP and Using Random Search Technique for optimizing    1987 [13]  
Ida Gen and Yokota Optimization RAP using genetic algorithm(GA)    1994 [14]  
Ida Gen and Yokota Optimization RAP with several failure modes using GA    1995 [15]  

Coit and Smith Reliability Optimization of Series-Parallel Systems Using GA     1996 [16-18]  
Hsieh A Two-Phase Linear Programming Approach for RAP    2002  [19]  

Kim, Bae and Park Simulated Annealing Algorithm for Redundancy Optimization     2004 [20]  
Liang and Smith An Ant Colony Optimization Algorithm for RAP     2004 [21]  
Chen and You Immune Algorithms-Based Approach for RAP     2005 [22]  
Liang and Wu A Variable Neighborhood Descent Algorithm(VNA) for RAP     2005 [23]  

Liang and Chen A VNA for RAP in series-parallel systems     2007 [24]  

Studies that Looked At the Problem as Multi Objective 
Yun and Kim Multi-Level Redundancy Optimization in Series Systems     2004 [25]  

Coit and Konak Multiple Weighted Objectives Heuristic for the RAP     2006 [26]  
Wang et al Multi-objective Approach to RAP in Parallel- series Systems     2009 [27]  

Khalili and Amiri Solving binary-state multi-objective reliability for RAP     2012 [28]  

Chambari et al A bi-objective model to optimize reliability and cost of system     2012 [29]  
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:in 
Number of the elements in i th 
subsystem   iMaxi nn ,,,2,1   

:n  snnn ,, 21  

:ist 
Redundancy strategy chosen for i th 
subsystem  SAsti ,   

:st  sststst ,, 21  
:s Number of subsystems 

:im number of the kind of the elements for 
assigning in i th subsystem 

:,iMaxn Upper limit for in  
:t Mission time of the system 

 :trij Reliability of j th part assigned to j th 
subsystem 

:ijc Cost of j th element assigned to i th 
subsystem 

:ijw Wight of j th element assigned to i th 
subsystem 

:C Upper limit of the cost of the system 

:W Upper limit of the weight of the 
system 

:i switching success probability in failure 
detection 

  :, tF j
ki i

 

Probability function distribution for j
th failure in i th subsystem with 
assigning element ik  to subsystem in 
time t  

:A Set of subsystems with active strategy 

:S Set of subsystems with cold stand by 
strategy 

:j Failure rate of the j th kind of the 
element  

:, ini 
Failure rate of the elements in i th 
subsystem when in  elements are 
active 

:ij Internal connection cost of j th 
element to i th subsystem 

  :,,, nksttR 

Reliability of the system in time t  
with assigning vector k  of all kind of 
elements and vector n  of number of 
the elements 

2.3. Formulation the objective of the problem 

The purpose of the presented model is to maximize the 
reliability of a series-parallel system considering different 
redundancy strategies without component mixing in each 
subsystem (RAPCM). The failure rate of active elements 
in a subsystem are dependent on the number of active 
elements. The redundancy strategies in each subsystem 
may be active and cold standby. 

2.3.1. The effect of the dependence of the failure rate of 
the elements on active elements in each 
subsystem 

As described in the literature review, Sharifi et al. (2010)  
considered the effect of the dependence of the failure rates 
of the elements on active elements in each subsystem. 
They derived the failure rate of each element in ith 
subsystem with ki kind and ni active element as described 
in (1) equation. They also proposed that the best value for 
 .is 0.5 ߜ

 
ii k

i

ii
ni n

nn  1
,


  (1) 

2.3.2. The total reliability in ith subsystem with cold 
standby strategy 

The reliability of the system in cold standby and 
considering failure probability in switching time from 
the/a failed element to the/an intact element exhibited in 
Eq (2) [33]. The graph of a cold standby system illustrated 
in figure 1. 

  
Fig. 1. The graph of a cold standby system 
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2.3.3. The total reliability on ith subsystem with active 
strategy 

The reliability of a system in active mode is calculated 
from Eq. (3). In this state, the failure probability in 
switching time has no effect on calculating reliability. 
Figure 2 shows the graph of an active system. 

Fig. 2. The graph of an active system 
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2.3.4. Total reliability of the system 

According to the system instruction, the total reliability of 
a system is calculated by multiplication of the reliability 
of the subsystems in cold standby and active strategy, as 
shown in Eq. (4). 
     nkStRnkAtRnksttR ,,,,,,,,,   (4) 

2.4. Model’s constraints formulation 

2.4.1. Cost constraint 

Problems in the real word always face this constraint. We 
consider a more effective kind of this constraint.  Total 
cost of a system consists of assignment of the redundant 
elements and internal connection of the elements. Internal 
connection cost has an exponential nature because of 
limited space in electronic systems. Surcharging each 
redundant element to each subsystem has progressive 
costs. This constraint is shown in equation (5). 

   Cenc
s

i

m

j

n
iij

i
iiki 

 1 1

,
 (5) 

2.4.2. Weight constraint 

This constraint is the same as redundancy allocation base 
model and is shown in equation (6). 

  Wnw
s

i

m

j
iij

i


 1 1

 (6) 

The proposed model of the problem is as follows:  
 

  

  Wnw

CenctS
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,:.
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(7) 

   Finally, the objective of the model is to define the best 
strategy, number and kind of redundant parts assigned to 
each subsystem considering the constraints. 

2.5. Problem coding 

Recently, there have appeared different coding for the 
redundancy allocation problem, but we used the most 
efficient method, proposed by Tavakkoli-Moghaddam et 
al. (2008). In this study, each solution consists of a 
 s3  matrix in which the 1st row shows redundancy 
strategy, the 2nd row shows kind, and the 3rd row shows 
the number of the redundant elements for each subsystem. 
In other words, for each subsystem there is a column, 
which shows redundancy strategy kind and the number of 
the elements. Figure 3 shows the described coding with 
14 subsystems in which possibility of choosing three or 
four different kinds of the elements for each subsystem 
exists. We used this type of coding in the genetic 
algorithm and simulated annealing for solving the 
problem. 

.  
 Fig. 3. Coding provided for the proposed model 

 
3. Tuning of the Parameters  

A genetic algorithm is an attempt to solve a problem by 
using a randomly created initial population and selecting 
the best of these current programs to create “child” 
programs that attempt to combine successful features of 
their parents. By continuing to use this process of natural 
selection, an efficient program is created over several  
 

 
 
 
generations and finally a high-quality solution is achieved 
( Goldberg et al. (1989) & Holland, J (1975)).  
    Simulated Annealing (SA) is motivated by an analogy 
to annealing in solids. The idea of SA originated from a 
paper published by Metropolis et al. in 1953. 
Parameter tuning algorithms means that we are always 
trying to find the optimal operators’ rate. Cross over, 
mutation and number of the solution in each population 
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are some operators of the genetic algorithm, which we 
want to optimize their values and whose symbols are 

mc ppnpop ,, respectively.  The important operators in 

SA are initial temperature  0T , the number of neighbors 

for a solution  nmove  and the intensity of 

neighborhood  0mu  all of which are the operators of 

SA. 
Response surface methodology (RSM) is a combination 
of mathematical and statistical techniques for analyzing 
problems that face with several variables. The objective is 
to optimize the response. If the result of a process (Y) is 
affected by variables vector (X), the objective function is

+) x,…,x,f(x=y n21 , where ε defines the observed 
error in the response Y. If the expected value of a 
response is =) x,…,x,f(x=E(y) n21  , then the 
surface ) x,…,x,f(x= n21  is the response surface. 
The process of this methodology for each algorithm is as 
follows:  
Step 1: Algorithm is tested by using different values of 
the independent variables (rate of the operators) to get the 
response variable (the function fitting algorithm for 
system reliability); 
Step 2: Estimating the regression coefficients; 
Step 3: Creation of the response surface model by using 
the estimated coefficients; and Step 4: Optimizing the 
model to determine the optimal values of the operators’ 
rate. 
The results of performing a stepwise approach for each 
algorithm are calculated using Minitab-16 and are 
presented in tables 2 and 3, respectively. The response 
variable for each algorithm is equal to the reliability of the 
system  

Table 2 
 The results for the different rates of GA operators 

Test No. npop pc pm Response 
1 50 0.4  0.050 0.95369 
2 100 0.4 0.050 0.96210  
3 50 0.8 0.050 0.95406 
4 100 0.8 0.050 0.95401 
5 50 0.4 0.200 0.95805 
6 100 0.4 0.200 0.95876 
7 50 0.8  0.200 0.96009 
8 100 0.8 0.200 0.96166 
9 50 0.6 0.125 0.95697 
10 100 0.6 0.125 0.95239 
11 75 0.4 0.125 0.96152 
12 75 0.8 0.125 0.95872 
13 75 0.6 0.050 0.95463 
14 75 0.6 0.200 0.96140 
15 75 0.6 0.125 0.95859 
16 75 0.8 0.050 0.95746 
17 75 0.8 0.200 0.95820 
18 75 0.4 0.050 0.95770 
19 75 0.4 0.125 0.96091 

 

 

Table 3 
 The results for the different rates of SA operators 
 Test No. nmove T0 mu0 Response 

1 5  10000 0.150 0.95346 
2  10 10000 0.150 0.96366 
3 5 20000 0.150 0.95563 
4 10 20000 0.150 0.96247 
5 5 10000 0.300 0.95142 
6 10 10000 0.300 0.96218 
7 5 20000 0.300 0.95282 
8 10 20000 0.300 0.96074 
9 5  15000 0.225 0.95181 
10 10 15000 0.225 0.96418 
11 7 10000 0.225 0.95723 
12 7 20000 0.225 0.9582 
13 7 15000 0.150 0.95859 
14 7 15000 0.300 0.95805 
15 7 15000 0.225 0.96212 
16 7 20000 0.150 0.96188 
17 7 10000 0.150 0.95813 
18 7 10000 0.300 0.95934 
19 7 15000 0.150 0.95418 

The ANOVA results obtained through Minitab16 for GA 
and SA are provided in tables 4 and 5, respectively. 

Table 4 
ANOVA test for GA in 19 times repeat 
Source FD Seq SS Adj SS Adj MS F P  
Regression 9 0.000116 0.000116 0.000013 2.47 0.097  
Linear 3 0.000053 0.000053 0.000018 3.38 0.068 
npop 1 0.000004 0.000004 0.000004 0.70 0.423 
pc 1 0.000003 0.000003 0.000003 0.60 0.459 
pm 1 0.000046 0.000046 0.000046 8.84 0.016 
Square 3 0.000031 0.000031 0.000010 1.99 0.187 
npop*npop 1 0.000012 0.000026 0.000026 5.04 0.051 
pc*pc 1 0.000019 0.000015 0.000015 2.87 0.125 
pm*pm 1 0.000000 0.000000 0.000000 0.03 0.869 
Interaction 3 0.000032 0.000032 0.000011 2.04 0.179 
npop*pc 1 0.000007 0.000007 0.000007 1.39 0.269 
npop*pm 1 0.000005 0.000005 0.000005 0.89 0.371 
pc*pm 1 0.000020 0.000020 0.000020 3.84 0.082 
Residual 9 0.000047 0.000047 0.000005    
Lack-of-Fit 5 0.000039 0.000039 0.000008 4.14 0.097 
Pure 4 0.000008 0.000008 0.000002    
Total 18 0.000163         

Table 5 
 ANOVA test for SA in 19 times repeat 

Source  DF Seq SS Adj SS Adj MS F P 
Regression 9 0.000249 0.000249 0.000028 5.02 0.012 
Linear 3 0.000239 0.000239 0.000080 14.46 0.001 
Nmove 1 0.000231 0.000231 0.000231 41.97 0.000 
T0 1 0.000000 0.000000 0.000000 0.07 0.803 
mu0 1 0.000007 0.000007 0.000007 1.34 0.276 
Square 3 0.000005 0.000005 0.000002 0.27 0.844 
nmove*nmove 1 0.000003 0.000000 0.000000 0.07 0.794 
T0*T0 1 0.000001 0.000001 0.000001 0.22 0.652 
mu0*mu0 1 0.000000 0.000000 0.000000 0.00 0.969 
Interaction 3 0.000005 0.000005 0.000002 0.32 0.812 
nmove*T0 1 0.000005 0.000005 0.000005 0.87 0.375 
nmove*mu0 1 0.000000 0.000000 0.000000 0.06 0.810 
T0*mu0 1 0.000000 0.000000 0.000000 0.02 0.881 
Residual 9 0.000050 0.000050 0.000006   Lack-of-Fit 5  0.000008 0.000008 0.000002 0.14 0.972 
Pure 4 0.000042 0.000042 0.000011   Total 18 0.000298     
 
The response surface model for GA is presented in Eq. (8) 
and the optimal solution with the contour plats of 
response is illustrated in Figure 4. In addition, the 
response surface model for SA is presented in Eq. (9) and 
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the optimal solution with the contour plats of response is 
shown in Figure 4. 
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Fig. 4. Optimal solution with the contour plats of response for GA 
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Fig. 5. Optimal solution with the contour plats of response for SA 

4. Numerical results 

In order to test the power of the presented algorithms, we 
consider a simple example. The optimal solution of this 
example is calculated by searching all the example 
solutions (feasible and infeasible). This example consists 
of six sub-systems. The parameters of this example are 
the parameters of sub-systems 1 to 6 in Coit example 
presented in Table 8 (Coit ET AL. (1996)). The other 
parameters of this example are presented in Table 6.  

  
Table 6 
The specification of the designed problem 

W C iMaxn ,  k s Example 
specification 100  100  4 2  6 

According to the example parameters, number of example 
solutions is equal to  000,000,64522 666  . The 
results of two SA and GA algorithms and the optimal 
solution are presented in Table 7 and Figure 7. 

 
Table 7 
The results of solving the designed problem using different method 

Computational 
time (Second) 

The number 
of surveyed 

solutions 

Fitness 
function  

Solution 
method 

30,840  64,000,000 0.954033 Counting rule 

9.4  1780 0.954033 Genetic 
algorithm 

14.2  2790 0.954033 
Simulated 
annealing 
algorithm 
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In order to evaluate the genetic and simulated annealing 
algorithm, we used the example, cited in Coit et al. 
(2003). Consider a series-parallel system with 14 series 
subsystems. Each subsystem can consist of up to six 
elements. In addition, for each sub-system, three or four 
different component types are available to allocate and all 
components are CFR1. Cost, weight and failure rates of 
the elements are presented in Table 8. 

Each subsystem can choose one of the redundancy 
strategies: active or cold standby. In subsystems with cold 
standby strategy, the switch reliability is 0.99. The 
objective is to maximize the reliability of the system in 
time 100 under cost (C=130, Max) and weight (W=170, 
Max) constraint. 
In order to find the best solution for the algorithms, the 
algorithms were implemented 10 times and the best 
feasible solution in these steps was concluded as the best 
solution. The results are shown in Table 9. In this table, 
the results of the algorithms and the best results are 
compared, and the convergence of the algorithms are 
shown in figures 8 and 9 for GA and SA, respectively.  
 
 

 
Table 8 
Values of the parameters 

i Choice 1 (j=1) Choice 2 (j=2) Choice 3 (j=3) Choice 4 (j=4) 
λij Cij Wij λij Cij Wij λij Cij Wij λij Cij Wij 

1 0.00532 1 3 0.000726 1 4 0.004990 2 2 0.00818 2 5 
2 0.00818 2 8 0.000619 1 10 0.004310 1 9 *   
3 0.01330 2 7 0.011000 3 5 0.012400 1 6 0.00466 4 4 
4 0.00741 3 5 0.012400 4 6 0.006830 5 4 *   
5 0.00619 2 4 0.004310 2 3 0.008180 3 5 *   
6 0.00436 3 5 0.005670 3 4 0.002680 2 5 0.000408 2 4 
7 0.01050 4 7 0.004660 4 8 0.003940 5 9 *   
8 0.01500 3 4 0.001050 5 7 0.010500 6 6 *   
9 0.00268 2 8 0.000101 3 9 0.000408 4 7 0.000943 3 8 
10 0.01410 4 6 0.006830 4 5 0.001050 5 6 *   
11 0.00394 3 5 0.003550 4 6 0.003140 5 6 *   
12 0.00236 2 4 0.007690 3 5 0.013300 4 6 0.011 5 7 
13 0.00215 2 5 0.004360 3 5 0.006650 2 6 *   
14 0.01100 4 6 0.008340 4 7 0.003550 5 6 0.00436 6 9 

 
Table 9  
The results of GA and SA on 14 problems that was used by Coit[35] 
Subsystem 

No. 
Results obtained using GA Optimal solution Results obtained using SA 

ki ni Redundancy ki ni Redundancy ki ni Redundancy 
1 2 3 Cold standby 3 4 Cold standby 2 2 Cold standby 
2 2 3 Cold standby 1 2 Cold standby 2 2 Cold standby 
3 4 4 Cold standby 4 3 Cold standby 4 4 Cold standby 
4 3 5 Cold standby 3 3 Cold standby 1 5 Cold standby 
5 2 6 Active 2 3 Active  2 6 Active 
6 4 2 Cold standby 2 2 Cold standby 4 2 Cold standby 
7 2 4 Cold standby 1 2 Cold standby 2 4 Cold standby 
8 2 6 Cold standby 3 2 Cold standby 2 6 Cold standby 
9 2 2 Cold standby 1 2 Cold standby 2 2 Active 
10 3 3 Cold standby 2 3 Cold standby 3 3 Active 
11 1 4 Cold standby 3 2 Cold standby 1 5 Active 
12 1 4 Cold standby 4 2 Cold standby 1 5 Active 
13 1 5 Active 2 2 Active 1 4 Active 
14 3 4 Cold standby 3 2 Cold standby 3 5 Active 

Reliability 0.9726 0.9863 0.9698 
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Fig. 7. Convergence of GA 

 
Fig. 8. Convergence of the SA

For comparing the results of two algorithm, we used 
ANOVA technique in Minitab-16. The results of one-way 
ANOVA technique presented in figures 9 and10. 

 
Fig. 9. One-way ANOVA: reliability versus algorithm  

 

 
Fig. 10. One-Way Normal ANOVA for reliability 

 

As figures 9 and 10 indicate, the performance of GA is 
better than SA. 
For further analysis of the performance of the two 
algorithms, we solved 33 problems which were presented 
by Nakagawa and Miyazaki [8]. The parameters of these 
33 problems are similar to the parameters of the solved 
problem but the upper limit of system weight was 
changed from 159 to 191. The results of problems 
solutions are presented in Table 10. Each problem was 
solved with both algorithms 5 times and the standard 
deviation of all solutions for each problem is near zero. 
The schematic standard deviation of both algorithms is 
presented in Figure 11. 
As we expected, the cost of system in the presented 
model is more than the cost of the model solved by 
Nakagawa and Miyazaki because of the cost of internal 
connection in the presented model. 
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Table 10  
The results of GA and SA on 33 problems used by Nakagawa & Miyazaki [8] 

Prob No. 
Upper 

bound of 
W 

Results obtained using GA Results obtained using SA 

W Cost R Standard 
deviation W Cost R Standard 

deviation 
1 159 178 195 0.96700 0.02395 186 219 0.95081 0.02901 

2 160 169 195 0.96946 0.01599 160 191 0.94572 0.01314 

3 161 184 193 0.94843 0.01909 173 212 0.96411 0.01210 

4 162 183 217 0.96966 0.01784 169 215 0.95006 0.01765 

5 163 166 212 0.96207 0.01707 163 205 0.95638 0.01160 

6 164 175 222 0.94763 0.02017 186 200 0.94582 0.02198 

7 165 163 206 0.95252 0.02461 170 212 0.95852 0.03124 

8 166 163 212 0.95977 0.02421 171 220 0.94865 0.01619 

9 167 180 200 0.97085 0.01757 188 193 0.96003 0.01176 

10 168 158 214 0.97105 0.01297 171 206 0.96106 0.01321 

11 169 165 226 0.94926 0.01863 174 209 0.96277 0.01359 

12 170 186 212 0.97121 0.01391 187 224 0.95411 0.02185 

13 171 178 229 0.97084 0.01652 181 213 0.94344 0.02032 

14 172 180 190 0.95811 0.01101 180 215 0.94766 0.01584 

15 173 189 208 0.96661 0.02760 183 192 0.96758 0.02484 

16 174 184 210 0.94883 0.02751 184 209 0.94543 0.01274 

17 175 183 218 0.95639 0.01871 169 195 0.96503 0.01000 

18 176 184 217 0.96972 0.01704 159 216 0.95667 0.02296 

19 177 167 229 0.96639 0.01182 188 220 0.96999 0.01772 

20 178 172 200 0.97091 0.02212 162 194 0.94327 0.02150 

21 179 167 212 0.96270 0.01032 186 218 0.95388 0.01737 

22 180 165 192 0.94596 0.01890 189 217 0.94410 0.01052 

23 181 168 200 0.96793 0.01306 186 191 0.96899 0.01884 

24 182 180 211 0.97022 0.02895 180 227 0.94113 0.02110 

25 183 172 209 0.96333 0.01710 176 211 0.96355 0.01285 

26 184 176 202 0.96546 0.01231 173 198 0.96478 0.02349 

27 185 165 195 0.96506 0.01867 169 212 0.96628 0.03120 

28 186 178 203 0.95559 0.03147 161 217 0.94346 0.01197 

29 187 184 223 0.96270 0.01123 169 200 0.95263 0.01679 

30 188 160 215 0.94962 0.01866 186 207 0.94856 0.02164 

31 189 191 199 0.96406 0.01222 161 221 0.96428 0.01984 

32 190 178 209 0.94586 0.03146 163 226 0.95355 0.03068 

33 191 190 229 0.95248 0.01985 168 205 0.96750 0.02586 

 
Fig. 11. Schematic presentation of the standard deviation of each problem obtained using GA and SA  
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A hypothesis test for checking the equality of algorithms 
performance was done using MINITAB 16 and the results 
are presented in Figures 12 and 13. Obviously, the 
performance of GA is better than SA for solving the 
presented model. 

 

  
Fig. 12. One-way ANOVA: Reliability versus algorithm 

 

 
Fig. 13. One-way normal ANOM for reliability 

5. Conclusion  

   In this research, an integer nonlinear programming 
model for the redundancy allocation, without component 
mixing was presented considering the dependence of the 
component failure rates work and the interconnection cost 
of the system. In other words, the purpose of this paper is 
to allocate components and the redundancy strategy to 
any subsystem without allocating the component mixing 
to any subsystems in order to maximize system reliability 
under certain physical restrictions. Since, this issue is 
considered as an NP hard problem, Meta heuristic genetic 
algorithms and Annealing Simulation, after optimizing 
their function rates, using “response surface” 
methodology was engaged in solving it. Therefore, 
instead of randomly determining the rate of the operators, 
scientific methods were used which led to the gradation in 
the quality of the results obtained from the two 
algorithms. Finally, in order to evaluate the performance 
of these algorithms, several numerical examples were 
solved using these algorithms. 
    Presenting multi-objective models, considering new 
restrictions such as volume and factors such as weight, 
possible cost, and more than two active and cold standby 
strategies for each subsystem are among research that will 
contribute to the development of the future models. 
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