
A Tunned-parameter Hybrid Algorithm for Dynamic Facility Layout 
Problem with Budget Constraint using GA and SAA 

Hani Pourvaziri a,*, Parham Azimi b 
aMSc, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran 

bAssistant Professor, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran 
Received 12 December, 2012; Revised 15 September, 2013; Accepted 12 October, 2013 

Abstract 

A facility layout problem is concerned with determining the best position of departments, cells, or machines on the plant. An efficient 
layout contributes to the overall efficiency of operations. It’s been proved that, when system characteristics change, it can cause a 
significant increase in material handling cost. Consequently, the efficiency of the current layout decreases or is lost and it does necessitate 
rearrangement. On the other hand, the rearrangement of the workstations may burden a lot of expenses on the system. The problem that 
considers balance between material handling cost and the rearrangement cost is known as the Dynamic Facility Layout Problem (DFLP). 
The objective of a DFLP is to find the best layout for the company facilities in each period of planning horizon considering the 
rearrangement costs. Due to the complex structure of the problem, there are few researches in the literature which tried to find near 
optimum solutions for DFLP with budget constraint. In this paper, a new heuristic approach has been developed by combining Genetic 
Algorithm (GA) and Parallel Simulated Annealing Algorithm (PSAA) which is the main contribution of the current study. The results of 
applying the proposed algorithm were tested over a wide range of test problems taken from the literature. The results show efficiency of the 
hybrid algorithm GA- to solve the Dynamic Facility Layout Problem with Budget Constraint (DFLPBC). 
Keywords:  Dynamic facility layout problem; Budget constraint; Genetic algorithm; Parallel Simulated annealing algorithm.

1. Introduction and Literature Review     

Facility layout problem is concerned with determination 
of the most efficient arrangement of facilities within a 
factory. The facility can be defined as manufacturing cell, 
administrative office building or machine. An efficient 
layout causes an efficient material handling between 
facilities and thus decreases work in process (WIP) and 
inventory holding costs. An efficient layout also 
contributes to the overall efficiency of operations and can 
save many overall costs such as production costs, 
inventory holding costs etc. the 20-50% of total 
operational cost and 15-70% of total cost of 
manufacturing systems depends on transportation cost. 
Thus, material handling cost is one of the most significant 
measures to determine the efficiency of a layout. The 
material handling cost is defined based on the flows of 
materials between departments and the distances between 
the locations of the departments. If the flows of materials 
don’t change for a long time, the static layout problem 
could be used; but when demands change, the flows of 
materials between facilities change consequently. In this 
situation, the existing facility layouts are not suitable and 
efficient and need to be revised and rearranged.  

 
 
 
 
Rearrangement of facilities to minimize the material 
handling costs and transportation cost is known as a 
dynamic facility layout problem (DFLP). The reasons for 
facility rearrangement in each organization are as follows: 
1) Change in demands or products  
2) Change in operation sequencing  
3) Change in product strategies  
4) Change in resources and facilities  
5) Change in standard safety rules  
Change in demand is the most important reason for 
rearranging facilities. Introducing new facilities or 
removing depreciation facilities can also cause a change 
in material handling pattern. Afentakis et al. (1990) stated 
that when these system’s characteristics change, it can 
cause a significant increase in material handling 
requirements. These changes effect on the efficiency of 
present layout and necessitate the need to consider re-
layout in the system. To solve this problem, the facility 
layout should be flexible and more comfortable to change. 
In this paper, the dynamic facility layout problem is 
studied and the material handling cost is used as 
efficiency index to evaluate the performance of our 
proposed algorithm with previous researches. 

* Corresponding author E-mail: hani.pourvaziri@yahoo.com 
 

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

65



Rosenblatt (1986) first introduced DFLP and developed 
an optimization approach based on dynamic programming 
to solve it. He showed that the number of layouts to be 
evaluated to guarantee optimality for a DFLP with N 
departments and T periods is(푁!) . However, this 
approach is computationally intractable for real-life 
problems. Rosenblatt proposed two heuristics that were 
based on dynamic programming, each of which simply 
considers a set of limited good layouts for a single period. 
Because of the computational difficulties inherent in such 
a problem, several heuristics have since been developed. 
Urban (1998) developed a steepest-descent heuristic 
based on a pair-wise-exchange idea, which is similar to 
CRAFT. Lacksonen and Enscore (1993) introduced and 
compared five heuristics to solve the DFLP, which were 
based on dynamic programming, a branch and bound 
algorithm, a cutting plane algorithm, cut trees, and 
CRAFT. 
It should be mentioned that in addition to the exact 
algorithms, many meta-heuristic algorithms have been 
reported in the literature. Balakrishnan and Cheng (2000) 
developed a genetic algorithm to solve the DFLP. Kaku 
and Mazzola (1997) used a tabu search (TS) heuristic. 
This TS heuristic is a two-stage search process that 
incorporates diversification and intensification strategies. 
Baykasoglu and Gindy (2001) proposed a simulated 
annealing (SA) heuristic for the DFLP, in which they used 
the upper and lower bound of the solution of a given 
problem instance to determine the SA parameters. 
Balakrishnan et al. (2003) presented a hybrid genetic 
algorithm for DFLP. Erel et al. (2005) proposed a new 
heuristic to solve the DFLP. They used weighted flow 
data from various time periods to develop robust layouts, 
and suggested the shortest path for solving the DFLP. 
McKendall and Shang (2006) developed three hybrid ant 
systems (HAS). McKendall et al. (2006) presented two 
(SA) heuristics. The first, (SA I), is a direct adaptation of 
SA for the DFLP. The second, (SA II), is the same as SA 
I, except that it incorporates an added look-ahead/look-
back strategy. Rodriguez (2006) presented a hybrid meta-
heuristic algorithm based on a genetic algorithm and tabu 
search. Krishnan et al. (2006) developed a new tool, the 
“Dynamic From–Between Chart”, for an analysis of 
redesigned layouts. This tool models changes in the 
production rates using a continuous function. 
Balakrishnan and Cheng (2009) investigated the 
performance of algorithms under fixed and rolling 
horizons, differing shifting costs and flow variability, and 
forecast uncertainty. Gary et al. (2009) evaluate a multi-
objective dynamic facility layout by ant system. 
Baykasoglu et al (2001) solved DFLP by simulated 
annealing for the first time. Sahin et al. (2010) presented 
simulated annealing algorithm (SAA) for the DFLP with 
budget constraint (DFLPBC). For an extensive review on 
the DFLP, one can refer to the work of Page, 1991; 
Balakrishnan and Cheng 1998; Tompkins al., 2003     
Drira al., 2007. The studies described above share a 
common assumption that all departments are of equal 

size. However, some studies do not make this assumption. 
Two recent examples of such studies are McKendall and 
Hakobyan, 2010; Rodriguez et al., 2006; Gary et al., 
2009. 
It should be noticed that most previous researches did not 
consider the company budget for rearranging the 
departments. Because these rearrangements are costly 
activities, it is normal for a company to have a limited 
budget in this regard. According to the literature, there are 
just three studies on DFLP with the budget constraints; 
Balakrishnan et al. (1992), Baykasoglu et al. (2006), 
Sahin et al (2010). The last one which is the newest 
related research used a budget constraint for each period 
separately. They developed a simulated annealing 
algorithm for the problem and showed that their algorithm 
is more efficient than the two previous researches.   
The assumptions for the DFLPBC are as follows: 
 The flow between facilities is dynamic and 

deterministic 
 Facilities and locations are of equal size 
 The distances between facilities have been determined 

before. 
 Budget allocated for each period is constant 
 Leftover budgets from past periods are available for 

current period  
This paper is organized in the following way. In section 2, 
the mathematical model of DFLPBC is presented. In 
section 3, a hybrid algorithm made by combining genetic 
algorithm and parallel simulated annealing algorithm 
(PSAA) is presented and the characteristics of the 
proposed GA-PSAA are specially described. In section 4, 
in order to obtain more accurate solutions, a parameter 
tuning according to Taguchi method is accomplished. In 
section 5, the computational results have been presented 
and compared for 48 numerical examples with small, 
medium and large sized in literatures.  Finally, concluding 
remarks and suggestions for future researches are 
presented in section5. 

2. Mathematical Model 

The Dynamic Facility Layout Problem with Budget 
Constraint (DFLPBC) can be modelled as follows (Sahin 
et al., 2010): 
The variables are: 

푋
	1				if	facility	푖	is	allocated	to	location	푗	in	period	푡

	
0																																						표푡ℎ푒푟푤푖푠푒																																

	 

퐵  Available budget for period t. 

퐿퐵  Left-over budget from period t to period t+1. 

The parameters and indexes are: 
푁 The number of departments/locations 

푇 The number of periods in the planning horizon 
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푖, 푗, 푘, 푙 Index for departments/locations 

푡 Index for time periods 

퐴  The cost of shifting department 푖 from location 

푗 to 푙 in period 푡 

퐶  The material transporting cost between the 

departments i in location j and the department k 

in location l in period t. 

퐴퐵  Allocated budget for period t. 

The mathematical model of DFLPBC is presented as 
below: 
 

푀푖푛푖푚푖푧푒	푇퐶 = 퐴 ∗	푋 ∗	푋

+ 퐶 	푋 	푋 					 

(1) 

St:  

푋 = 1								푗 = 1,2,… ,푁,										푡 = 1,2,… , 푇												 
(2) 

푋 = 1						, 푖 = 1,2,… ,푁	, 푡 = 1,2,… , 푇							 

(3) 

퐿퐵 = 퐵 − 퐴 	푦 		 , 푡 = 1,2,… ,푇										 

(4) 

퐵 = 퐴퐵 + 퐿퐵 ,																				푡 = 1,2,… , 푇																						 
(5) 

퐴 	푦 ≤ 퐵 ,										푡 = 1,2,… , 푇																						 

(6) 

푋 ,푦 ∈ {0,1}					, 푖, 푗, 푙 = 1,2,… ,푁,			푡 = 1,2,… , 푇													 
(7) 

퐿퐵 ,퐵 ,퐴퐵 ≥ 0,																																							푡 = 1,2,… , 푇										 
(8) 

 
The objective function of this model is to minimize the 
total combined traveling and transporting material costs. 
Constraint set (2) ensures that each facility should be 
located in one position and constraint set (3) ensures that 
in each position only one facility should be allocated. 
Constraint set (4) is for equating the total available budget 
in a period to leftover budget from previous period and 
the allocated budget in the current period. Constraint set 
(5,6) represents the budget constraint for each period. 
Constraint set (7) restricts decision variables and 
constraint set (8) represents the non-negativity restriction 
on the decision variables.  
 
 
 

3. Solution Methodology 

Because of the hardness of optimally solving the problem 
with exact methods in reasonable CPU time, we should 
use heuristics or meta-heuristics algorithm to solve it. As 
in literatures the genetic algorithm had better 
performances in objective function and CPU time, we 
used genetic algorithm to solve this problem in this paper. 
Thus, we use a hybrid algorithm which is mixed of 
genetic algorithm and simulated annealing algorithm. 

3.1.  Genetic algorithm  
  
GAs is stochastic evolutionary algorithms that are based 
on analogies with the principles of natural biological 
systems. GA is one of the best heuristic optimization 
methods which was originally developed by Holland 
(Mahmoudi et al., 2012). GA is especially suited for 
solving complex optimization problems. In general, GA 
consists of simultaneously evaluating multiple regions of 
the solution space during each iteration. It studies a 
collection of solutions called population and so performs 
a multidirectional search. The population is usually 
random to begin with but can be initialized with another 
heuristic algorithm. After initialization, a stochastic 
search process is employed to iteratively improve the 
average fitness of the population. Genetic algorithms 
employ standard operators to promote a population. Two 
of these main operators are mutation and crossover which 
are discussed in the following section.  
 
3.2.  Simulated annealing algorithm 

Generally speaking, simulated annealing is a stochastic 
neighborhood search procedure to find the optimal 
solution in NP-hard problems. Ever since its introduction, 
the SA has shown a high performance in large 
combinatorial optimization problems (Naderi and 
Sadeghi, 2011). SA is an extension of a local search 
strategy designed to avoid getting trapped in a local 
optimum. This is accomplished by randomly generating 
neighbors and accepting a solution that worsens the value 
with certain probability. This probability depends on the 
difference between the solution value of 푓(푥) and 
neighborhood value  푓(푥 ) and the so-called temperature 
T at iteration n. The method can avoid being stuck at a 
local optimum, and increase the probability of finding a 
global optimal solution. The acceptance probability P 
decreases over time as the temperature T decreases. 
Consequently, it performs a wide investigation of the 
solution space initially and then restricts the solution 
space gradually. Thus, algorithm converges to the best 
optimum solution. 
The experimental results show that the performance of 
simulated annealing improves if the number of initial 
solutions from which the algorithm starts increases and 
space solution is searched in a parallel manner. This 
parallelism of simulated annealing is called Multiple 

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

67



Independent Run (MIR) implementations. In MIR 
method, independent runs of sequential SA are executed 
in each processor and the best-found solution is selected 
as the result. Thus, the chance of algorithm to be 
converged to the global optimum increases. Because no 
communication of moves or solutions is required in this 
parallelization strategy, the time taken won’t be increased 
drastically. 

3.3. Hybrid GA-PSA algorithm 

The normal GA cannot guaranty a complicated 
evolutionary process. This algorithm isn’t also capable to 
do a complete local search on solution space. Therefore, 
we can combine the power of genetic algorithm in global 
search with a local search engine like simulated annealing 
to find the global optimum solution. This hybrid 
algorithm which combines GA and SAA has both 
advantages of theses algorithms and help to improve 
solution performances. 
In this hybrid algorithm, first, the GA generates initial 
population. Next, some of these solutions have been                                                                  
selected for PSAA as initial solutions. To have variety in 
the proposed algorithm, we consider that some bad, 
normal and good solutions could be selected with the 
same chances. Then, the parallel local search process on 
the selected solutions starts. The best solutions gained by 
PSAA are combined with population of genetic algorithm 
which has been improved by crossover and mutation 
operators. The new population is evaluated and arranged 
and is used as the initial population of the next generation. 
This continues until stopping criteria are satisfied. 
 

Initialize all control parameters 
Generate initial random population 
   While stopping criteria do not satisfy Do 
             Evaluate the chromosomes 
             Generate offspring with crossover  
             Generate offspring with mutation 
             Evaluate new population 
  Parallel Simulated-annealing Phase 
          Start PSAA by some of the best and the worst  
           chromosomes 
            For all the selected chromosomes Do 
                  While stopping criterion satisfied Do 
                           While system has reached thermal  
                             equilibrium Do 
                                Randomly generate neighbourhood    
                          based on the current solution. 
                                If better than the current state change  
                                to the new state otherwise change to  
                                the new state   according to the  
                                transition  probability 
                           End while 
                         Decrease the temperature 
                 End while 
             End for 
Transfer the improved solutions to the genetic population 
Combine all the generated population 
 
   End while 

Fig. 1. Pseudo code for genetic- Parallel Simulated-annealing algorithm 

3.4.  The chromosome structure of the algorithm  

 
The first step to illustrate proposed hybrid algorithm is 
chromosome structure design. The most important feature 
of the chromosome is satisfying the constraints. Our 
designing chromosome is an N *T matrix, in which N is 
the number of facilities and T is the periods of time. Each 
row of this matrix shows the layout of a period. In each 
row, the value of each gene represents the facility number 
and rank of it represents the position of facility in special 
period of time. For example, figure 2 illustrates the form 
of a chromosome in two periods of time. According to 
this chromosome, in period 1, the facility 2 is in 
position1, the facility4 is in position2, the facility 1 is in 
position 3 and finally the facility 3 is in position 4. 
 

 
Fig. 2. An example of proposed chromosome structure 

3.5. The crossover operator 

Once a population has been created and the best elements 
selected, an operator is needed to evolve the Population. 
This operator is called crossover. Traditional crossover 
operators like one point crossover cannot be applied to 
DFLP because they often create invalid solutions. 
Therefore, a new crossover operator which is illustrated in 
Fig. 3, is used. The proposed crossover operator is totally 
different from that of the CVGA of Conway and 
Venkataramanan (1994) and the NLGA of Balakrishnan 
and Cheng (2000) and generates feasible solution string. 
Consequently, checking the feasibility of the solution is 
no more required. The crossover scheme has the 
following steps: 
1) Two strings from the parent pool are randomly 

selected. 
2) A cross point is randomly selected for each period. 

(Cross point 1, .., T). 
3) The layout for the first period of offspring1 is 

generated in the following way: the segment from 1 
to cross point1 of parent1 is directly copied to the 
offspring (segment1_off1_period1). The second 
segment of offspring1 in period 1 consists of 
elements (departments) of cross point1 up to n of 
parent1 in period1. But the order of placing these 
elements is according to order of them in parent 2. 
This structure is repeated for generating other periods 
of offspring1. This ensures feasibility in generated 
offspring and other offsprings which are produced 
like it. 

 
 

Hani Pourvaziri et al./ A Tunned-paramets Hybrid Algorithm ...

68



 
Fig. 3. An example of crossover operator 

 

3.6. The mutation operator and neighborhood 

The local transformations (or neighbourhood moves) in 
each iteration, that can be applied to the current 
solution(s), define a set of neighbouring solutions as: N(s) 
= {new configuration obtained by applying a single move 
to the current solution}. Two swapping types are used. 
Swapping type 1 is used to define the neighbourhood N(s) 
in local search (PSAA) and Swapping type 2 is used as 
mutation operator of genetic algorithm. 

3.6.1. Swapping type 1 

First, select a period (row) randomly. Then, select two 
different locations (columns) randomly from the selected 
period and swap the facilities in these locations (Fig 4). 

 
Fig. 4. An example of swapping type 1 (neighbourhood definition) 

3.6.2. Swapping type 2: 

Select two periods (rows) randomly from the current 
solution and swap the layout in these periods (Fig 5). 
 

 
Fig. 5. An example of Swapping type 2 (mutation operator) 

3.7. Cooling Schedule 

 The performance of this algorithm also depends on the 
cooling schedule, which is relevant to the temperature 
updating function. In the proportional decrement scheme, 
temperature decreases at the k and k +1 steps of the outer 
loop by: 

 푇 = 훼푇 																																																																													(9) 
 
Wherein 훼 is cooling rate and is obtained by some 
experiments. 

3.7. Stopping criteria 

To limit the number of iterations of both GA and PSAA 
algorithms, some convergence experiments were 
performed and the best criterion was applied as follows: 

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

69



Genetic algorithm will be stopped when one of the 
following situations is done: 

1. The fitness function of the elite chromosome 
(chromosome with the best fitness value) does not 
change more than 0.5% after a pre-determined 
number of successive generations (according to 
experimental result this value is set to 40); 

2.  The total number of iterations reached to a 
predefined number (according to experimental result 
this value is set to 700). 

For stopping PSAA in a temperature level first we define 
the set of m iterations as a round. The system reaches 
equilibrium at a certain temperature if the mean changes 
between two successive rounds of iterations remain 
constant within 0.95% confidence interval, we conclude 
that the system has reached thermal equilibrium and so 
we reduce the temperature; otherwise, we keep perturbing 
the solutions by creating neighbouring solutions, until 
reaching equilibrium. For the outer loop of PSAA the 
total number of iterations exceeds certain value 
(according to experimental result this value is set to 500) 
is set as stopping criteria. 

4.  Tuning the Parameters  

The selection of parameters has a major influence on the 
efficiency of any meta-heuristic algorithms (Zoraghi et 
al., 2012). One of the most effective methods in selecting 
the appropriate parameters is Taguchi parameter tuning 
method. In the Taguchi method, the results are transferred 
into a measure called signal to noise (S/N) ratio. The 
frame of this ratio is different for each purpose. Eq(10) 
represents the (S/N) ratio formula for minimization 
objectives. 
푆
푁 = −10log	(

1
푛 푦 ) 

(10) 

Where y is the response for the given factor level 
combination and n is the number of responses in the 
factor level combination. The assuming parameters of the 
proposed algorithm are: the crossover rate (Pc), the 
mutation rate (Pm), the initial temperature (T0), cooling 
rate (α) and initial population (npop). These parameters are 
examined in 4 different levels. The best level of involved 
parameters is presented in Table 1. 

Table 1  
Factors and  their best levels 

Responses Pc Pm T0 α npop, 

Optimal level  0.8 0.15 1000 0.985 50 

 

 

5. Computational Results 

5.1.  Analysis of results and comparisons 
 
All computations were carried out on a Pentium V PC 
with 4 GByte RAM, 2.2 GHZ processor, Core i5. Minitab 
16 software was used for tuning of parameters. To 
evaluate the performances of the proposed algorithm, 48 
test problems with 6, 15 and 30 facilities for 5 and 10 
periods of time were considered. The computational 
results for dynamic facility layout problem with budget 
constraint (DFLPBC) were compared to the results 
obtained by Sahin et al. (2010) and Baykasoglu et al. 
(2006) researches in literature. Tables 2, 3 and 4 show the 
comparing results of our proposed algorithm with Sahin et 
al. (2010) and Baykasoglu et al. (2006) in terms of 
objective function and CPU time for small, medium and 
large sized problems, respectively. The allocation of 
budget to periods of time is as the same as the one used 
by Sahin et al. (2010).  
Column 7 shows the improvement values as the 
promotion percentages of the best solutions found by the 
proposed algorithm from the two best known solutions in 
the literature. The improvement is presented in Eq (11). 
Improvement%= (퐵푎푦푘푎푠표푔푙푢,푆푎ℎ푖푛	) _

	(퐵푎푦푘푎푠표푔푙푢,푆푎ℎ푖푛	)
∗ 100 (11) 

  
As the computational result shows, in Table 2 which is 
small-sized problems with N=6, the proposed algorithm 
has the 0.033% of the improvement factor. In Table 3 
which is medium-sized problems with N=15, the 
proposed algorithm has the better solution with 0.5842% 
of improvement index and finally in Table 4 which is 
large-sized problems with N=30, the proposed algorithm 
has better performances according to the 1.4023 % 
improvement. To sum up, the proposed algorithm 
provides good solution quality in comparison to the 
algorithms developed in previous researches especially in 
large-sized problems. 
In addition, for better understanding of the performance 
of hybrid GA-PSAA algorithm, we compared these 
algorithms by ANOVA test. To this aim, the cost function 
of algorithms is transformed to relative percentage 
deviation (RPD) as follows: 
 

푅푃퐷 =
퐴푙푔 (푖푗) − 푚푖푛 (푗)

푚푖푛 (푗)  (12) 

 
 
Where, 퐴푙푔 (푖푗) is objective function value for for test 
problem 푗 by algorithm 푖 and 푚푖푛 (푗) is the best value 
of the objective function between all algorithms for test 
problem 푗. The obtained results of ANOVA in Table 5 
show that the algorithms are significantly different.  
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Table 2 
Performance comparison: the improvement percentage and CPU time with N=6  

T Problem 
no. 

Budget 
type 

Best Solution by Our 
GA-PSAA 

Best Solution by 
Baykasoglu 

Best Solution by 
Sahin et al Improvement % Average CPU 

Time (Min) 

5 

P01 
1 106,419 106,419 106,419 0.000 0.53 
2 106,419 106,419 106,419 0.000 0.425 
3 106,419 106,419 106,419 0.000 0.298 

P02 
1 105,731 105,731 105,731 0.000 0.465 
2 105,731 106,802 105,731 0.000 0.232 
3 104,834 105,755 104,834 0.000 0.357 

P03 
1 105,650 107,650 106,011 0.341 0.338 
2 106,113 108,113 107,609 1.390 0.334 
3 105,977 106,977 105,762 -0.203 0.468 

P04 
1 107,124 108,260 106,583 -0.508 0.464 
2 107,424 109,474 107,984 0.519 0.456 
3 106,225 109,995 106,906 0.637 0.245 

P05 
1 106,874 108,188 106,328 -0.514 0.213 
2 107,545 108,669 107,870 0.301 0.222 
3 107,813 106,834 106,328 -1.397 0.309 

P06 
1 105,308 107,765 104,315 -0.952 0.211 
2 106,874 108,588 107,698 0.765 0.273 
3 107,132 109,568 104,262 -2.753 0.332 

P07 
1 108,411 108,114 107,406 -0.936 0.169 
2 108,411 108,114 108,114 -0.275 0.141 
3 107,521 107,521 106,439 -1.017 0.181 

P08 
1 108,306 107,248 107,248 -0.986 0.299 
2 108,603 108,603 107,248 -1.263 0.451 
3 107,724 108,603 107,248 -0.444 0.417 

10 

P09 
1 221,587 223,017 220,367 -0.554 0.531 
2 218,776 220,776 220,776 0.906 0.542 
3 217,580 221,010 217,251 -0.151 0.407 

P10 
1 214,430 217,412 217,106 1.233 0.469 
2 217,142 217,412 217,201 0.027 0.418 
3 210,318 217,412 212,134 0.856 0.293 

P11 
1 215,278 219,024 214,960 -0.148 0.393 
2 217,934 219,024 215,622 -1.072 0.331 
3 212,733 219,024 215,393 1.235 0.273 

P12 
1 213,321 217,350 216,828 1.617 0.188 
2 213,714 217,350 216,828 1.436 0.228 
3 210,214 217,350 216,828 3.050 0.468 

P13 
1 216,026 217,142 211,960 -1.918 0.309 
2 216,505 217,142 213,304 -1.501 0.331 
3 215,630 219,835 211,620 -1.895 0.373 

P14 
1 213,237 217,397 212,641 -0.280 0.625 
2 211,831 217,597 213,430 0.749 0.49 
3 216,515 217,397 213,424 -1.448 0.403 

P15 
1 217,967 219,788 217,460 -0.233 0.28 
2 218,196 219,788 218,794 0.273 0.253 
3 215,088 219,788 214,823 -0.123 0.351 

P16 
1 215,676 220,144 220,144 2.030 0.641 
2 219,558 220,055 220,144 0.226 0.487 
3 212,617 221,839 219,177 2.993 0.404 

Average   161,176 163,331 161,357 0.033 0.360 
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Table 3 
Performance comparison: the improvement percentage and CPU time with N=15 

T Problem 
no. 

Budget 
type 

Best Solution by Our 
GA-PSAA 

Best Solution by 
Baykasoglu 

Best Solution by 
Sahin et al Improvement % Average CPU 

Time (Min) 

5 

P17 
1 475,893 512,046 481,675 1.2004 0.534 
2 479,752 517,302 481,682 0.4007 0.707 
3 489,084 512,481 480,453 -1.7964 0.628 

P18 
1 489,289 500,284 484,799 -0.9262 0.539 
2 504,601 523,397 490,290 -2.9189 0.523 
3 489,963 525,379 486,726 -0.6651 0.658 

P19 
1 503,344 508,011 489,583 -2.8108 0.581 
2 485,273 529,629 493,018 1.5709 0.622 
3 493,299 523,918 489,450 -0.7864 0.503 

P20 
1 484,416 503,699 484,786 0.0763 0.500 
2 490,966 526,131 489,912 -0.2151 0.692 
3 479,566 519,095 484,954 1.1110 0.575 

P21 
1 476,411 502,622 488,262 2.4272 0.537 
2 476,536 520,556 487,935 2.3362 0.590 
3 463,429 519,407 487,822 5.0004 0.565 

P22 
1 473,903 499,891 486,493 2.5879 0.499 
2 479,353 520,721 488,199 1.8120 0.715 
3 476,553 517,139 487,360 2.2175 0.661 

P23 
1 482,924 502,919 478,000 -1.0301 0.633 
2 466,539 521,767 487,007 4.2028 0.493 
3 466,539 515,327 486,801 4.1623 0.624 

P24 
1 496,552 507,970 491,080 -1.1143 0.616 
2 490,567 530,135 494,369 0.7691 0.65 
3 483,419 522,490 491,237 1.5915 0.534 

10 

P25 
1 982,740 1,039,960 981,531 -0.1232 0.988 
2 982,577 1,061,535 985,031 0.2491 0.903 
3 975,587 1,032,807 979,638 0.4135 0.869 

P26 
1 976,290 1,022,447 979,655 0.3435 0.923 
2 984,131 1,041,725 981,478 -0.2703 1.173 
3 966,134 1,028,099 977,462 1.1589 1.159 

P27 
1 976,625 1,068,402 984,103 0.7599 0.824 
2 978,507 1,068,886 993,049 1.4644 1.148 
3 978,538 1,036,409 983,112 0.4653 1.097 

P28 
1 964,050 1,054,997 971,759 0.7933 1.253 
2 972,090 1,048,028 974,385 0.2355 0.914 
3 972,110 1,030,672 974,792 0.2751 0.987 

P29 
1 984,539 1,051,395 978,456 -0.6217 0.920 
2 979,570 1,059,084 980,346 0.0792 1.173 
3 979,004 1,034,928 978,748 -0.0262 1.085 

P30 
1 976,065 1,057,543 970,024 -0.6228 0.813 
2 970,152 1,061,751 972,765 0.2686 0.971 
3 970,040 1,036,017 970,435 0.0407 1.287 

P31 
1 966,958 1,037,066 978,549 1.1845 1.142 
2 983,417 1,049,658 990,976 0.7628 0.981 
3 983,721 1,038,597 979,339 -0.4474 0.951 

P32 
1 977,441 1,040,450 985,001 0.7675 1.196 
2 979,124 1,062,510 986,493 0.7470 1.057 
3 976,541 1,040,019 985,817 0.9409 1.134 

Average   729,878 780,944 733,642 0.5842 0.815 
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Table 4 
Performance comparison: the improvement percentage and CPU time with N=30  

T Problem 
no. 

Budget 
type 

Best Solution by Our 
GA-PSAA 

Best Solution by 
Baykasoglu 

Best Solution by 
Sahin et al Improvement % Average CPU 

Time (Min.) 

5 

P33 
1 583,575 610,903 577,086 -1.1244 4.430 
2 584,933 606,465 579,704 -0.9020 4.280 
3 574,557 612,039 577,493 0.5084 3.240 

P34 
1 560,525 576,350 571,846 1.9797 3.159 
2 571,685 608,461 572,396 0.1242 4.564 
3 601,895 607,954 570,537 -5.4962 5.564 

P35 
1 566,321 586,831 579,113 2.2089 2.770 
2 569,503 614,621 579,406 1.7092 4.588 
3 556,226 613,072 574,225 3.1345 5.266 

P36 
1 556,489 584,264 572,964 2.8754 6.006 
2 556,432 611,421 578,631 3.8365 3.674 
3 549,499 608,004 569,880 3.5764 4.265 

P37 
1 555,513 570,492 559,934 0.7896 4.292 
2 553,472 607,299 559,078 1.0027 5.248 
3 556,096 599,439 559,506 0.6095 3.961 

P38 
1 565,603 572,782 569,457 0.6768 2.558 
2 560,861 605,752 567,166 1.1117 3.061 
3 555,487 599,782 567,749 2.1598 5.722 

P39 
1 572,862 571,703 569,470 -0.5956 3.678 
2 556,563 605,413 570,521 2.4465 3.962 
3 559,847 608,664 569,382 1.6746 4.661 

P40 
1 556,186 596,744 579,411 4.0084 4.849 
2 568,469 618,022 586,310 3.0429 4.688 
3 560,413 614,882 577,719 2.9956 3.776 

10 

P41 
1 1,159,518 1,218,971 1,171,634 1.0341 25.176 
2 1,158,313 1,228,403 1,172,520 1.2117 24.431 
3 1,126,384 1,223,520 1,171,500 3.8511 18.211 

P42 
1 1,139,049 1,182,286 1,174,896 3.0511 17.634 
2 1,137,455 1,229,328 1,175,998 3.2775 25.788 
3 1,151,297 1,222,370 1,177,009 2.1845 31.726 

P43 
1 1,157,704 1,188,620 1,169,208 0.9839 15.454 
2 1,150,810 1,229,156 1,179,660 2.4456 25.808 
3 1,136,389 1,224,383 1,164,129 2.3829 30.315 

P44 
1 1,136,386 1,198,487 1,151,468 1.3098 34.210 
2 1,142,555 1,216,632 1,152,874 0.8951 20.778 
3 1,157,014 1,219,502 1,147,234 -0.8525 24.826 

P45 
1 1,122,303 1,198,674 1,127,044 0.4207 24.413 
2 1,143,254 1,228,490 1,141,881 -0.1202 29.814 
3 1,125,378 1,237,846 1,129,703 0.3828 22.259 

P46 
1 1,126,650 1,202,033 1,146,000 1.6885 14.189 
2 1,150,520 1,241,012 1,154,691 0.3612 16.970 
3 1,142,722 1,245,548 1,145,858 0.2737 32.450 

P47 
1 1,219,744 1,210,573 1,210,573 -0.7576 20.403 
2 1,180,024 1,249,389 1,210,573 2.5235 22.326 
3 1,143,393 1,247,708 1,210,573 5.5494 26.669 

P48 
1 1,202,789 1,209,088 1,189,154 -1.1466 27.392 
2 1,159,733 1,245,145 1,201,885 3.5072 26.686 

  3 1,175,424 1,240,958 1,181,360 0.5025 27.259 
Average   858,287 911,447 870,758 1.4023 14.321 

 
 
 
 
 
 
 
 
 

Table 5 
ANOVA results   

Source 
Degrees 
of 
freedom 

Sum of 
squares 

Mean 
square 

F-
Test P-value 

Algorithm 2 1959.11 979.557 236 0.0000 
Error 429 1776.54 4.141   
Total 431 2996.87    
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Therefore, in order to statistically rank the algorithms, it is 
necessary to use Tukey test. Table 6 shows the results of 
Tukey test based on the proposed GA-PSAA statistically 
outperforms other algorithms. Also, SA proposed by Sahin 
et al. (2010) is statistically better than ACO proposed by  
Baykasoglu et al. (2006). 
 

5.2. Sensitivity analyses of the algorithms 

In order to evaluate the effect of problem size (number of 
facilities and periods) on the quality of algorithms, this 
section provides some extensive experiment. By using the 
two-way ANOVA technique the means plot and Fisher’s 
least significant difference (LSD) intervals (at the 95% 
confidence level) for the interaction among the factors of 
type of algorithm and problem size are estimated and 
shown in Figures 6-7. As shown in Fig. 6, the increase in N 
factor leads to a tremendous decrement in the Baykasoglu’s 
algorithm quality. But the SA by Şahin et al. (2010) and 
our GA-PSAA are highly robust against the increasing of 
the number of facilities.  For N=6 both SA and GA-PSAA 
perform similarly. Nevertheless, the performance of GA-
PSAA is statistically better than SA algorithm for N=15 
and N=30. 

 

 
Fig. 6. Means plot and LSD intervals for interaction between the type of 

algorithm and number of facilities 
 
Fig 7 makes a comparison in different number of periods. 
According to the Fig 7, it can be proved that the number of 
periods is the least effective factor in algorithms’ 
performance, so that all the algorithms can statistically 
perform similarly in different sizes of T and be robust. 
However, the GA-PSAA can achieve better outcomes 
especially for T=10. 
 

 
Fig. 7. Means plot and LSD intervals for interaction between the type of 

algorithm and number of periods 

6. Conclusion and Suggestions for Future Works 

 In this study, an effective hybrid algorithm named GA-
PSAA was developed to solve dynamic facility layout 
problem with budget constraint (DFLPBC). By using the 
advantages of genetic algorithm and parallel simulated 
annealing algorithm we could achieve better results 
compared with the previous studies. Performance of the 
proposed algorithm was tested for forty-eight instances 
taken from the literature. As the results show, the proposed 
algorithm can improve the objective function values, 
especially in large-sized problems. The following 
suggestions can be considered in future works: 
 Material handling equipments and their maintenance 

time and cost can be considered. 
 The money time value in different periods can be 

considered to model DFLPBC. 
 Considering that the size of departments are not equal. 
 A different chromosome structure can be used in a new 

hybrid algorithm. 
 The budget constraint can include fuzzy inputs to 

model DFLPBC. 
 Implementation of proposed method on other 

combinatorial optimization problems. 
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