
A Tunned-parameter Hybrid Algorithm for Dynamic Facility Layout
Problem with Budget Constraint using GA and SAA

Hani Pourvaziri a,*, Parham Azimi b
aMSc, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

bAssistant Professor, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Received 12 December, 2012; Revised 15 September, 2013; Accepted 12 October, 2013

Abstract

A facility layout problem is concerned with determining the best position of departments, cells, or machines on the plant. An efficient
layout contributes to the overall efficiency of operations. It’s been proved that, when system characteristics change, it can cause a
significant increase in material handling cost. Consequently, the efficiency of the current layout decreases or is lost and it does necessitate
rearrangement. On the other hand, the rearrangement of the workstations may burden a lot of expenses on the system. The problem that
considers balance between material handling cost and the rearrangement cost is known as the Dynamic Facility Layout Problem (DFLP).
The objective of a DFLP is to find the best layout for the company facilities in each period of planning horizon considering the
rearrangement costs. Due to the complex structure of the problem, there are few researches in the literature which tried to find near
optimum solutions for DFLP with budget constraint. In this paper, a new heuristic approach has been developed by combining Genetic
Algorithm (GA) and Parallel Simulated Annealing Algorithm (PSAA) which is the main contribution of the current study. The results of
applying the proposed algorithm were tested over a wide range of test problems taken from the literature. The results show efficiency of the
hybrid algorithm GA- to solve the Dynamic Facility Layout Problem with Budget Constraint (DFLPBC).
Keywords: Dynamic facility layout problem; Budget constraint; Genetic algorithm; Parallel Simulated annealing algorithm.

1. Introduction and Literature Review

Facility layout problem is concerned with determination
of the most efficient arrangement of facilities within a
factory. The facility can be defined as manufacturing cell,
administrative office building or machine. An efficient
layout causes an efficient material handling between
facilities and thus decreases work in process (WIP) and
inventory holding costs. An efficient layout also
contributes to the overall efficiency of operations and can
save many overall costs such as production costs,
inventory holding costs etc. the 20-50% of total
operational cost and 15-70% of total cost of
manufacturing systems depends on transportation cost.
Thus, material handling cost is one of the most significant
measures to determine the efficiency of a layout. The
material handling cost is defined based on the flows of
materials between departments and the distances between
the locations of the departments. If the flows of materials
don’t change for a long time, the static layout problem
could be used; but when demands change, the flows of
materials between facilities change consequently. In this
situation, the existing facility layouts are not suitable and
efficient and need to be revised and rearranged.

Rearrangement of facilities to minimize the material
handling costs and transportation cost is known as a
dynamic facility layout problem (DFLP). The reasons for
facility rearrangement in each organization are as follows:
1) Change in demands or products
2) Change in operation sequencing
3) Change in product strategies
4) Change in resources and facilities
5) Change in standard safety rules
Change in demand is the most important reason for
rearranging facilities. Introducing new facilities or
removing depreciation facilities can also cause a change
in material handling pattern. Afentakis et al. (1990) stated
that when these system’s characteristics change, it can
cause a significant increase in material handling
requirements. These changes effect on the efficiency of
present layout and necessitate the need to consider re-
layout in the system. To solve this problem, the facility
layout should be flexible and more comfortable to change.
In this paper, the dynamic facility layout problem is
studied and the material handling cost is used as
efficiency index to evaluate the performance of our
proposed algorithm with previous researches.

* Corresponding author E-mail: hani.pourvaziri@yahoo.com

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

65

Rosenblatt (1986) first introduced DFLP and developed
an optimization approach based on dynamic programming
to solve it. He showed that the number of layouts to be
evaluated to guarantee optimality for a DFLP with N
departments and T periods is(푁!) . However, this
approach is computationally intractable for real-life
problems. Rosenblatt proposed two heuristics that were
based on dynamic programming, each of which simply
considers a set of limited good layouts for a single period.
Because of the computational difficulties inherent in such
a problem, several heuristics have since been developed.
Urban (1998) developed a steepest-descent heuristic
based on a pair-wise-exchange idea, which is similar to
CRAFT. Lacksonen and Enscore (1993) introduced and
compared five heuristics to solve the DFLP, which were
based on dynamic programming, a branch and bound
algorithm, a cutting plane algorithm, cut trees, and
CRAFT.
It should be mentioned that in addition to the exact
algorithms, many meta-heuristic algorithms have been
reported in the literature. Balakrishnan and Cheng (2000)
developed a genetic algorithm to solve the DFLP. Kaku
and Mazzola (1997) used a tabu search (TS) heuristic.
This TS heuristic is a two-stage search process that
incorporates diversification and intensification strategies.
Baykasoglu and Gindy (2001) proposed a simulated
annealing (SA) heuristic for the DFLP, in which they used
the upper and lower bound of the solution of a given
problem instance to determine the SA parameters.
Balakrishnan et al. (2003) presented a hybrid genetic
algorithm for DFLP. Erel et al. (2005) proposed a new
heuristic to solve the DFLP. They used weighted flow
data from various time periods to develop robust layouts,
and suggested the shortest path for solving the DFLP.
McKendall and Shang (2006) developed three hybrid ant
systems (HAS). McKendall et al. (2006) presented two
(SA) heuristics. The first, (SA I), is a direct adaptation of
SA for the DFLP. The second, (SA II), is the same as SA
I, except that it incorporates an added look-ahead/look-
back strategy. Rodriguez (2006) presented a hybrid meta-
heuristic algorithm based on a genetic algorithm and tabu
search. Krishnan et al. (2006) developed a new tool, the
“Dynamic From–Between Chart”, for an analysis of
redesigned layouts. This tool models changes in the
production rates using a continuous function.
Balakrishnan and Cheng (2009) investigated the
performance of algorithms under fixed and rolling
horizons, differing shifting costs and flow variability, and
forecast uncertainty. Gary et al. (2009) evaluate a multi-
objective dynamic facility layout by ant system.
Baykasoglu et al (2001) solved DFLP by simulated
annealing for the first time. Sahin et al. (2010) presented
simulated annealing algorithm (SAA) for the DFLP with
budget constraint (DFLPBC). For an extensive review on
the DFLP, one can refer to the work of Page, 1991;
Balakrishnan and Cheng 1998; Tompkins al., 2003
Drira al., 2007. The studies described above share a
common assumption that all departments are of equal

size. However, some studies do not make this assumption.
Two recent examples of such studies are McKendall and
Hakobyan, 2010; Rodriguez et al., 2006; Gary et al.,
2009.
It should be noticed that most previous researches did not
consider the company budget for rearranging the
departments. Because these rearrangements are costly
activities, it is normal for a company to have a limited
budget in this regard. According to the literature, there are
just three studies on DFLP with the budget constraints;
Balakrishnan et al. (1992), Baykasoglu et al. (2006),
Sahin et al (2010). The last one which is the newest
related research used a budget constraint for each period
separately. They developed a simulated annealing
algorithm for the problem and showed that their algorithm
is more efficient than the two previous researches.
The assumptions for the DFLPBC are as follows:
 The flow between facilities is dynamic and

deterministic
 Facilities and locations are of equal size
 The distances between facilities have been determined

before.
 Budget allocated for each period is constant
 Leftover budgets from past periods are available for

current period
This paper is organized in the following way. In section 2,
the mathematical model of DFLPBC is presented. In
section 3, a hybrid algorithm made by combining genetic
algorithm and parallel simulated annealing algorithm
(PSAA) is presented and the characteristics of the
proposed GA-PSAA are specially described. In section 4,
in order to obtain more accurate solutions, a parameter
tuning according to Taguchi method is accomplished. In
section 5, the computational results have been presented
and compared for 48 numerical examples with small,
medium and large sized in literatures. Finally, concluding
remarks and suggestions for future researches are
presented in section5.

2. Mathematical Model

The Dynamic Facility Layout Problem with Budget
Constraint (DFLPBC) can be modelled as follows (Sahin
et al., 2010):
The variables are:

푋
	1				if	facility	푖	is	allocated	to	location	푗	in	period	푡

	
0																																						표푡ℎ푒푟푤푖푠푒																																

	

퐵 Available budget for period t.

퐿퐵 Left-over budget from period t to period t+1.

The parameters and indexes are:
푁 The number of departments/locations

푇 The number of periods in the planning horizon

Hani Pourvaziri et al./ A Tunned-paramets Hybrid Algorithm ...

66

푖, 푗, 푘, 푙 Index for departments/locations

푡 Index for time periods

퐴 The cost of shifting department 푖 from location

푗 to 푙 in period 푡

퐶 The material transporting cost between the

departments i in location j and the department k

in location l in period t.

퐴퐵 Allocated budget for period t.

The mathematical model of DFLPBC is presented as
below:

푀푖푛푖푚푖푧푒	푇퐶 = 퐴 ∗	푋 ∗	푋

+ 퐶 	푋 	푋 					

(1)

St:

푋 = 1								푗 = 1,2,… ,푁,										푡 = 1,2,… , 푇												
(2)

푋 = 1						, 푖 = 1,2,… ,푁	, 푡 = 1,2,… , 푇							

(3)

퐿퐵 = 퐵 − 퐴 	푦 		 , 푡 = 1,2,… ,푇										

(4)

퐵 = 퐴퐵 + 퐿퐵 ,																				푡 = 1,2,… , 푇																						
(5)

퐴 	푦 ≤ 퐵 ,										푡 = 1,2,… , 푇																						

(6)

푋 ,푦 ∈ {0,1}					, 푖, 푗, 푙 = 1,2,… ,푁,			푡 = 1,2,… , 푇													
(7)

퐿퐵 ,퐵 ,퐴퐵 ≥ 0,																																							푡 = 1,2,… , 푇										
(8)

The objective function of this model is to minimize the
total combined traveling and transporting material costs.
Constraint set (2) ensures that each facility should be
located in one position and constraint set (3) ensures that
in each position only one facility should be allocated.
Constraint set (4) is for equating the total available budget
in a period to leftover budget from previous period and
the allocated budget in the current period. Constraint set
(5,6) represents the budget constraint for each period.
Constraint set (7) restricts decision variables and
constraint set (8) represents the non-negativity restriction
on the decision variables.

3. Solution Methodology

Because of the hardness of optimally solving the problem
with exact methods in reasonable CPU time, we should
use heuristics or meta-heuristics algorithm to solve it. As
in literatures the genetic algorithm had better
performances in objective function and CPU time, we
used genetic algorithm to solve this problem in this paper.
Thus, we use a hybrid algorithm which is mixed of
genetic algorithm and simulated annealing algorithm.

3.1. Genetic algorithm

GAs is stochastic evolutionary algorithms that are based
on analogies with the principles of natural biological
systems. GA is one of the best heuristic optimization
methods which was originally developed by Holland
(Mahmoudi et al., 2012). GA is especially suited for
solving complex optimization problems. In general, GA
consists of simultaneously evaluating multiple regions of
the solution space during each iteration. It studies a
collection of solutions called population and so performs
a multidirectional search. The population is usually
random to begin with but can be initialized with another
heuristic algorithm. After initialization, a stochastic
search process is employed to iteratively improve the
average fitness of the population. Genetic algorithms
employ standard operators to promote a population. Two
of these main operators are mutation and crossover which
are discussed in the following section.

3.2. Simulated annealing algorithm

Generally speaking, simulated annealing is a stochastic
neighborhood search procedure to find the optimal
solution in NP-hard problems. Ever since its introduction,
the SA has shown a high performance in large
combinatorial optimization problems (Naderi and
Sadeghi, 2011). SA is an extension of a local search
strategy designed to avoid getting trapped in a local
optimum. This is accomplished by randomly generating
neighbors and accepting a solution that worsens the value
with certain probability. This probability depends on the
difference between the solution value of 푓(푥) and
neighborhood value 푓(푥) and the so-called temperature
T at iteration n. The method can avoid being stuck at a
local optimum, and increase the probability of finding a
global optimal solution. The acceptance probability P
decreases over time as the temperature T decreases.
Consequently, it performs a wide investigation of the
solution space initially and then restricts the solution
space gradually. Thus, algorithm converges to the best
optimum solution.
The experimental results show that the performance of
simulated annealing improves if the number of initial
solutions from which the algorithm starts increases and
space solution is searched in a parallel manner. This
parallelism of simulated annealing is called Multiple

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

67

Independent Run (MIR) implementations. In MIR
method, independent runs of sequential SA are executed
in each processor and the best-found solution is selected
as the result. Thus, the chance of algorithm to be
converged to the global optimum increases. Because no
communication of moves or solutions is required in this
parallelization strategy, the time taken won’t be increased
drastically.

3.3. Hybrid GA-PSA algorithm

The normal GA cannot guaranty a complicated
evolutionary process. This algorithm isn’t also capable to
do a complete local search on solution space. Therefore,
we can combine the power of genetic algorithm in global
search with a local search engine like simulated annealing
to find the global optimum solution. This hybrid
algorithm which combines GA and SAA has both
advantages of theses algorithms and help to improve
solution performances.
In this hybrid algorithm, first, the GA generates initial
population. Next, some of these solutions have been
selected for PSAA as initial solutions. To have variety in
the proposed algorithm, we consider that some bad,
normal and good solutions could be selected with the
same chances. Then, the parallel local search process on
the selected solutions starts. The best solutions gained by
PSAA are combined with population of genetic algorithm
which has been improved by crossover and mutation
operators. The new population is evaluated and arranged
and is used as the initial population of the next generation.
This continues until stopping criteria are satisfied.

Initialize all control parameters
Generate initial random population
 While stopping criteria do not satisfy Do
 Evaluate the chromosomes
 Generate offspring with crossover
 Generate offspring with mutation
 Evaluate new population
 Parallel Simulated-annealing Phase
 Start PSAA by some of the best and the worst
 chromosomes
 For all the selected chromosomes Do
 While stopping criterion satisfied Do
 While system has reached thermal
 equilibrium Do
 Randomly generate neighbourhood
 based on the current solution.
 If better than the current state change
 to the new state otherwise change to
 the new state according to the
 transition probability
 End while
 Decrease the temperature
 End while
 End for
Transfer the improved solutions to the genetic population
Combine all the generated population

 End while

Fig. 1. Pseudo code for genetic- Parallel Simulated-annealing algorithm

3.4. The chromosome structure of the algorithm

The first step to illustrate proposed hybrid algorithm is
chromosome structure design. The most important feature
of the chromosome is satisfying the constraints. Our
designing chromosome is an N *T matrix, in which N is
the number of facilities and T is the periods of time. Each
row of this matrix shows the layout of a period. In each
row, the value of each gene represents the facility number
and rank of it represents the position of facility in special
period of time. For example, figure 2 illustrates the form
of a chromosome in two periods of time. According to
this chromosome, in period 1, the facility 2 is in
position1, the facility4 is in position2, the facility 1 is in
position 3 and finally the facility 3 is in position 4.

Fig. 2. An example of proposed chromosome structure

3.5. The crossover operator

Once a population has been created and the best elements
selected, an operator is needed to evolve the Population.
This operator is called crossover. Traditional crossover
operators like one point crossover cannot be applied to
DFLP because they often create invalid solutions.
Therefore, a new crossover operator which is illustrated in
Fig. 3, is used. The proposed crossover operator is totally
different from that of the CVGA of Conway and
Venkataramanan (1994) and the NLGA of Balakrishnan
and Cheng (2000) and generates feasible solution string.
Consequently, checking the feasibility of the solution is
no more required. The crossover scheme has the
following steps:
1) Two strings from the parent pool are randomly

selected.
2) A cross point is randomly selected for each period.

(Cross point 1, .., T).
3) The layout for the first period of offspring1 is

generated in the following way: the segment from 1
to cross point1 of parent1 is directly copied to the
offspring (segment1_off1_period1). The second
segment of offspring1 in period 1 consists of
elements (departments) of cross point1 up to n of
parent1 in period1. But the order of placing these
elements is according to order of them in parent 2.
This structure is repeated for generating other periods
of offspring1. This ensures feasibility in generated
offspring and other offsprings which are produced
like it.

Hani Pourvaziri et al./ A Tunned-paramets Hybrid Algorithm ...

68

Fig. 3. An example of crossover operator

3.6. The mutation operator and neighborhood

The local transformations (or neighbourhood moves) in
each iteration, that can be applied to the current
solution(s), define a set of neighbouring solutions as: N(s)
= {new configuration obtained by applying a single move
to the current solution}. Two swapping types are used.
Swapping type 1 is used to define the neighbourhood N(s)
in local search (PSAA) and Swapping type 2 is used as
mutation operator of genetic algorithm.

3.6.1. Swapping type 1

First, select a period (row) randomly. Then, select two
different locations (columns) randomly from the selected
period and swap the facilities in these locations (Fig 4).

Fig. 4. An example of swapping type 1 (neighbourhood definition)

3.6.2. Swapping type 2:

Select two periods (rows) randomly from the current
solution and swap the layout in these periods (Fig 5).

Fig. 5. An example of Swapping type 2 (mutation operator)

3.7. Cooling Schedule

 The performance of this algorithm also depends on the
cooling schedule, which is relevant to the temperature
updating function. In the proportional decrement scheme,
temperature decreases at the k and k +1 steps of the outer
loop by:

 푇 = 훼푇 																																																																													(9)

Wherein 훼 is cooling rate and is obtained by some
experiments.

3.7. Stopping criteria

To limit the number of iterations of both GA and PSAA
algorithms, some convergence experiments were
performed and the best criterion was applied as follows:

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

69

Genetic algorithm will be stopped when one of the
following situations is done:

1. The fitness function of the elite chromosome
(chromosome with the best fitness value) does not
change more than 0.5% after a pre-determined
number of successive generations (according to
experimental result this value is set to 40);

2. The total number of iterations reached to a
predefined number (according to experimental result
this value is set to 700).

For stopping PSAA in a temperature level first we define
the set of m iterations as a round. The system reaches
equilibrium at a certain temperature if the mean changes
between two successive rounds of iterations remain
constant within 0.95% confidence interval, we conclude
that the system has reached thermal equilibrium and so
we reduce the temperature; otherwise, we keep perturbing
the solutions by creating neighbouring solutions, until
reaching equilibrium. For the outer loop of PSAA the
total number of iterations exceeds certain value
(according to experimental result this value is set to 500)
is set as stopping criteria.

4. Tuning the Parameters

The selection of parameters has a major influence on the
efficiency of any meta-heuristic algorithms (Zoraghi et
al., 2012). One of the most effective methods in selecting
the appropriate parameters is Taguchi parameter tuning
method. In the Taguchi method, the results are transferred
into a measure called signal to noise (S/N) ratio. The
frame of this ratio is different for each purpose. Eq(10)
represents the (S/N) ratio formula for minimization
objectives.
푆
푁 = −10log	(

1
푛 푦)

(10)

Where y is the response for the given factor level
combination and n is the number of responses in the
factor level combination. The assuming parameters of the
proposed algorithm are: the crossover rate (Pc), the
mutation rate (Pm), the initial temperature (T0), cooling
rate (α) and initial population (npop). These parameters are
examined in 4 different levels. The best level of involved
parameters is presented in Table 1.

Table 1
Factors and their best levels

Responses Pc Pm T0 α npop,

Optimal level 0.8 0.15 1000 0.985 50

5. Computational Results

5.1. Analysis of results and comparisons

All computations were carried out on a Pentium V PC
with 4 GByte RAM, 2.2 GHZ processor, Core i5. Minitab
16 software was used for tuning of parameters. To
evaluate the performances of the proposed algorithm, 48
test problems with 6, 15 and 30 facilities for 5 and 10
periods of time were considered. The computational
results for dynamic facility layout problem with budget
constraint (DFLPBC) were compared to the results
obtained by Sahin et al. (2010) and Baykasoglu et al.
(2006) researches in literature. Tables 2, 3 and 4 show the
comparing results of our proposed algorithm with Sahin et
al. (2010) and Baykasoglu et al. (2006) in terms of
objective function and CPU time for small, medium and
large sized problems, respectively. The allocation of
budget to periods of time is as the same as the one used
by Sahin et al. (2010).
Column 7 shows the improvement values as the
promotion percentages of the best solutions found by the
proposed algorithm from the two best known solutions in
the literature. The improvement is presented in Eq (11).
Improvement%= (퐵푎푦푘푎푠표푔푙푢,푆푎ℎ푖푛) _

	(퐵푎푦푘푎푠표푔푙푢,푆푎ℎ푖푛)
∗ 100 (11)

As the computational result shows, in Table 2 which is
small-sized problems with N=6, the proposed algorithm
has the 0.033% of the improvement factor. In Table 3
which is medium-sized problems with N=15, the
proposed algorithm has the better solution with 0.5842%
of improvement index and finally in Table 4 which is
large-sized problems with N=30, the proposed algorithm
has better performances according to the 1.4023 %
improvement. To sum up, the proposed algorithm
provides good solution quality in comparison to the
algorithms developed in previous researches especially in
large-sized problems.
In addition, for better understanding of the performance
of hybrid GA-PSAA algorithm, we compared these
algorithms by ANOVA test. To this aim, the cost function
of algorithms is transformed to relative percentage
deviation (RPD) as follows:

푅푃퐷 =
퐴푙푔 (푖푗) − 푚푖푛 (푗)

푚푖푛 (푗) (12)

Where, 퐴푙푔 (푖푗) is objective function value for for test
problem 푗 by algorithm 푖 and 푚푖푛 (푗) is the best value
of the objective function between all algorithms for test
problem 푗. The obtained results of ANOVA in Table 5
show that the algorithms are significantly different.

Hani Pourvaziri et al./ A Tunned-paramets Hybrid Algorithm ...

70

Table 2
Performance comparison: the improvement percentage and CPU time with N=6

T Problem
no.

Budget
type

Best Solution by Our
GA-PSAA

Best Solution by
Baykasoglu

Best Solution by
Sahin et al Improvement % Average CPU

Time (Min)

5

P01
1 106,419 106,419 106,419 0.000 0.53
2 106,419 106,419 106,419 0.000 0.425
3 106,419 106,419 106,419 0.000 0.298

P02
1 105,731 105,731 105,731 0.000 0.465
2 105,731 106,802 105,731 0.000 0.232
3 104,834 105,755 104,834 0.000 0.357

P03
1 105,650 107,650 106,011 0.341 0.338
2 106,113 108,113 107,609 1.390 0.334
3 105,977 106,977 105,762 -0.203 0.468

P04
1 107,124 108,260 106,583 -0.508 0.464
2 107,424 109,474 107,984 0.519 0.456
3 106,225 109,995 106,906 0.637 0.245

P05
1 106,874 108,188 106,328 -0.514 0.213
2 107,545 108,669 107,870 0.301 0.222
3 107,813 106,834 106,328 -1.397 0.309

P06
1 105,308 107,765 104,315 -0.952 0.211
2 106,874 108,588 107,698 0.765 0.273
3 107,132 109,568 104,262 -2.753 0.332

P07
1 108,411 108,114 107,406 -0.936 0.169
2 108,411 108,114 108,114 -0.275 0.141
3 107,521 107,521 106,439 -1.017 0.181

P08
1 108,306 107,248 107,248 -0.986 0.299
2 108,603 108,603 107,248 -1.263 0.451
3 107,724 108,603 107,248 -0.444 0.417

10

P09
1 221,587 223,017 220,367 -0.554 0.531
2 218,776 220,776 220,776 0.906 0.542
3 217,580 221,010 217,251 -0.151 0.407

P10
1 214,430 217,412 217,106 1.233 0.469
2 217,142 217,412 217,201 0.027 0.418
3 210,318 217,412 212,134 0.856 0.293

P11
1 215,278 219,024 214,960 -0.148 0.393
2 217,934 219,024 215,622 -1.072 0.331
3 212,733 219,024 215,393 1.235 0.273

P12
1 213,321 217,350 216,828 1.617 0.188
2 213,714 217,350 216,828 1.436 0.228
3 210,214 217,350 216,828 3.050 0.468

P13
1 216,026 217,142 211,960 -1.918 0.309
2 216,505 217,142 213,304 -1.501 0.331
3 215,630 219,835 211,620 -1.895 0.373

P14
1 213,237 217,397 212,641 -0.280 0.625
2 211,831 217,597 213,430 0.749 0.49
3 216,515 217,397 213,424 -1.448 0.403

P15
1 217,967 219,788 217,460 -0.233 0.28
2 218,196 219,788 218,794 0.273 0.253
3 215,088 219,788 214,823 -0.123 0.351

P16
1 215,676 220,144 220,144 2.030 0.641
2 219,558 220,055 220,144 0.226 0.487
3 212,617 221,839 219,177 2.993 0.404

Average 161,176 163,331 161,357 0.033 0.360

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

71

Table 3
Performance comparison: the improvement percentage and CPU time with N=15

T Problem
no.

Budget
type

Best Solution by Our
GA-PSAA

Best Solution by
Baykasoglu

Best Solution by
Sahin et al Improvement % Average CPU

Time (Min)

5

P17
1 475,893 512,046 481,675 1.2004 0.534
2 479,752 517,302 481,682 0.4007 0.707
3 489,084 512,481 480,453 -1.7964 0.628

P18
1 489,289 500,284 484,799 -0.9262 0.539
2 504,601 523,397 490,290 -2.9189 0.523
3 489,963 525,379 486,726 -0.6651 0.658

P19
1 503,344 508,011 489,583 -2.8108 0.581
2 485,273 529,629 493,018 1.5709 0.622
3 493,299 523,918 489,450 -0.7864 0.503

P20
1 484,416 503,699 484,786 0.0763 0.500
2 490,966 526,131 489,912 -0.2151 0.692
3 479,566 519,095 484,954 1.1110 0.575

P21
1 476,411 502,622 488,262 2.4272 0.537
2 476,536 520,556 487,935 2.3362 0.590
3 463,429 519,407 487,822 5.0004 0.565

P22
1 473,903 499,891 486,493 2.5879 0.499
2 479,353 520,721 488,199 1.8120 0.715
3 476,553 517,139 487,360 2.2175 0.661

P23
1 482,924 502,919 478,000 -1.0301 0.633
2 466,539 521,767 487,007 4.2028 0.493
3 466,539 515,327 486,801 4.1623 0.624

P24
1 496,552 507,970 491,080 -1.1143 0.616
2 490,567 530,135 494,369 0.7691 0.65
3 483,419 522,490 491,237 1.5915 0.534

10

P25
1 982,740 1,039,960 981,531 -0.1232 0.988
2 982,577 1,061,535 985,031 0.2491 0.903
3 975,587 1,032,807 979,638 0.4135 0.869

P26
1 976,290 1,022,447 979,655 0.3435 0.923
2 984,131 1,041,725 981,478 -0.2703 1.173
3 966,134 1,028,099 977,462 1.1589 1.159

P27
1 976,625 1,068,402 984,103 0.7599 0.824
2 978,507 1,068,886 993,049 1.4644 1.148
3 978,538 1,036,409 983,112 0.4653 1.097

P28
1 964,050 1,054,997 971,759 0.7933 1.253
2 972,090 1,048,028 974,385 0.2355 0.914
3 972,110 1,030,672 974,792 0.2751 0.987

P29
1 984,539 1,051,395 978,456 -0.6217 0.920
2 979,570 1,059,084 980,346 0.0792 1.173
3 979,004 1,034,928 978,748 -0.0262 1.085

P30
1 976,065 1,057,543 970,024 -0.6228 0.813
2 970,152 1,061,751 972,765 0.2686 0.971
3 970,040 1,036,017 970,435 0.0407 1.287

P31
1 966,958 1,037,066 978,549 1.1845 1.142
2 983,417 1,049,658 990,976 0.7628 0.981
3 983,721 1,038,597 979,339 -0.4474 0.951

P32
1 977,441 1,040,450 985,001 0.7675 1.196
2 979,124 1,062,510 986,493 0.7470 1.057
3 976,541 1,040,019 985,817 0.9409 1.134

Average 729,878 780,944 733,642 0.5842 0.815

Hani Pourvaziri et al./ A Tunned-paramets Hybrid Algorithm ...

72

Table 4
Performance comparison: the improvement percentage and CPU time with N=30

T Problem
no.

Budget
type

Best Solution by Our
GA-PSAA

Best Solution by
Baykasoglu

Best Solution by
Sahin et al Improvement % Average CPU

Time (Min.)

5

P33
1 583,575 610,903 577,086 -1.1244 4.430
2 584,933 606,465 579,704 -0.9020 4.280
3 574,557 612,039 577,493 0.5084 3.240

P34
1 560,525 576,350 571,846 1.9797 3.159
2 571,685 608,461 572,396 0.1242 4.564
3 601,895 607,954 570,537 -5.4962 5.564

P35
1 566,321 586,831 579,113 2.2089 2.770
2 569,503 614,621 579,406 1.7092 4.588
3 556,226 613,072 574,225 3.1345 5.266

P36
1 556,489 584,264 572,964 2.8754 6.006
2 556,432 611,421 578,631 3.8365 3.674
3 549,499 608,004 569,880 3.5764 4.265

P37
1 555,513 570,492 559,934 0.7896 4.292
2 553,472 607,299 559,078 1.0027 5.248
3 556,096 599,439 559,506 0.6095 3.961

P38
1 565,603 572,782 569,457 0.6768 2.558
2 560,861 605,752 567,166 1.1117 3.061
3 555,487 599,782 567,749 2.1598 5.722

P39
1 572,862 571,703 569,470 -0.5956 3.678
2 556,563 605,413 570,521 2.4465 3.962
3 559,847 608,664 569,382 1.6746 4.661

P40
1 556,186 596,744 579,411 4.0084 4.849
2 568,469 618,022 586,310 3.0429 4.688
3 560,413 614,882 577,719 2.9956 3.776

10

P41
1 1,159,518 1,218,971 1,171,634 1.0341 25.176
2 1,158,313 1,228,403 1,172,520 1.2117 24.431
3 1,126,384 1,223,520 1,171,500 3.8511 18.211

P42
1 1,139,049 1,182,286 1,174,896 3.0511 17.634
2 1,137,455 1,229,328 1,175,998 3.2775 25.788
3 1,151,297 1,222,370 1,177,009 2.1845 31.726

P43
1 1,157,704 1,188,620 1,169,208 0.9839 15.454
2 1,150,810 1,229,156 1,179,660 2.4456 25.808
3 1,136,389 1,224,383 1,164,129 2.3829 30.315

P44
1 1,136,386 1,198,487 1,151,468 1.3098 34.210
2 1,142,555 1,216,632 1,152,874 0.8951 20.778
3 1,157,014 1,219,502 1,147,234 -0.8525 24.826

P45
1 1,122,303 1,198,674 1,127,044 0.4207 24.413
2 1,143,254 1,228,490 1,141,881 -0.1202 29.814
3 1,125,378 1,237,846 1,129,703 0.3828 22.259

P46
1 1,126,650 1,202,033 1,146,000 1.6885 14.189
2 1,150,520 1,241,012 1,154,691 0.3612 16.970
3 1,142,722 1,245,548 1,145,858 0.2737 32.450

P47
1 1,219,744 1,210,573 1,210,573 -0.7576 20.403
2 1,180,024 1,249,389 1,210,573 2.5235 22.326
3 1,143,393 1,247,708 1,210,573 5.5494 26.669

P48
1 1,202,789 1,209,088 1,189,154 -1.1466 27.392
2 1,159,733 1,245,145 1,201,885 3.5072 26.686

 3 1,175,424 1,240,958 1,181,360 0.5025 27.259
Average 858,287 911,447 870,758 1.4023 14.321

Table 5
ANOVA results

Source
Degrees
of
freedom

Sum of
squares

Mean
square

F-
Test P-value

Algorithm 2 1959.11 979.557 236 0.0000
Error 429 1776.54 4.141
Total 431 2996.87

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

73

Therefore, in order to statistically rank the algorithms, it is
necessary to use Tukey test. Table 6 shows the results of
Tukey test based on the proposed GA-PSAA statistically
outperforms other algorithms. Also, SA proposed by Sahin
et al. (2010) is statistically better than ACO proposed by
Baykasoglu et al. (2006).

5.2. Sensitivity analyses of the algorithms

In order to evaluate the effect of problem size (number of
facilities and periods) on the quality of algorithms, this
section provides some extensive experiment. By using the
two-way ANOVA technique the means plot and Fisher’s
least significant difference (LSD) intervals (at the 95%
confidence level) for the interaction among the factors of
type of algorithm and problem size are estimated and
shown in Figures 6-7. As shown in Fig. 6, the increase in N
factor leads to a tremendous decrement in the Baykasoglu’s
algorithm quality. But the SA by Şahin et al. (2010) and
our GA-PSAA are highly robust against the increasing of
the number of facilities. For N=6 both SA and GA-PSAA
perform similarly. Nevertheless, the performance of GA-
PSAA is statistically better than SA algorithm for N=15
and N=30.

Fig. 6. Means plot and LSD intervals for interaction between the type of

algorithm and number of facilities

Fig 7 makes a comparison in different number of periods.
According to the Fig 7, it can be proved that the number of
periods is the least effective factor in algorithms’
performance, so that all the algorithms can statistically
perform similarly in different sizes of T and be robust.
However, the GA-PSAA can achieve better outcomes
especially for T=10.

Fig. 7. Means plot and LSD intervals for interaction between the type of

algorithm and number of periods

6. Conclusion and Suggestions for Future Works

 In this study, an effective hybrid algorithm named GA-
PSAA was developed to solve dynamic facility layout
problem with budget constraint (DFLPBC). By using the
advantages of genetic algorithm and parallel simulated
annealing algorithm we could achieve better results
compared with the previous studies. Performance of the
proposed algorithm was tested for forty-eight instances
taken from the literature. As the results show, the proposed
algorithm can improve the objective function values,
especially in large-sized problems. The following
suggestions can be considered in future works:
 Material handling equipments and their maintenance

time and cost can be considered.
 The money time value in different periods can be

considered to model DFLPBC.
 Considering that the size of departments are not equal.
 A different chromosome structure can be used in a new

hybrid algorithm.
 The budget constraint can include fuzzy inputs to

model DFLPBC.
 Implementation of proposed method on other

combinatorial optimization problems.

7. References

[1] Afentakis P, Millen R, Solomon MM. (1990). Dynamic
layout strategies for flexible manufacturing systems.
International Journal of Production Research;28:311–23.

[2] Balakrishnan, J., Cheng, C. H. (1998). Dynamic layout
Algorithms: A state-of-the art survey. Omega.264, 507–521.

[3] Balakrishnan, J., Cheng, C. H. (2000). Genetic search And
the dynamic layout problem: An improved algorithm.
Computers and Operations Research 276, 587–593.

[4] Balakrishnan, J., Cheng, C.H., Daniel, G. Conway, A., Lau,
C.M. (2003). A hybrid genetic algorithm for the dynamic
plant layout problem. International Journal of Production
Economics.86, 107–120.

0
1
2
3
4
5
6
7
8

۶ ١۵ ٣٠

R
PD

Number of facilities

GA-PSAA Baykasoglu sahin

0

1

2

3

4

5

6

۵ ١٠

R
PD

Number of periods

GA-PSAA Baykasoglu sahin

Table 6
Tukey test of pairwise comparison of the algorithms
Algorithms Lower Upper Significant difference

GA-PSAA & ACO 4.261 5.383 YES

GA-PSAA & SA 0.127 1.250 YES

SA & ACO -4.695 -3.572 YES

Hani Pourvaziri et al./ A Tunned-paramets Hybrid Algorithm ...

74

[5] Balakrishnan, J., Cheng, C.H. (2009). The dynamic plant
layout problem: Incorporating rolling horizons and forecast
uncertainty. Omega, 37, 165 – 177.

[6] Balakrishnan, J., Jacobs, F. R., Venkataramanan, M. A.
(1992). Solutions for the constrained dynamic facility layout
problem. European Journal of Operational Research, 57(2),
280–286.

[7] Baykasoglu, A., Gindy, N. N. Z. (2001). A simulated
annealing algorithm for dynamic facility layout problem.
Computers and Operations Research. 2814, 1403–1426.

[8] Baykasoglu, A., Dereli, T., Sabuncu, I. (2006). An ant
colony algorithm for solving budget constrained and
unconstrained dynamic facility layout problems. Omega,
34(4), 385–396.

[9] Dong, M., Wua, C., Hou, F. (2009). Shortest path based
simulated annealing algorithm for dynamic facility layout
problem under dynamic business environment. Expert
Systems with Applications.36, 11221–11232.

[10] Drira, A, Pierreval, H., Hajri-Gabouj, H. (2007). Facility
layout problems: A survey. Annual Reviews in Control. 31,
255–267.

[11] Dunker, T., Radons, G., Westkamper, E. (2005). Combining
evolutionary computation and dynamic programming for
solving a dynamic facility layout problem. European Journal
of Operational Research. 1651, 55–69.

[12] Erel, J.B., Ghosh, J., Simon, J.T. (2005). New heuristic for
the dynamic layout problem. Journal of the Operational
Research Society.568, 1001.

[13] Gary, Y., Chen, K.J., Rogers, A. (2009). Multi-objective
evaluation of dynamic facility layout using ant colony
optimization. Proceedings of the 2009 Industrial
Engineering Research Conference.

[14] Kaku, B., Mazzola, J. B. (1997). A tabu search heuristic for
the plant layout problem. INFORMS Journal on Computing.
94, 374–384.

[15] Kouvelis, P., Kurawarwala, A. A., Gutierrez, G. J. (1992).
Algorithms for robust single and multiple periods layout
planning for manufacturing systems. European Journal of
Operations Research. 632, 287–303.

[16] Krishnan, K.K., Cheraghi, S.H., Nayak, C. N. (2006).
Dynamic from-between charts: A new tool for solving
dynamic facility layout problems. International Journal
ofIndustrial and Systems Engineering. 11/2, 182–200.

[17] Kulturel-Konak, S. (2007). Approaches to uncertainties in
facility layout problems: Perspectives at the beginning of
the 21st century. Journal of Intelligent Manufacturing. 182,
273–284.

[18] Lacksonen, T.A., Enscore, E.E. (1993). Quadratic
assignment algorithms for the dynamic layout problem.
International Journal of Production Research.313, 503–17.

[19] McKendall, A.R, Shang, J. (2006). Hybrid ant systems for
the dynamic facility layout problem .Computers &
Operations Research. 333, 790–803.

[20] McKendall, A.R., Shang, J., Kuppusamy, S. (2006).
Simulated annealing heuristics for the dynamic facility
layout problem, Computers & Operations Research. 33,
2431–2444.

[21] McKendall A.R., Hakobyan, A. (2010). Heuristics for the
dynamic facility layout problem with unequal-area
departments. European Journal of Operational Research.
201, 171–182.

[22] Mahmoudi, A., Shavandi,H., Nouhi, KH.,(2012). Analysing
Price, Quality and Lead Time Decisions with the Hybrid
Solution Method of Fuzzy Logic and Genetic Algorithm,
Journal of Optimization in Industrial Engineering, 5(10), 1-9

[23] Naderi, B., Sadeghi, H. (2011). A Multi-objective Simulated
Annealing Algorithm for Solving the Flexible no-wait
Flowshop Scheduling Problem with Transportation Times.
Journal of Optimization in Industrial Engineering. 5(11), 33-
41

[24] Page, A.L. (1991). New product development
survey:Performance and best practices. PDMA conference.

[25] Rodriguez, J.M., MacPhee, F.C., Bonham, D.J., Bhavsar,
V.C. (2006). Solving the dynamic plant layout problem
using a new hybrid meta-heuristic algorithm. International
Journal of High Performance Computing and Networking.
45/6, 286–294.

[26] Rosenblatt M.J. (1986). The dynamics of plant layout.
Management Science. 321, 76–86.

[27] Sahin, R., Ertogral, K., Turkbey, O. (2010). A simulated
annealing heuristic for the dynamic facility layout problem
with budget constraint. Computers & Industrial
Engineering, 59, 308-313.

[28] Tompkins, J., White, J., Bozer, Y., Tanchoco, J. (2003).
Facilities planning.third ed. John Wiley & Sons, New
Jersey.

[29] Urban, T. L. (1998). Solution procedures for the dynamic
facility layout problem. Annals of operations research.761,
323–342.

[30] Zoraghi, N., Najafi, AA., Niaki STA. (2012). An Integrated
Model of Project Scheduling and Material Ordering: A
Hybrid Simulated Annealing and Genetic Algorithm.
Journal of Optimization in Industrial Engineering, 5(19), 19-
27.

Journal of Optimization in Industrial Engineering 15 (2014) 65-75

75

