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Abstract 

Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems 
and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. 
TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving 
TAP in a heterogeneous distributed computing system. To compare our algorithm with previous ones, an extensive computational 
study on some benchmark problems was conducted. The results obtained from the computational study indicate that the proposed 
algorithm is a viable and effective approach for the TAP. 
Keywords: Task assignment problem; Heterogeneous distributed systems; Hybrid meta-heuristic; Simulated annealing algorithm; Variable 
neighbourhood search algorithm.  

1- Introduction 

    A distributed computing system is defined as a 
collection of computers interconnected by a 
telecommunication network that attempts to disperse 
the data processing function and fits the needs of 
modern decentralized organization structures [32]. 
There are a lot of problems regarding distributed 
computing systems that are essentially very hard. 
These problems cannot be formulated as linear 
programs and there are no simple rules or algorithms 
that may yield optimal solutions in a limited amount of 
computer time. One of the most difficult problems in 
this area is the task assignment problem (TAP).  
This problem involves assigning tasks of a program 
among different processors of a distributed computer 
system in order to minimize the sum of the 
communication and execution (task processing) costs. 
In other words, TAP aims to find an assignment of 
tasks which minimizes the incurred costs subject to the 
resource constraint [31]. Specially, the number of tasks 
that a given processor is able to handle is restricted by 
its memory capability and processing ability.  
    TAP was firstly introduced by Stone [24]. Stone’s 
original work lays down the task interaction graph 
(TIG) model to represent sequentially executing tasks. 
In the TIG model, the vertices of the graph correspond 
to the tasks and the edges correspond to the inter-task 
communications.  

 
 
 
 A large number of researches have been carried out on 
this problem and different models of TAP have been 
proposed in the literature. Also, over the past decades 
wide varieties of approaches have been proposed for 
solving the task assignment problem in distributed 
computing system. The existing approaches for 
tackling the TAP can be divided into three categories. 
First, exact mathematical programming approaches 
using column generation [6] and branch-and-bound 
[3,5] have been proposed. Second, efficient algorithms 
have been developed for solving TAP on special 
computer architectures, such as linear processor array, 
meshed processor graph, and partial k-tree 
communication graph [7,13,16]. Finally, meta-heuristic 
algorithms like Genetic Algorithm (GA) [2,26,27], 
Partial swarm optimization (PSO) [12,23,28], 
differential evolution (DE) [33], simulated annealing 
(SA) [10,17,25], Variable neighborhood search (VNS) 
[15,18] and hybrid meta-heuristic algorithms [9,22,31] 
have been used to derive good enough approximate 
solutions within reasonable CPU time. 
    It is well known that TAP is NP-complete [8]. 
Presentation of good exact algorithm for TAP in 
polynomial time is unlikely to exist. The high level of 
the complexity of TAP demonstrates a cogent reason 
for using meta-heuristic algorithms to optimize TAP. 
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 Therefore, in the last few years, there have been 
increasing interests for meta-heuristics approaches, as 
Therefore, in the last few years, there have been 
increasing interests for meta-heuristics approaches, as 
robust approaches for tackle the TAP. VNS and SA 
algorithms are well-known meta-heuristics which have 
been applied successfully to various optimization 
problems. In this paper, we proposed a hybrid VNS-SA 
algorithm for TAP in a heterogeneous distributed 
computing system to minimize the sum of the 
communication and execution costs. In the proposed 
method, VNS algorithm is used as main part of hybrid 
algorithm and SA algorithm supports it for attaining 
better solutions. Also, Effective neighborhood 
structures are applied in various parts of the presented 
hybrid method. In this paper an attempt is made to 
prove the efficiency and effectiveness of our algorithm 
by comparing the performance of the proposed meta-
heuristic method with some previous methods. We 
present the computational results of our hybrid 
algorithm on some of test problems and compare them 
with the results reported by previous researchers. 
    The rest of the paper is organized as follows. Section 
2 explains problem definition and one of the existing 
mathematical models for the understudied problem. In 
Section 3, hybrid meta-heuristic algorithm for solving 
the studied problem is described. Section 4 reports 
Computational study. The conclusion and some 
suggestions for further research are presented in 
Section 5. 

2- Problem Definition  

    In a computation system with a number of 
distributed processors, it is desired to assign 
application tasks to these processors such that the 
resource demand of each task is satisfied and the 
system throughput is increased. However, the 
assignment of tasks will also incur some costs such as 
the execution cost and the communication cost [31]. 
Therefore, TAP often tries to find the minimal costs for 
a distributed system which subjects to several resource 
constraints. In this paper, we consider the TAP with the 
following scenarios. The processors in the system are 
heterogeneous and they are capacitated with various 
units of memory and processing resources. All the 
tasks may be executed in all the processors. A task will 
incur different execution costs if it is executed on 
different processors. Two tasks executing incur in a 
communications cost if there is a communication need 
between them and they are executed on different 
processors. This work does not consider 
communication cost between tasks executing in the 
same processor. A task will consume some units of the 
resources from its execution processor. Memory and 
processing resource capacity of each processor is 

limited. Our problem objective is to minimize the total 
execution and communication costs incurred by the 
task assignment subject to all of the resource 
constraints. There are different versions of 
formulations for TAP, and the formulation we consider 
in this paper is taken from Yin et al. [31].  Following 
parameters and decision variables are 
 used in the proposed model. 
n: Number of processors 
r: Number of tasks 

ike : Execution cost of task i if it is assigned to 

processor k 

ijc : Incurred communication cost between tasks i and j 

if they are assigned to different processors 

im : Memory requirement of task i from its execution 

processor 

kM : Memory capacity of processor k 

iP : Processing requirement of task i from its execution 

processor 

kP : Processing capacity of processor k 

ikx : Decision variable: 1ikx   if task i is assigned to 

processor k, and 0ikx   otherwise. 

   The considered TAP can be formulated as the 
following 0–1 quadratic integer programming problem: 

  
The first and second terms in the objective function 
represent the total execution cost and communication 
cost, respectively, incurred by the tasks assignment. 
This model is limited by three kinds of constraints. 
Constraint (1) states that each task should be assigned 
to exactly one processor. Constraints (2) and (3) ensure 
that the memory and processing resource capacity of 
each processor is no less than the total amount of 
resource demands of all of its assigned tasks. The last 
constraint (5) guarantees that  ikx are binary decision 

variables. 
    Since this formulation is an integer program with a 
quadratic objective function and is computationally 
prohibitive due to enormous computation efforts, its 
transformations to linear programs have been proposed 
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Intelligent neighborhood structure - 2 ( 2N )   

  This neighborhood structure reallocates a task i from 
processor l to processor with minimum processing cost 
for executing task i. 

Intelligent neighborhood structure - 3 ( 3N )   

This neighborhood structure reallocates a task i from 
processor l to processor that its assigned tasks have 
maximum total communication cost toward task i. 

Neighborhood structure - 4 ( 4N ) 

    This neighborhood structure exchanges assignment 
of two tasks (task i from processor l to other processor 
and task j from processor k to other processor).  

Neighborhood structure - 5 ( 5N ) 

    This neighborhood structure exchanges assignment 
of three tasks (task i from processor k to processor l, 
task j from processor l to processor k and task t ( t i
and j) from processor v ( v l and k) to other processor. 

Neighborhood structure - 6 ( 6N ) 

    This neighborhood structure reallocates a cluster of 
tasks from one or different processors to processor l 
[18]. The idea of this neighborhood structure is based 
on decrease of communication cost.  
 

3.5. Proposed VNS-SA Algorithm  

    The proposed hybrid meta-heuristic algorithm 
included two parts. The main part of this method is 
VNS algorithm and the other part is SA algorithm. For 
VNS algorithm, two sets of neighborhood structures 

are used in the presented algorithm: s
kN  and ls

lN . 

Neighborhood structures related to s
kN  are employed 

in the shake procedure and neighborhood structures 

related to ls
lN  are utilized in the local search 

procedure. All the six mentioned neighborhood 
structures are implemented in the shake procedure of 

VNS ( , 1,2,...,6)s
kN k  and the neighborhood 

structures 1 2 3, ,N N N and 4N  are utilized in the local 

search procedure of VNS ( , 1,2,3,4)ls
lN k  . These 

four neighborhood structures are used in the search 
procedure of SA part of hybrid algorithm. The 
performance of the hybridized meta-heuristic 
significantly depends on the efficiency of the applied 
neighborhood structures.  
    Fig. 4 demonstrates the general process of the 
proposed hybrid VNS-SA algorithm. Hybrid algorithm 
in each iteration begins from VNS part. If one run (a 
completed execution of shake and local search 
procedures in VNS part of hybrid algorithm) among all 
runs (k=1,.., 6) of VNS method attains better solution 
than current solution, the current solution is replaced 
with new solution and next iteration of the hybrid 
algorithm is started. Otherwise, in each iteration of 
hybrid algorithm, if all runs of VNS method doesn’t 
attain better solution, algorithm move to SA part. In 
this part of algorithm, we use a linear function to 
reduce the temperature; the function is illustrated in 
equation (2) [4,30]: 
 

0
0

SA

. f
i

T T
T T i

n


                                                        (2) 

   In the equation, 0T  denotes initial temperature, fT  

denotes final temperature, i represents a stage in the 
algorithm, iT  represents the temperature of stage i and 

SAn is the maximum number of iterations of SA 

algorithm. Also, for obtaining initial temperature of SA 
part, proposed strategy by Yazdani et al. [30] is used. 
An appropriate initial temperature should be high 
enough to create equal opportunity for all states of the 
search space to be visited. Meanwhile, it should not be 
rather too high to perform quite a lot of unnecessary 
searches in high temperature. The initial temperature is 
acquired via equation (2):  

 0 fT     
                                                                 (3) 

 

where f
  is any positive differences in fitness value 

when a neighboring solution is achieved from the 

candidate solution and  f
  is the average value of 

these differences. Besides, we do not consider the 
negative or neutral differences in fitness value to 
compute the average value. In equation (2), the symbol 
[] denotes that the initial temperature, 0T , is set to the 

integer part of the average value of differences.  
    The hybrid algorithm continues until pre-specified 
maximum number of iterations of algorithm is 
achieved. When the process of the algorithm stops, the 
final current solution is used as the best solution.
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Fig. 4. Steps o

 

of proposed VNS-SA algorithm. 
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 Regarding the test on different values for algorithm 
parameters and considering the computational results, 
the following settings are adjusted for the presented 
hybrid algorithm: 

Maximum number of iterations max( )n : 200, 400, 600, 

800, 1000 (based on size of problem); 
Number of neighborhood searches in each iteration of 
VNS local search ( )l vnsn  : 500; 

The final temperature fT : 0.1; 

Number of SA algorithm iterations ( )SAn : 20; 

Number of neighborhood searches in each temperature 
of SA ( )l SAn  : 250. 

The employment of hybrid formation in the proposed 
method has important effect on increasing power of 
intensification and diversification strategies in search 
of solution space where VNS method works as main 
algorithm and SA method supports it for attaining 
better solution. 

4-  Computational Results 

    This section describes the computational tests which 
were used to evaluate the effectiveness and efficiency 
of the proposed VNS-SA algorithm in finding good 
solution for TAP. We implemented the algorithm in 
MATLAB software and run on a PC with i7 CPU, 1.73 
GHz, and 4GB of RAM memory. The non-
deterministic nature of the presented algorithm made it 
necessary to carry out multiple runs on the same test 
problem in order to obtain meaningful results. 
Therefore, the best solution was selected for each 
problem after ten runs of the presented algorithm. We 
compared the results of our algorithm to the results of 
the hybrid PSO (HPSO) algorithm of Yin et al. [31], 
SA and GA algorithms of Yin et al. [32], General 
Variable neighborhood search (GVNS) of  Lusa et al. 
[18] and Improved DE (IDE) algorithm of Zou et al. 
[33]. To measure the quality of solutions, the Cost 
function (total execution and communication costs) is 
considered as objective function value. For comparing 
the proposed algorithm versus other algorithm, we first 
generated some test problems. These test problems 
were generated according to different problem 
characteristics which are described in this section. 
   First key characteristic of created problem is task 
interaction density. The inter-task communication is 
rendered by a task interaction graph (TIG), G(V,E), 
where V is a set of r nodes indicating the r tasks to be 
executed and each edge ( , )i j E  is associated with a 

communication cost ijc , which incurs only when tasks 

i and j are assigned to different processors. Here, we 
define the task interaction density d of G(V,E) as one 
of the problem characteristics: 

( 1) / 2

E
d

r r



                                                          (4) 

   where E  calculates the number of existing 

communication demands in the TIG, and ( 1) / 2r r 
indicates the maximal number of communication 
demands among r tasks. The task interaction density 
(d) quantifies the ratio of the inter-task communication 
demands for a TIG and it is one of the key factors that 
affect the problem complexity [31]. In this paper, we 
use densities 0.3, 0.5, and 0.8 for preparing test 
problems. The other key factors are the number of 
tasks (r) and the number of processors (n). 
    To Generate test problem, we set the value of (r, n) 
to (9, 6), (15, 10), (20, 10), (30, 15), (40, 20), (50, 25), 
(60, 30), and (90, 60), respectively, in order to testify 
the algorithm with different problem scales. For each 
pair of (r, n), we generate three different TIGs at 
random with density d equivalent to 0.3, 0.5, and 0.8. 
The values of the other parameters are generated 
randomly: the execution cost is between 1 and 200, the 
communication cost is between 1 and 50, the memory 
and processing capacity of each processor varies from 
50 to 250, and the memory and processing requirement 
of each task ranges from 1 to 50. 
    In Table 1, we compared the results of our hybrid 
VNS-SA algorithm to the results of the HPSO [31], SA 
and GA [32], GVNS [18] and IDE algorithm [33] on 
generated 24 test problems. The first, second, third and 
fourth columns symbolize problem number, number of 
tasks, number of processors and task interaction 
density for test problems, respectively. In the fifth 
column, the best cost (BC) obtained by presented 
algorithm is shown for each problem. The averages of 
the proposed algorithm results of ten runs are shown in 
the sixth column. The seventh column represents 
average of CPU times for ten runs of the presented 
algorithm in terms of seconds. Columns 9, 11, 13, 15 
and 17 represent the best results obtained by HPSO, 
SA, GA, GVNS and IDE respectively. In this section, 
to provide a clearer view on the comparative 
performances among the competing methods, Cost 
offset (CO) measure proposed by Yin et al. [32] was 
used. This measure is calculated as: 

CO .100%sol sol

sol

Al min

Al


                                     (5) 

where solAl is the best cost obtained for a given 

algorithm and test problem and solmin is the best cost 

obtained from all compared algorithms for the same 
test problem.  The average CO over all the test 
problems are 0.7288%, 12.08%, and 10.41%, 8.78%, 
4.80% and 3.49% for VNS-SA, HPSO, SA, GA, 
GVNS and IDE, respectively. The best performance is 
obtained by the VNS-SA with the average CO of 
0.7288%.  

Journal of Optimization in Industrial Engineering 7 (2011) 45-55

51



 

 

    In Table 2, the presented algorithm is compared with 
five aforesaid algorithms from another standpoint. This 
table illustrates to what extent VNS-SA results are 
equal to, worse or better than those obtained by the 
aforementioned algorithms on 24 generated test 
problems. 
    For more investigations in Computational results, 
another measure, relative deviation index (RDI), is 
used in this study. RDI is obtained by given formula 
below: 

RDI .100%sol sol

sol sol

Al min

max min





                            (6)

 

Using this measure, we obtained an index between 0 
and 100 for each method. The more the RDI is closer 
to zero, the more the algorithm is preferable. Note that 
if the worst and the best solutions take the same value, 
all the methods provide the best (same) solution and, 
hence, the index value will be 0 (best index value) for 
all methods. The results of the experiments, averaged 
for each problem (10 data per average), are reported in 
Table 3. The best performance is obtained by the VNS-
SA algorithm with the RDI of 9.91. In order to verify 
the statistical validity of the results, we performed an 
analysis of variance (ANOVA). The results 
demonstrate that there is a clear statistically significant 

difference between performances of our algorithm and 
other five algorithms, with respect to RDI criterion. 
The means plot and LSD intervals (at the 95% 
confidence level) for algorithms are shown in Fig. 5. It 
can be inferred from the Fig. 5 that the proposed VNS-
SA statistically works better than other algorithms.  
Regarding the results obtained from the computational 
study, it seems that the proposed VNS-SA algorithm 
can be an effective approach for TAP when the 
objective function is the minimization of the sum of the 
total execution and communication costs. 

5- Conclusions and Future Research 

   In many problem domains, we are required to assign 
the tasks of an application to a set of distributed 
processors such that the incurred cost is minimized and 
the system throughput is maximized. In this paper, we 
developed a hybrid VNS-SA algorithm for solving 
TAP in a heterogeneous distributed computing system. 
Minimization of the sum of the total execution and 
communication costs was considered as the objective 
function. In the proposed hybrid meta-heuristic 
algorithm, VNS method worked as main algorithm and 
SA method supported it for attaining better solution. 
Employment of hybrid formation in the proposed

 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

 
 
 
 
    
 
 
 
 
 
 

 Fig. 5. Means plot and LSD intervals for algorithms, regarding RDI criterion 
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  Table 1 
Comparison of the presented VNS-SA algorithm with the five famous TAP algorithms on 24 test problems 

 Problem  Proposed hybrid algorithm  HPSO  SA  GA  GVNS  IDE 

No. r n d  BC AV(C) AV(CPU) CO
% 

 BC CO
% 

 BC CO
% 

 BC CO
% 

 BC CO
% 

 BC CO
% 

1 9 6  0.3  412 421.6 11.85 0  448 8.03 432 4.62 412 0  412 0 412 0

2    0.5  563 572.3 12.46 0  598 5.85 579 2.767 579 2.76  563 0 563 0

3    0.8  723 730.4 14.47 0  763 5.24 741 2.428 747 3.21  723 0 723 0

4 15 10  0.3  1134 1168.5 22.87 2.46  1295 14.59  1254 11.80  1212 8.74  1165 5.06  1106 0 

5    0.5  1538 1598.6 21.55 0  1763 12.76  1737 11.45  1715 10.32  1651 6.84  1596 3.63 

6    0.8  1732 1758.4 25.24 0  1922 9.88 1890 8.35 1874 7.57  1823 4.99 1804 3.99

7 20 10  0.3  2153 2176.5 34.71 4.50  2513 18.18 2472 16.82 2433 15.49  2056 0 2174 5.42

8    0.5  2969 3044.8 35.14 0  3378 12.10 3249 8.61 3310 10.30  3129 5.11 3104 4.34

9    0.8  4272 4414.2 34.93 0  4914 13.06 4890 12.63 4829 11.53  4756 10.17 4694 8.99

10 30 15  0.3  4520 4784.8 62.46 4.31  5632 23.20 5496 21.36 5071 14.71  4325 0 4569 5.34

11    0.5  5075 5422.6 66.29 0  6426 21.02 6278 19.16 6152 17.50  5682 10.68 5413 6.24

12    0.8  7419 7634.8 68.86 2.07  8624 15.75  8435 13.87  8104 10.35  7659 5.14  7265 0 

13 40 20  0.3  9625 9711.7 161.93 0  11277 14.64 1111 13.41 1082 11.06  1022 5.87 9935 3.12

14    0.5  9549 9732.4 152.37 0.90  1101 14.08 1092 13.38 1076 12.07  1014 6.69 9463 0

15    0.8  12289 12528.5 172.59 0  1423 13.68 1399 12.20 1366 10.04  1324 7.21 1332 7.76

16 50 25  0.3  15226 15516.1 232.95 1.73  1664 10.10 1618 7.53 1591 5.97  1552 3.60 1496 0

17    0.5  19969 20108.3 265.31 1.49  2182 9.86 2141 8.13 2082 5.54  2013 2.32 1967 0

18    0.8  23747 24389.4 287.61 0  2638 9.99 2604 8.80 2586 8.18  2527 6.05 2492 4.74

19 60 30  0.3  29171 29556 304.89 0  3323 12.22  3287 11.27  3198 8.78  3123 6.59  3099 5.88 

20    0.5  31052 31433.8 352.83 0  3499 11.26 3471 10.55 3431 9.49  3348 7.27 3315 6.35

21    0.8  34425 34982.4 334.59 0  3960 13.08 3927 12.35 3890 11.52  3824 9.98 3751 8.23

22 90 60  0.3  52624 52923 456.68 0  55234 4.725  5467 3.74  5414 2.80  5332 1.31  5318 1.06 

23    0.5  61211 61982.8 443.92 0  6579 6.96 6505 5.91 6453 5.14  6378 4.04 6317 3.11

24    0.8  71532 72245.6 512.23 0  7928 9.77  7832 8.67  7751 7.71  7644 6.436  7574 5.56 

Average CO  % 0.72   12.08   10.41   8.78   4.80   3.49 

 

 

 

 

Table 2 
VNS-SA versus the five famous TAP algorithms on 24 generated test problems 

Approach Better Equal Worse 

HPSO 24 0 0 

SA 24 0 0

GVNS 19 3 2 

IDE 16 3 5 
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                   Table 3   

                     Average relative percentage deviation (RDI)  for compared algorithms 

 
Problem 
number 

Algorithms 

VNS-SA HPSO SA GA GVNS IDE 

1 10.21 88.29 54.25 19.14 13.82 5.31 

2 8.15 80.7 47.36 43.85 17.54 13.15 

3 6.16 83.33 46.66 57.5 16.66 8.33 

4 20.47 92.76 74.2 55.2 31.67 7.23 

5 12.02 94.64 84.32 75.59 50.19 45.03 

6 5.32 88.3 75.4 68.95 44.35 52.98 

7 18.52 88.92 81.94 75.29 11.07 31.17 

8 7.43 90.09 64.8 72.74 41.27 50.087 

9 8.35 87.72 84.9 77.73 69.15 61.86 

10 21.98 93.88 84.75 56.21 6.11 22.49 

11 10.7 91.62 82.5 74.73 45.77 29.2 

12 16.52 92.87 80.94 60.06 31.98 7.129 

13 2.23 92.53 84.24 69.15 38.41 29.45 

14 8.91 88.91 84.44 76.31 45.15 11.08 

15 4.43 86.1 77.2 64.78 49.29 55.93 

16 21.1 93.36 69.58 55.7 35.52 6.63 

17 13.74 90.27 74.83 52.87 27.22 9.72 

18 10.87 94.63 83.05 77.09 57.17 55.55 

19 4.49 97.42 89.08 68.17 50.63 45.14 

20 4.71 98.69 91.84 81.81 61.51 53.33 

21 5.37 96.05 89.67 82.55 69.74 55.62 

22 4.59 95.51 72.76 56.48 31.44 27.26 

23 7.66 91.03 80.87 70.44 59.67 46.54 

24 4.09 94.46 83.54 74.17 62.25 53.89 

Average 9.91 91.33 76.79 65.27 40.31 32.67 

 
 
 

 
method had important effect on increasing power of 
intensification and diversification strategies in the 
quest of solution space. Also, six effective 
neighborhood structures were applied in various parts 
of the presented hybrid method for searching the 
solution space. The proposed algorithm was tested on 
24 test problems. Experimental results show that the 
VNS-SA algorithm performs well on finding the 
optimal/near optimal task assignment, and it is a viable 
approach for TAP. In the following, suggestions are 
offered for future works: 
 

 Developing  another hybrid algorithms such as 
GA-VNS, VNS-PSO, PSO-SA for TAP; 

 Investigation on another version of the TAP 
where each processor and each communication 
link has a failure ratio and the problem objective 
is to maximize the reliability for accomplishing 
the task execution; 

 Developing efficiently intelligent neighborhood 
structures for better and more diverse searches 
in the solution space of TAP; 
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