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Abstract 

The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than 
one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization 
problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorithm 
which has been developed through combining Modified Imperialist Competitive Algorithm and Lin-Kernigan Algorithm (MICA) in order 
to solve the MTSP.  In the proposed algorithm, an absorption function and several local search algorithms as a revolution operator are used. 
The performance of our algorithm was tested on several MTSP benchmark problems and the results confirmed that the MICA performs 
well and is quite competitive with other meta-heuristic algorithms. 
Keywords: Imperialist Competitive Algorithm, Multiple Traveling Salesman Problem, Lin-Kernigan Algorithm, NP-hard Problems. 

1. Introduction 

The multiple traveling salesman problem (MTSP) is a 
generalization of the well-known traveling salesman 
problem (TSP)(Ahmadvand et al., 2012) which is an 
obviously NP-hard problem (Evelyn et al., 2007). The 
MTSP is more difficult than TSP, because it involves 
finding a set of Hamilton circuits without sub-tours for 
m>1 salesmen to serve a set of n>m nodes so that each 
one is visited by exactly one salesman. The objective is to 
minimize the total distance traveled by the salesmen. 
Many further requirements and operational constraints are 
imposed on the route construction in practical applications 
of the MTSP. For example, the variants of MTSP include: 
pickup and delivery (If the salesmen need to pick up 
loads) (Wang and Regan, 2002), time windows (If the 
services have time constraint) (Kim and Park, 2004), 
multi-depot (if the problem has a single depot or multiple 
depots) (Rathinam and Sengupta, 2006), open ends (if the 
salesmen have not returned to the depot) (Sariel and 
Balch, 2005) and others. Moreover, the MTSP can be 
used to model many practical problems such as the hot 
rolling planning (Huang and Wang, 2007) newspaper 
production/distribution (Carter and Ragsdale, 2002), Print 
press scheduling (Gorenstein, 1970), Crew scheduling 
(Bektas, 2006), Interview scheduling (Gilbert and Hofstra, 
1992), Mission planning (Brummit and Stentz, 1998), Hot  

 
 

 
 

 
 
rolling scheduling (Tang et al., 2000), Design of global 
navigation satellite system surveying Networks (Saleh 
and Chelouah, 2004), etc.  

In all the problems, scheduling and vehicle scheduling 
are the most commonly researched areas. The scheduling 
of jobs on a production line is often modeled as a TSP. If 
the production operation is expanded to have multiple 
parallel lines to which the jobs can be assigned, the 
problem can be modeled as a MTSP (Sedighpour et al., 
2011). Another problem that is often modeled as a MTSP 
is the vehicle scheduling problem (VSP). The VSP 
consists of scheduling a set of vehicles which leave from, 
and return to a common depot to visit a number of 
locations so that each location is visited exactly once 
(Park, 2001). Moreover, if the capacity restrictions are 
removed, then the MTSP can be considered as a 
relaxation of the vehicle routing problem (VRP). In other 
words, all the formulations and solution approaches 
proposed for the VRP are also valid and applicable to the 
MTSP by assigning sufficiently large capacities to the 
salesmen (vehicles). Moreover, when there is only a 
single salesman, the MTSP reduces to the well-known 
TSP (Oberlin et al., 2009; Gutin and Punnen, 2002).  

There have been important advances in the 
development of exact, heuristic and meta-heuristic 
algorithms for solving the MTSP. Although, exact 
algorithms are appropriate in instances with small sizes; * Corresponding author Email address: h.larki@aut.ac.ir 
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they are not often suitable for real instances owing to the 
computational time required to obtain an optimal solution. 
There are several exact algorithms which were used to 
solve the MTSP such as Cutting Planes algorithm 
(Laporte and Nobert, 1980), Branch-and-Bound algorithm 
(Saad et al., 2013), and Lagrangian algorithm (Yadlapalli 
et al., 2009). 

Because of the fact TSP belongs to the class of NP-
hard problems (Russell, 1977), it is obvious that MTSP is 
an NP-hard problem. This means that the MTSP solution 
time grows exponentially with the increase in distribution 
points thus exact algorithms are not capable of solving 
problems with large dimensions. Therefore, heuristics are 
thought to be more efficient for complex MTSP and have 
become very popular among researchers. A number of 
heuristic algorithms have been performed on the MTSP, 
such as k-opt approach (Potvin, 1989) and minimum 
spanning tree (Malik et al., 2007).Since the computational 
time required to solve adequately large problem instances 
is still prohibitive and heuristic methods become trapped 
in local optima and cannot gain a good suboptimal 
solution for solving NP-hard problems, the focus of most 
researchers has been toward the design of meta-heuristic 
approaches capable of producing high quality near 
optimum solutions within a reasonable computational 
time. As a result, many recent studies have been published 
on using advanced meta-heuristic techniques to solve 
MTSP. Some of the well-known meta-heuristics which 
have more capability to find optimal solution are the 
genetic algorithm (Zhou and Li, 2010), evolutionary 
algorithm (Sofge et al., 2002), neural networks (Modares 
et al., 1999), tabu search (Ryan et al., 1998) and ant 
colony optimization (YousefiKhoshbakht et al., 2013). 

One of the approaches used for solving the MTSP is to 
transform the problem into a standard TSPin order to use 
TSP algorithms for solving the MTSP. In this method, m 
salesmen and n nodes in a MTSP problem are 
transformed into n+m+1 nodes in TSP,in which m+1 
nodes from among n+1 nodes to n+m+1 nodes from the 
artificial depots. However, the resulting TSP has highly 
degenerated (Bektas, 2006) when an MTSP is 
transformed into a single TSP; since the resulting problem 
is more arduous to solve than an ordinary TSP with the 
same number of nodes. Some of the well- known 
transformation algorithms are branch-and-bound 
algorithm (Laporte et al., 1988) and sub tour elimination 
algorithm (Orloff, 1974).  

Among the prominent problems in the distribution and 
logistics,TSP and its extensions have a central role. 
Although TSP has been studied for many years due to its 
practical applications in real world logistics and 
transportation problems, MTSP has not been considered 
as an attractive problem and researchers have failed to pay 
attention to this problem. Therefore, a new meta-heuristic 
algorithm based on Modified Imperialist Competitive 
Algorithm and Lin-Kernigan algorithm (MICA) is 
proposed for solving the MTSP in this paper. In more 
details, several local search algorithms as a revolution 

operator and an absorption function are applied in order to 
improve the algorithm. Furthermore, the Lin-Kernigan 
algorithm as one of the most powerful algorithms is 
applied when a new solution is obtained during the MICA 
algorithm. In the following parts of this paper, in Section 
2, the Imperialist Competitive Algorithm (ICA) and Lin-
Kernigan approach are explained in more detail and then, 
the combination of these two algorithms are also 
described. In section 3, the efficiency and the 
performance of the MICA are elaborated and compared 
with some of the other algorithms on MTSP problems. 
Finally, the conclusions are presented in section 4. 

2. Our Approach 

In this section, first the ICA is presented and then the 
Lin-Kernigan algorithm is explained. Finally, the hybrid 
algorithm will be analyzed in more detail.  

2.1. Imperialist Competitive Algorithm 

During the last decade, nature-inspired intelligence 
became increasingly popular through the development 
and utilization of intelligent paradigms in solving 
combinatorial optimization problems. Among the most 
popular nature-inspired approaches, those methods 
representing successful animal and micro-organism team 
behavior, such as swarm or flocking intelligence, artificial 
immune systems, optimized performance of bees and ant 
colonies to ant colony optimization, etc. have been 
considered by researchers in recent years.  

One of the new social-politically motivated global 
search strategies, which proved to have an acceptable 
performance for some of benchmark cost functions, is the 
ICA. This method introduced by AtashpazGargari et al. in 
2007 (Atashpaz-Gargari and Lucas, 2007) uses socio-
political evolution of human as a source of inspiration for 
developing a powerful optimization strategy. This 
algorithm considers the imperialism as a level of human 
social evolution  by mathematically modeling this 
complicated political and historical process.  

The ICA has been applied successfully in different 
domains namely designing controllers (Rajabioun et al., 
2008), recommender systems, characterization of Elasto-
plastic properties of materials (Biabangard-Oskouyi et al., 
2008), traveling salesman problem (YousefiKhoshbakht 
and Sedighpour, 2013), and many other optimization 
problems (Khabbazi et al., 2009). The algorithm is a 
novel global search strategy that uses imperialism and 
imperialistic competition process as a source of 
inspiration. The ICA is based on the fact that countries try 
to extend their power over the other countries in the real 
world for using their resources and bolstering their own 
government. The pseudo-code of the ICA is presented in 
Figure 1, while in the current section the procedures of the 
algorithm are explained in detail. 
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Fig.1. Pseudo-code of the ICA 

 
In ICA, the first step is to generate an initial 

population like other evolutionary algorithms. The 
population set includes a number of feasible solutions 
called a ‘country’, which corresponds to the term 
‘chromosome’ in the GA method. These countries are of 
two types: colonies and imperialists; that all together form 
some empires. Bigger and stronger empires have more 
colonies than smaller and weaker ones.After forming 
initial empires, their colonies start moving toward their 
relevant imperialist country. This movement is a simple 
model of assimilation policy which was pursued by some 
of the imperialist states. 

If after this movement one of the colonies possesses 
more power than its relevant imperialist, they will 
exchange their positions. To begin the competition 
between empires, the total objective function of each 
empire should be calculated. It depends on the objective 
function of both an imperialist and its colonies. 
Imperialistic competition among these empires forms the 
basis of the proposed evolutionary algorithm. During this 
competition, weaker empires which have lost all their 
colonies collapse; and powerful ones take the possession 
of their colonies. At last, the most powerful empire will 
take the possession of other empires and wins the 
competition. In other words, imperialistic competition 
hopefully converges to a state in which there exists only 
one empire and its colonies are in the same position and 
have the same cost as the imperialist. 

2.2. Lin-Kernigan algorithm 

In order to help ICA during the algorithm steps and to 
prevent any stagnation, a local searching algorithm is used 
when a better solution compared to previous iterations is 
attained. In fact, the probability of finding better solutions 
near a good solution is relatively high. There exist many 
algorithms such as 2-opt algorithm (Sedighpour et al., 
2013) for the local search and they of course have pros 
and cons. This algorithm starts with a feasible tour and 
continues by omitting two arcs of the tour which are not 
adjacent and connecting them again by another method in 
such a way that the new tour length is shorter. Omitting 
two arcs and again connecting them are repeated until no 

improving 2-opt is found. Here the Lin-Kernigan 
algorithm is applied as a simple algorithm. Besides, the 2-
opt local search is a unique case of the -opt algorithm, 
where in each step links of the current tour are replaced 
by links in such a way that a shorter tour is achieved. 
The time complexity for testing –exchange is equal to 
O(n) in which there is no nontrivial upper bound of the 
number of –exchanges.  

The Lin-Kernighan algorithm which is a 
generalization of this simple principle form removed this 
disadvantage by introducing a great variable -opt 
algorithm in which the value of is changed during its 
execution. At each iteration the algorithm considers a 
growing set of potential exchanges which start with r = 2. 
These exchanges are chosen in such a way that a feasible 
tour may be formed at any stage of the process. Then, the 
problem is examined for ascending values of and the 
algorithm decides what the value of should be. If an 
interchange of links succeeds in finding a new shorter 
tour, then the actual tour is replaced with the new tour. 
This continues until some stopping conditions are 
satisfied. 

2.3. Hybrid Algorithm 

In the MICA, only one kind of feasible solutions or 
primitive countries is commonly employed for solving the 
MTSP. Therefore, a bisection array shown in Figure 2 is 
used (where n = 11 and m = 3). In this array, the visited 
nodes are ordered from left to right in the first section and 
the number visited nodes by each salesman are shown in 
the second section. In this technique, the n nodes are 
represented by a permutation of the integers from 1 to n. 
This permutation is partitioned into m sub-tours by the 
insertion of m positive integers (from 1 to m) that 
represent the change from one salesman to the next. In the 
example in Figure 2, the first salesman visits nodes 1 and 
9 (in that order), the second salesman visits nodes 10, 3, 
11, 5, 4 and 2 (in that order), and the third salesman visits 
nodes 6, 7 and 8 (in that order).  

Therefore, a defined and variable number p of 
primitive solutions must be randomly generated by the 

Step 1: Initialize countries including colonies and imperialists. 
Step 2: Move the colonies toward their relevant imperialist. 
Step 3: Revolvep percent of colonies. 
Step 4: If there is a colony in an empire which has better cost than the imperialist, exchange the positions of 
that colony and its imperialist. 
Step 5: Compute the total cost of all empires. 
Step 6: Pick the weakest colony from the weakest empires and give it to the best empire. 
Step 7: If there is an empire with no colonies, eliminate that empire. 
Step 8: Save the best so far solutions.  
Step 9: If stop conditions are not satisfied, go to step 2. 
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user and the values of the objective function   for each 

  must be obtained. It is noted that using a 
random construction at this level leads to obtaining 
solutions that have an irregular construction in a feasible 
space. Then, e countries that have better objective 
function are selected and called empire countries.  
Furthermore, the number of colonies devoted to each 
empire country is equal. Therefore, each empire increases 
its quality using the imperialist countries which play local 
optima role. What is worthy of note is the fact that, since 
a lot of possible points are combined with local optima, an 
absorption function must be used which includes 
randomization concept so that the results of combinations 
will not yield a very similar response. 

 
 
 

 
 

Fig. 2.A Country in ICA 
One of the best absorption functions in terms of 

quality and speed is still Order crossover in genetic 
algorithm. For that reason, this method- which is simple 
to implement-has been considered here and the modified 
absorption function is proposed based on the Order 

crossover. In this absorption function, a random number 
between 2 to n-1 is selected. After that, some nodes equal 
to the selected number are chosen from the colonized 
countries and are arranged according to the order of the 
imperialist countries. For instance, in Figure 3, if the 
selected number is 3, then 3 nodes like 3, 6, and 5 are 
chosen from the colonies. Then, their order in imperialist 
country which is 3, 5 and 6 in the example is found out. 
Therefore, the new result for the colony will be [2 3 1 5 6 
4| 2 4]. Clearly this method allows only the generation of 
valid strings. 

The absorption function is performed for all colonies 
in comparison to their imperialist countries, and the 
results and the values are replaced with the colonies’ 
results and values proved that the new results are better. 
At the next stage, p percent of countries experience 
revolution. This causes variety of colonies in the empire, 
and if possible, their quality increases at each stage. The 
proposed method for this stage is the 0–1 and 1–1 
Exchange moves. In the 0–1 Exchange move, a candidate 
node is removed from its origin route and inserted in the 
best position. However, in 1–1 Exchange a node is 
swapped with another node. These replacements are done 
if the new results are better than the previous ones. 

 

 

 
Fig.3. Absorption function 

 
After the results are calculated for all colonies, these 

countries might have a better objective function compared 
to their respective imperialists. Therefore, a colony with 
the best value in each empire is chosen and if it possesses 
a better objective function it replaces an imperialist 
country. In case there are a few colonies with the same 
objectivefunction, one of them is chosen randomly and is 
compared with an imperialist country in the empire. From 
this stage up to the end of the algorithm, there will not be 
any changes in objective functions of feasible values. 
Therefore, the best results and values of the objective 
function must be saved. For this purpose, two variables 
are chosen in order to save the best results and values 
until the current iteration. In each iteration, after the 
imperialist countries were replaced, the best results for the 
imperialist countries are chosen as the best current results. 
If the new attained value is better than the value of the 
previous iteration, local search is conducted and the 
previous results and values are replaced with the new 
results and values. Up to this stage in the algorithm, the 
purpose is conducting a general search to locate important 
areas for algorithm convergence. Now, important areas 
must be identified and the population must be converged 
toward them. After this stage, some of the initial 
population moves toward these areas. The power of 

empires is assessed at this stage. In imperialist 
competitions, more powerful empires must expand their 
territory through occupying other countries. In order to 
achieve this goal, the power of the empire is calculated 
using formula (1).  

( ) 1,...,j j jh f s j e                              (1) 

In this formula , , and  represent empire’s total 
power, the average objective function of the colonies in 
each empire, and the [0 1] impact coefficient which 
determines the relative power of a colony compared to an 
empire, respectively. A weaker empire loses its power by 
losing its weakest colony to the strongest empire. 
Moreover, in order to help the MICA so that it does not 
lead to stagnation, a local searching algorithm is used 
when the algorithm attained a better solution compared to 
previous iterations. In fact, the probability of finding 
better solutions near a good solution is relatively high. 
There exist many algorithms for the local search and they 
of course have pros and cons. Here the Lin-Kernigan 
algorithm is used as one of the most simple and successful 
methods for generating optimal or near optimal solutions 
for the TSP. At this stage, the final condition is checked 
and if it is met, the algorithm ends. Otherwise, the 

if
1,...,i p

jh js 

3 6 2 8 7 6 2 4 5 11 3 10 9 1 

2  3  1  6  5  4 | 2 4                        2  *  1  *  *  4 | 2 4                          2  3  1  5  6  4 | 2 4             
1  3  4  2  5  6 | 3 3                        1  3  *  *  *  6 | 3 3                          1  3  2  5  4  6 | 3 3 
          (1)                                            (2)                                             (3) 
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algorithm is iterated by returning to absorptionfunction 
step.  

To end the loop, one of the two conditions must be 
met: the iteration of algorithm 2n times or the survival of 
just one empire. If each of the conditions is met, the 
algorithm ends and the obtained results and values up to 
now are considered as the best values and results of the 
algorithm.  

3. Computational Experiments 

In this section, some numerical results of the 
comparison between the MICA and some meta-heuristic 
algorithms are presented. To reveal the variability of the 
MICA's performance from one run to another, 10 runs are 
carried out for each instance and the best answer was 
registered. The proposed algorithm was coded using 
MATLAB language executed on a computer with a 1.00 
GB RAM and an Intel, 2.80 GHz CPU. Because changing 
the value of any parameter could affect the optimum value 
of the others, finding the best values for the parameters of 
the MICA is a complicated problem itself. What is 
considered in this paper is an experimental approximation 
of the best values. In our work, we adopted the values 
{n/3, n/2, n, 3n/2, 2n} for P as number of initial 
populations and the values {P/6, P/5, P/4, P/3, P/2} for e 
as number of imperialists. Finally, for the rest of the   as 
empire’s total power in formula (2) we implemented a set 
of experiments on the test problem generated with  � 
{0.1, 0.2, 0.3, 0.4, 0.5}.  

The ranges of three parameters were set in Table 1. In 
this table, all of the parameter values have been 
determined on the MTSP-100-I instance with 10 salesmen 
by the numerical experiments. Then to determine the 
value of parameters several alternative values for each 
parameter were tested, while all the others were held 
constant, and the ones that were selected gave the best 
computational results concerning the quality of the 
solution. Although the results confirmed that our 
parameter setting worked well, it is also possible that 
better solutions could exist. 

Table 1 
 Parameter setting for the MICA 

Parameters Candidate Value The best value 
P n/3, n/2, n, 3n/2, 2n 2n 
E P/6, P/5, P/4, P/3, P/2 P/5 

  0.1, 0.2, 0.3, 0.4, 0.5 0.3 
 
Since there were no standard existing benchmarks for 

MTSP, this study generated some small and large test 
problems. All the examples are randomly located over a 
square with no route length restrictions. Therefore, a new 
set consisting of five small tests numbered from A1 to 
A5with sizes ranging from 20 to 60 nodes including the 
depot were considered. Because the commercial linear 
programming software including ILOG and Cplex could 

find optimal solutions for the small-scale of the problems, 
like MTSP, hence it can be used to evaluate the accuracy 
of the proposed model. Therefore, we show characteristics 
of instances and the results obtained by AIMMS and the 
proposed algorithm on the set of benchmark instances in 
Table 2. The information in this table is consisting of the 
number of nodes, the number of salesmen, the solution 
costs obtained from AIMMS, the running time in seconds 
of AIMMS, the best solution costs of MICA and its 
computing time. Finally in the last column, the percentage 
difference (Gap) of the MICA solution cost comparison to 
the AIMMS solution costs was shown. The Gap is 
calculated by below formula.  

 value of MICA Value of AIMMS
Gap=100  

value of AIMMS


  

 
Table 2 
Comparison results for problem set 

Instance n m AIMMS 
Cost 

Time 
(Sec) 

MICA 
Cost 

Time 
(Sec) 

Gap 

A1 20 5 210.45 15 210.45 8.94 0 
A2 30 7 357.51 430 357.51 12.97 0 
A3 40 8 1259.84 1652 1274.14 21.84 -1.12 
A4 50 8 845.21 12473 831.87 18.45 1.60 
A5 60 9 798.54 29457 759.64 20.54 5.12 
 
Based on this table, AIMMS obtained the optimal 

solution only for instances A1, A2 and A3 and the other 
instances automatically terminated before reaching to 
optimal solution. The results show that the MICA 
algorithm produced the optimal solutions for two out of 
the five problem instances in a reasonable time. 
Furthermore, this algorithm can obtain the better solutions 
than AIMMS in A4 and A5 and obtain equal solutions 
with AIMMS for A1 and A2. Only for instances A3, the 
AIMMS can gain better feasible solution against MICA. 
Finally, the proposed algorithm in average improves the 
solution cost as much as 1.12% of these instances 
compared to AIMMS.  

The experimental 21 instances including MTSP-51, 
MTSP-100-I, MTSP-100-II, MTSP-150-I and MTSP-150-
II with different salesmen (m) and problem sizes (n) 
combinations are summarized in Table 3. This set 
including depot has 51, 100, 150 nodes. Consequently, the 
instances which are Euclidean, two-dimensional 
symmetric problems (Brown et al., 2007; Carter and 
Ragsdale, 2006) are utilized to test our algorithm. 
Besides, the best, worst, average and time of solutions of 
the MICA are also presented in this table.  

In Table 4, the average results obtained from 
calculations by the MICA are compared with other 
algorithms including grouping genetic algorithm (GGA) 
(Brown et al., 2007), new grouping genetic algorithm 
(NGGA) (Singh and Baghel, 2009), genetic algorithm 
(GA) (Carter and Ragsdale, 2006) and sweep algorithm, 
elite ant system (SA+EAS) (Yousefikhoshbakht and 
Sedighpour, 2012) and ICA (Yousefikhoshbakht and 
Hashemi, 2013). 
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Moreover, in order to show the method’s performance 
more clearly, we present the best known solutions (BKS) 
that have been published in the related literature in this 
table. It should be noted that a new group GA algorithm 
was proposed for these instances (in Singh and Baghel, 
2009) and the results were observably improved 
compared with GA and GGA. 

 
Table 3 
Benchmark instances  

Time Average Worst Best  n m Number instance  
2.12  447 447 447  51 3 1 

MTSP-51  3.45 474  477  473  51 5  2 
9.51 584  584  584  51 10  3 
6.45 22173  22223  22127  100 3  4 

MTSP-100-I  12.89 23531  23739  23398  100 5  5 
24.41 27921  28121  27755  100 10  6 
45.78 40345  40625  40212  100 20  7 
4.99 22112  22245  22051  100 3  8 

MTSP-100-II  12.02 23741  23819  23678  100 5  9 
29.81 27895  27982  27724  100 10  10 
67.38 39842  38899  39822  100 20  11 
9.83 6692  6741  6632  150 3  12 

MTSP-150-I  
21.54 6789  6831  6751  150 5  13 
35.37 7693  77722  7672  150 10  14 
97.24 9901  9988  9831  150 20  15 
121.67 13851  12978  13652  150 30  16 
13.62 38553  38721  38499  150 3  17 

MTSP-150-II  
22.56 40123  40361  39962  150 5  18 
48.02 44221  44321  44191  150 10  19 
76.41 55762  55891  55670  150 20  20  
118.94 71431  71870  71101  150 30  21 

 
The results of this comparison show that the proposed 
algorithm gains better solutions than the GGA and NGGA 
in all of the 21 instances. Moreover, computational results 
of the MICA and GA show that these algorithms have a 
stiff competition and the proposed algorithm produces 12 
better solutions than GA including 1, 2, 4, 5, 6, 7, 10, 12, 
14, 15, 16, 19, 20 and 21 which are not small scale 
problems. Moreover, the proposed algorithm yields worse 
solutions than the GA in 8, 9, 11, 12, 13, 17 and 18. In 
other words, the performance of the MICA is better in 
reaching the sub-optimal solution than the GA. The 
results also indicate that although the SA+EAS provide a 
better solution than the proposed algorithm does for 5, 6, 
10, 12 and 21, this algorithm cannot maintain this 
advantage in other examples. Finally, the proposed 
algorithm has a near competition with the ICA in which 
the MICA has a 12 better solutions than ICA despite the 
ICA obtain 7 solutions with more quality than the 
proposed algorithm. Therefore, the computational 

experiments  confirm that in general the proposed 
algorithm provides better results compared to the GA in 
three literatures, SA+EAS and ICA in terms of the quality 
of the solutions.  
 
Table 4 
Comparison of algorithms for standard problems of MTSP  

BKS MICA ICA SA+EAS GA  NGGA  GGA Number instance  

447 447  447  447  449  543  924  1 

MTSP-51 475 474  479  475  479  586  882  2 

584 584  584  586  584  723  1001  3 
22100 22173  22100  22254  22100   -  79347  4 

MTSP-100-I  23398 23531  23398  23398  23398   -  70871  5 
27801 27921  27942  27801  28356   -  89778  6 
40534 40345  40688  40534  41554   -  137805  7 

22051 22112  22051  22123  22051  26653  -  8 

MTSP-100-II  23678 23741  23678  23678  23678  30408   -  9 
27830 27895  27925  27830  28488  31227   -  10 
39882 39842  40985  39882  40892  54700   -  11 
6632 6692  6632  6632  6632   -  33888  12 

MTSP-150-I  
6751 6789  7098  6842  6751   -  26851  13 
7696 7693  7696  7753  7885   -  37771  14 

10321 9901  10399  10321  10399   -  43699  15 
13652 13851  13652  13989  14929   -  52564  16 
38434 38553  39342  39006  38434  47418   -  17 

MTSP-150-II  
39962 40123  39962  40437  39962  49947   -  18 
44255 44221  44652  44255  44274  54958   -  19 
56001 55762  56412  56001  56412  73934   -  20 
71223 71431  71965  71223  72783  99547   -  21 

 
Figure 4 shows a comparison between Gap values of the 
meta-heuristic algorithms, where the gap is defined as the 
percentage of deviation from the best known solution in 
the literature. In this figure, the horizontal axis shows the 
name of instances and the vertical axis indicates the Gap 
of the proposed algorithm from the BKS. Here, the Gap is 

equal to  
* * * *100 [ ( ) ( )] / ( )c s c s c s where **s is the best 

solution found by the algorithm for a given instance, and 
*s is the overall best known solution for the same instance 

on the Web.A zero gap indicates that the best known 
solution is found by the algorithm. The results show that 
not only the MICA finds high quality solutions for all of 
the benchmark problems but also the new mean solutions 
for 6 out of 21 problems published in the literature are 
found by the MICA. However, in all the instances, the gap 
is below 1%, and for overall the average difference is -
0.12%. 

 
Fig. 4. Gap of the MICA 
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To show exactly that the proposed algorithm is 
effective, figure 5 shows 4 MTSP instances including 1, 
4, 9, 19 from Table 1 with 50, 100 and 150 nodes. This 
figure represents the results and the convergence curve of 
the MICA. In four curves, the vertical axis shows the total 
distance gained by the algorithm and the horizontal axis 
shows the number of iterations as one of the termination 
conditions of the MICA.  

4. Conclusion 

In this paper, a hybrid algorithm called MICA was 
proposed for solving the MTSP. This algorithm is more 
efficient than ICA, SA+EAS and the modified genetic 
algorithms for dealing with MTSP. The algorithm was 
tested in 26 benchmark problems with 20–150 nodes and 
it was found capable of improving the BKS of 6 instances. 
Our results also show that the gap of the MICA stays on 
the average below -0.12%. Computational experiments 
with benchmark problem instances showed that in general 
the proposed MICA yeilds better results compared to the 
existing solution methods for MTSP in term of the 
solution quality. It seems that the combination of the 
proposed algorithm and tabu search or ant colony 
optimization will yield better results. Besides, using this 
proposed algorithm for other versions of the MTSP and 
also applying this method in other combinational 
optimization problems including the vehicle routing 
problem, school bus routing problem and the sequencing 
of jobs are suggested for future research.  

 
Number 1 of instances 

 
Number 4 of instances 

 
 

 
Number 9 of instances 

 
Number 19 of instances 

 
Fig. 5.Execution plot for four instances in Table 1 
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