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Abstract

Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems
and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints.
TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving
TAP in a heterogeneous distributed computing system. To compare our algorithm with previous ones, an extensive computational
study on some benchmark problems was conducted. The results obtained from the computational study indicate that the proposed

algorithm is a viable and effective approach for the TAP.
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1- Introduction

A distributed computing system is defined as a

collection of computers interconnected by a
telecommunication network that attempts to disperse
the data processing function and fits the needs of
modern decentralized organization structures [32].
There are a lot of problems regarding distributed
computing systems that are essentially very hard.
These problems cannot be formulated as linear
programs and there are no simple rules or algorithms
that may yield optimal solutions in a limited amount of
computer time. One of the most difficult problems in
this area is the task assignment problem (TAP).
This problem involves assigning tasks of a program
among different processors of a distributed computer
system in order to minimize the sum of the
communication and execution (task processing) costs.
In other words, TAP aims to find an assignment of
tasks which minimizes the incurred costs subject to the
resource constraint [31]. Specially, the number of tasks
that a given processor is able to handle is restricted by
its memory capability and processing ability.

TAP was firstly introduced by Stone [24]. Stone’s
original work lays down the task interaction graph
(TIG) model to represent sequentially executing tasks.
In the TIG model, the vertices of the graph correspond
to the tasks and the edges correspond to the inter-task
communications.
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A large number of researches have been carried out on
this problem and different models of TAP have been
proposed in the literature. Also, over the past decades
wide varieties of approaches have been proposed for
solving the task assignment problem in distributed
computing system. The existing approaches for
tackling the TAP can be divided into three categories.
First, exact mathematical programming approaches
using column generation [6] and branch-and-bound
[3,5] have been proposed. Second, efficient algorithms
have been developed for solving TAP on special
computer architectures, such as linear processor array,
meshed processor graph, and partial k-tree
communication graph [7,13,16]. Finally, meta-heuristic
algorithms like Genetic Algorithm (GA) [2,26,27],
Partial swarm optimization (PSO) [12,23,28],
differential evolution (DE) [33], simulated annealing
(SA) [10,17,25], Variable neighborhood search (VNS)
[15,18] and hybrid meta-heuristic algorithms [9,22,31]
have been used to derive good enough approximate
solutions within reasonable CPU time.

It is well known that TAP is NP-complete [8].
Presentation of good exact algorithm for TAP in
polynomial time is unlikely to exist. The high level of
the complexity of TAP demonstrates a cogent reason
for using meta-heuristic algorithms to optimize TAP.
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Therefore, in the last few years, there have been
increasing interests for meta-heuristics approaches, as
Therefore, in the last few years, there have been
increasing interests for meta-heuristics approaches, as
robust approaches for tackle the TAP. VNS and SA
algorithms are well-known meta-heuristics which have
been applied successfully to various optimization
problems. In this paper, we proposed a hybrid VNS-SA
algorithm for TAP in a heterogeneous distributed
computing system to minimize the sum of the
communication and execution costs. In the proposed
method, VNS algorithm is used as main part of hybrid
algorithm and SA algorithm supports it for attaining
better solutions. Also, Effective neighborhood
structures are applied in various parts of the presented
hybrid method. In this paper an attempt is made to
prove the efficiency and effectiveness of our algorithm
by comparing the performance of the proposed meta-
heuristic method with some previous methods. We
present the computational results of our hybrid
algorithm on some of test problems and compare them
with the results reported by previous researchers.

The rest of the paper is organized as follows. Section
2 explains problem definition and one of the existing
mathematical models for the understudied problem. In
Section 3, hybrid meta-heuristic algorithm for solving
the studied problem is described. Section 4 reports
Computational study. The conclusion and some
suggestions for further research are presented in
Section 5.

2- Problem Definition

In a computation system with a number of
distributed processors, it is desired to assign
application tasks to these processors such that the
resource demand of each task is satisfied and the
system throughput is increased. However, the
assignment of tasks will also incur some costs such as
the execution cost and the communication cost [31].
Therefore, TAP often tries to find the minimal costs for
a distributed system which subjects to several resource
constraints. In this paper, we consider the TAP with the
following scenarios. The processors in the system are
heterogeneous and they are capacitated with various
units of memory and processing resources. All the
tasks may be executed in all the processors. A task will
incur different execution costs if it is executed on
different processors. Two tasks executing incur in a
communications cost if there is a communication need
between them and they are executed on different
processors.  This work does not consider
communication cost between tasks executing in the
same processor. A task will consume some units of the
resources from its execution processor. Memory and
processing resource capacity of each processor is
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limited. Our problem objective is to minimize the total
execution and communication costs incurred by the
task assignment subject to all of the resource
constraints. There are different versions of
formulations for TAP, and the formulation we consider
in this paper is taken from Yin et al. [31]. Following
parameters and decision variables are

used in the proposed model.

n: Number of processors

r: Number of tasks

e, : Execution cost of task i if it is assigned to
processor k

C; Incurred communication cost between tasks i and j
if they are assigned to different processors

m,: Memory requirement of task i from its execution
processor

M, : Memory capacity of processor k

P : Processing requirement of task i from its execution
processor

P, : Processing capacity of processor k
X, : Decision variable: X;; =1 if task i is assigned to
processor k, and X, =0 otherwise.

The considered TAP can be formulated as the
following 0—1 quadratic integer programming problem:

min f0=3Y e +S 3¢, (l - ixikx/kj
k=1

i=1 k=1 i=1 j=i+l

sty X, =1, Vi=12,..r

k=1

D> mx, <M, Vk=12,.,n )
i=1

Zpl.xl.k <P, Vk=12,..,n

i=1

x, €{01), Vik

The first and second terms in the objective function
represent the total execution cost and communication
cost, respectively, incurred by the tasks assignment.
This model is limited by three kinds of constraints.
Constraint (1) states that each task should be assigned
to exactly one processor. Constraints (2) and (3) ensure
that the memory and processing resource capacity of
each processor is no less than the total amount of
resource demands of all of its assigned tasks. The last
constraint (5) guarantees that x; are binary decision

variables.

Since this formulation is an integer program with a
quadratic objective function and is computationally
prohibitive due to enormous computation efforts, its
transformations to linear programs have been proposed
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[3,6]. However, unfortunately, solving the linear
program model of this problem is still time-consuming
for deriving optimal solutions to large-scaled problems.
Therefore, in this paper, we applied a hybrid meta-
heuristic algorithm to solve TAP with a reasonable
time.

3- Proposed Hybrid Meta-Heuristic Algorithm

To search efficiently in the solution space and attain
solutions with high quality in TAP, we propose hybrid
VNS-SA algorithm in this section. Section 3 is
subdivided into the following 5 subdivisions. Basic
structures of VNS and SA algorithms are discussed in
sections 3.1 and 3.2, respectively; Section 3.3 provides
solution  representation method;  neighborhood
structures employed in the presented hybrid method are
explained in detail in section 3.4. In section 3.5, a
comprehensive description of the proposed hybrid
meta-heuristic algorithm is given.

3.1. Basic Structures of VNS Algorithm

VNS algorithm [11,19] is one of the renowned meta-
heuristics which have been successfully applied to
solve combinatorial optimization problems. This
method is capable of escaping from the local optima by
systematic changes of the neighborhood structures
during the search process [1]. VNS was first proposed
by Mladenovic [20]. The basic steps of VNS meta-
heuristic are shown in Fig. 1. During the initialization

step, a set of neighborhood structures and the sequence
of their implementations are determined. In this step,
stopping condition is delineated. In addition, an initial
solution is generated and is set as the current solution
y. In the search loop, the shake procedure is

implemented for randomly generating a neighboring
solution y' from the current solution y based on the

first neighborhood structure. Then local search is
carried out for obtaining local optimum y”", with y" as

input solution of local search. Afterward, local
optimum y" is compared with current solutiony in

terms of the solution quality. If y" is better than y, i.e.,
improved solution is obtained, yis replaced with y”

and search begins again at the first neighborhood with
the updated y.Otherwise, the search loop is iterated by

the next neighborhood. In this case, neighborhood
structure is systematically changed and the shake
procedure works to switch to another region of the
search space so as to carry out a new local search there.
After all neighborhoods are considered and no further
improvement can be obtained for the current solution
y, next iteration of algorithm is started and the search

begins again at the first neighborhood of current
solution y.The VNS algorithm continues until a

stopping condition (e.g., the maximum computational
time since the last improvement, or the maximal
allowed CPU time, or maximum number of iterations)
is satisfied [29].

Initialization:

Select the set of neighborhood structures NA- , for k=1,...

choose a stopping condition;

2'max

; find an initial solution  ;

Repeat the following sequence until stopping condition is reached:

Set ke—1;
Repeat the following steps until k>k . :

Shaking:

Randomly generate a solution y' from the & A neighborhood of y ;

Local search:

Apply some local search methods with y' as initial solution to obtain a local optimum given by ” R

Move or not:

”
if the local optimum y ” is better than Y, move there (y &~y ), and continue the search

with N, (k ——1); Otherwise, set k——k +1;

Fig. 1. The basic steps of VNS algorithm



Mohammad Jafar Tarokh et al./ Hybride Meta-heuristic Algorithm for ...

3.2. Basic Structures of SA Algorithm

Simulated annealing (SA) is a random-search
technique which simulates the way in which a metal
cools and freezes into a minimum energy crystalline
structure (the annealing process) in optimizing
combinatorial optimization problems [21]. SA searches
the set of all possible solutions, reducing the chance of
getting stuck in local optima by allowing moves to
inferior solutions under the control of a randomized
scheme [30]. This algorithm was first proposed by
Kirkpatrick et al. [14].

The SA algorithm starts with an initial solution and
iteratively moves towards other existing solutions. The
algorithm generates a neighboring solution y'in the

neighborhood of the candidate solution y . Then, the

change of objective function value,

Ay = ()= f(»), is calculated. In case A, , value

is smaller than zero or is equal to zero, to move to the
neighboring solution is acceptable; otherwise, if A,

value is greater than zero, to reduce the probability to
get trapped in local optima, the SA may accept to move
to an inferior neighboring solution depending on a
randomized scheme. More precisely, the move is still
accepted if R< exp(=A, /T), where T is a control

parameter, called temperature, and R is a uniform
random number between interval (0,1). SA algorithm
generally starts from a high temperature and then the
temperature is gradually lowered [4]. At each
temperature, a search is carried out for a certain
number of iterations. When the termination condition is
satisfied, the algorithm will stop. The general SA
algorithm is shown in Fig. 2.

Initialization: Select an initial solution (¥, ), an initial temperature (7)., Number
of neighborhood search in each temperature (1) and termination condition.

Set T«—1T, and y«—y,:
repeat
repeat

Randomly select y' e N(y):

Calculate Ay = fON-f):

if A, <0 then y<—3)"

else generate random R uniformly in the range (0,1);
if R<exp(-A, ,/T) then y«—3y';

Until iteration_counter = n

Decrease the temperature 7 ;

Until termination condition is met.

Fig. 2. The basic steps of SA algorithm

3.3. Solution Representation Method

In this paper, to represent our hybrid algorithm
solutions, we use a string of » elements. Number of
elements in the solution string (r) is equal to the total
number of tasks. Considering left-to-right ordering,
element i (i=1,...,r) represents task i. In each element is
placed an integer value between 1 and n (number of
processors) that this integer value signifies assigned
processor to Task i. Fig. 3 shows representation
solution for one candidate solution, which corresponds
to a task assignment that assigns six tasks to four
processors. For example, number 2 in element 3 means

that the third task is assigned to the second processor.
1 2 3 4 5 6

3 4 2 4 2 1

Fig. 3. Representation of a candidate solution
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3.4. Neighborhood Structure

The technique of moving from one solution to its
neighboring solution is delineated by a key factor
known as neighborhood structure [29]. Various
neighborhood structures have been applied to TAP.
These neighborhood structures must work so that they
prevent any infeasible solution regarding the resource
constraints. Hence, it is guaranteed that the algorithm
gives always a feasible solution. In this section, six
types of neighbourhood structures employed in the
proposed hybrid method are described.

Neighborhood structure -1 ( Nl )

This neighborhood structure reallocates a task i from
processor [ to processor k in candidate solution string
[18].
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Intelligent neighborhood structure - 2 (N, 2)

This neighborhood structure reallocates a task i from
processor / to processor with minimum processing cost
for executing task i.

Intelligent neighborhood structure - 3 (INy)

This neighborhood structure reallocates a task i from
processor / to processor that its assigned tasks have
maximum total communication cost toward task i.

Neighborhood structure - 4 (N4 )

This neighborhood structure exchanges assignment
of two tasks (task i from processor / to other processor
and task j from processor 4 to other processor).

Neighborhood structure - 5 ( Ny)

This neighborhood structure exchanges assignment
of three tasks (task i from processor k to processor /,
task j from processor / to processor k and task ¢ (¢ #i
and j) from processor v (v # [ and k) to other processor.

Neighborhood structure - 6 (N )

This neighborhood structure reallocates a cluster of
tasks from one or different processors to processor /
[18]. The idea of this neighborhood structure is based
on decrease of communication cost.

3.5. Proposed VNS-SA Algorithm

The proposed hybrid meta-heuristic algorithm
included two parts. The main part of this method is
VNS algorithm and the other part is SA algorithm. For
VNS algorithm, two sets of neighborhood structures

are used in the presented algorithm: N; and N}“‘.

Neighborhood structures related to N} are employed
in the shake procedure and neighborhood structures
related to N,l‘“ are utilized in the local search

procedure. All the six mentioned neighborhood
structures are implemented in the shake procedure of

VNS  (Nj,k=L12,.,6)and the
structures N;, N,,N;and N, are utilized in the local

search procedure of VNS (le,k=1,2,3,4). These

neighborhood
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four neighborhood structures are used in the search
procedure of SA part of hybrid algorithm. The
performance of the hybridized meta-heuristic
significantly depends on the efficiency of the applied
neighborhood structures.

Fig. 4 demonstrates the general process of the
proposed hybrid VNS-SA algorithm. Hybrid algorithm
in each iteration begins from VNS part. If one run (a
completed execution of shake and local search
procedures in VNS part of hybrid algorithm) among all
runs (k=1,.., 6) of VNS method attains better solution
than current solution, the current solution is replaced
with new solution and next iteration of the hybrid
algorithm is started. Otherwise, in each iteration of
hybrid algorithm, if all runs of VNS method doesn’t
attain better solution, algorithm move to SA part. In
this part of algorithm, we use a linear function to
reduce the temperature; the function is illustrated in
equation (2) [4,30]:

0o Ty )
TN
In the equation, 7, denotes initial temperature, 7',

T,=T,—i.

1

denotes final temperature, i represents a stage in the
algorithm, 7; represents the temperature of stage i/ and
ng,is the maximum number of iterations of SA
algorithm. Also, for obtaining initial temperature of SA
part, proposed strategy by Yazdani et al. [30] is used.
An appropriate initial temperature should be high
enough to create equal opportunity for all states of the
search space to be visited. Meanwhile, it should not be
rather too high to perform quite a lot of unnecessary
searches in high temperature. The initial temperature is
acquired via equation (2):

7|47 | ©)

where AJ;- is any positive differences in fitness value
when a neighboring solution is achieved from the
candidate solution and AJ;- is the average value of

these differences. Besides, we do not consider the
negative or neutral differences in fitness value to
compute the average value. In equation (2), the symbol
[] denotes that the initial temperature, 7j,, is set to the

integer part of the average value of differences.

The hybrid algorithm continues until pre-specified
maximum number of iterations of algorithm is
achieved. When the process of the algorithm stops, the
final current solution is used as the best solution.
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Initialization
a. Select a set of neighborhood structures that will be used in VNS and SA parts of hybrid algorithm, number of

neighborhood search in each iteration of VNS local search (n,_vns) , initial temperature of SA (7;), number of SA
algorithm iterations (7, ) based on linear function of reduce temperature and number of neighborhood search in
each temperature of SA (77,_g, ) .

b. Choose stoping condition (maximum number of iterations (72, ) .

¢.  Generate randomly a population of solutions and the best solution among them (1) is selected for initial solution.

d. D. set initial solution as current solution y¢—— .

for i=1:n,, (beginof hybrid algorithm)

VNS part of algorithm:
for k=1:kp. (kyy =6)
Shaking:
Generate random point y,. . € N; (7) with N7 ;
Local search:
Get solution y, ¢ ;
for j=1:m_
Select random one number among numbers | to 4 and set / «—— selected number;
Generate random point Y}, - € N (yy,) with N®;

If f(y{'ns) hs f(y\/ns) then Yvns € yilns >

If f(Pyns) < f(F) then y «—— y, o and move to next iteration of hybrid algorithm (break and

i«—i+1);
else k«——k+1;
end if

endfor

SA part of algorithm:

Set T«—T71; and ys, «——J
forn=1:ng,
set/ «——1
for m=1:n_g,
Generate random point ., € N (y,,) with N/*;
if Ay

L
o < 0 then Yoa € Vsas

elseif A = 0 then generate random number R uniformity in the range (0,1);

Ysa-Ysa
if R<0.5 then yg, <——yi, and [«——1;
endif

elseifA",SA_yéA > 0 then generate rondom number R uniformity in the range (0,1);

if R<exp(-A,
endif
else [«——I[+1;
endif

if [>4thenl<«——1;
endif
endfor
Update T : Decrease of temperature according to linear low;

ye, /T) then yg, «——5, and [«——1+1;

endfor
V& Vs
endfor (end of hybrid algorithm)

Fig. 4. Steps of proposed VNS-SA algorithm.
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Regarding the test on different values for algorithm
parameters and considering the computational results,
the following settings are adjusted for the presented
hybrid algorithm:

Maximum number of iterations (n,,,,

800, 1000 (based on size of problem);
Number of neighborhood searches in each iteration of
VNS local search (n,_,,,): 500;

The final temperature 7', : 0.1;

): 200, 400, 600,

Number of SA algorithm iterations (ng,) : 20;

Number of neighborhood searches in each temperature
of SA (n;,_g,) : 250.

The employment of hybrid formation in the proposed
method has important effect on increasing power of
intensification and diversification strategies in search
of solution space where VNS method works as main
algorithm and SA method supports it for attaining
better solution.

4- Computational Results

This section describes the computational tests which
were used to evaluate the effectiveness and efficiency
of the proposed VNS-SA algorithm in finding good
solution for TAP. We implemented the algorithm in
MATLAB software and run on a PC with i7 CPU, 1.73
GHz, and 4GB of RAM memory. The non-
deterministic nature of the presented algorithm made it
necessary to carry out multiple runs on the same test
problem in order to obtain meaningful results.
Therefore, the best solution was selected for each
problem after ten runs of the presented algorithm. We
compared the results of our algorithm to the results of
the hybrid PSO (HPSO) algorithm of Yin et al. [31],
SA and GA algorithms of Yin et al. [32], General
Variable neighborhood search (GVNS) of Lusa et al.
[18] and Improved DE (IDE) algorithm of Zou et al.
[33]. To measure the quality of solutions, the Cost
function (total execution and communication costs) is
considered as objective function value. For comparing
the proposed algorithm versus other algorithm, we first
generated some test problems. These test problems
were generated according to different problem
characteristics which are described in this section.

First key characteristic of created problem is task
interaction density. The inter-task communication is
rendered by a task interaction graph (TIG), G(V.E),
where V is a set of r nodes indicating the r tasks to be
executed and each edge (i, j) € E is associated with a

communication cost s

i and j are assigned to different processors. Here, we
define the task interaction density d of G(V,E) as one
of the problem characteristics:

which incurs only when tasks
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[£]
d=——"— @)
r(r—=1)/2
where |E| calculates the number of existing

communication demands in the TIG, and r(r—1)/2

indicates the maximal number of communication
demands among r tasks. The task interaction density
(d) quantifies the ratio of the inter-task communication
demands for a TIG and it is one of the key factors that
affect the problem complexity [31]. In this paper, we
use densities 0.3, 0.5, and 0.8 for preparing test
problems. The other key factors are the number of
tasks (r) and the number of processors (1).

To Generate test problem, we set the value of (r, n)
to (9, 6), (15, 10), (20, 10), (30, 15), (40, 20), (50, 25),
(60, 30), and (90, 60), respectively, in order to testify
the algorithm with different problem scales. For each
pair of (r, n), we generate three different TIGs at
random with density d equivalent to 0.3, 0.5, and 0.8.
The values of the other parameters are generated
randomly: the execution cost is between 1 and 200, the
communication cost is between 1 and 50, the memory
and processing capacity of each processor varies from
50 to 250, and the memory and processing requirement
of each task ranges from 1 to 50.

In Table 1, we compared the results of our hybrid
VNS-SA algorithm to the results of the HPSO [31], SA
and GA [32], GVNS [18] and IDE algorithm [33] on
generated 24 test problems. The first, second, third and
fourth columns symbolize problem number, number of
tasks, number of processors and task interaction
density for test problems, respectively. In the fifth
column, the best cost (BC) obtained by presented
algorithm is shown for each problem. The averages of
the proposed algorithm results of ten runs are shown in
the sixth column. The seventh column represents
average of CPU times for ten runs of the presented
algorithm in terms of seconds. Columns 9, 11, 13, 15
and 17 represent the best results obtained by HPSO,
SA, GA, GVNS and IDE respectively. In this section,
to provide a clearer view on the comparative
performances among the competing methods, Cost
offset (CO) measure proposed by Yin et al. [32] was
used. This measure is calculated as:

€O = Aol =MWl 100 5)
sol

where Al ,;is the best cost obtained for a given

algorithm and test problem and min,, is the best cost

obtained from all compared algorithms for the same
test problem. The average CO over all the test
problems are 0.7288%, 12.08%, and 10.41%, 8.78%,
4.80% and 3.49% for VNS-SA, HPSO, SA, GA,
GVNS and IDE, respectively. The best performance is
obtained by the VNS-SA with the average CO of
0.7288%.
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In Table 2, the presented algorithm is compared with
five aforesaid algorithms from another standpoint. This
table illustrates to what extent VNS-SA results are
equal to, worse or better than those obtained by the
aforementioned algorithms on 24 generated test
problems.

For more investigations in Computational results,
another measure, relative deviation index (RDI), is
used in this study. RDI is obtained by given formula
below:
M.IOO% (6)

maxg,, —ming,,

RDI=

Using this measure, we obtained an index between 0
and 100 for each method. The more the RDI is closer
to zero, the more the algorithm is preferable. Note that
if the worst and the best solutions take the same value,
all the methods provide the best (same) solution and,
hence, the index value will be 0 (best index value) for
all methods. The results of the experiments, averaged
for each problem (10 data per average), are reported in
Table 3. The best performance is obtained by the VNS-
SA algorithm with the RDI of 9.91. In order to verify
the statistical validity of the results, we performed an
analysis of variance (ANOVA). The results
demonstrate that there is a clear statistically significant

difference between performances of our algorithm and
other five algorithms, with respect to RDI criterion.
The means plot and LSD intervals (at the 95%
confidence level) for algorithms are shown in Fig. 5. It
can be inferred from the Fig. 5 that the proposed VNS-
SA statistically works better than other algorithms.
Regarding the results obtained from the computational
study, it seems that the proposed VNS-SA algorithm
can be an effective approach for TAP when the
objective function is the minimization of the sum of the
total execution and communication costs.

5- Conclusions and Future Research

In many problem domains, we are required to assign
the tasks of an application to a set of distributed
processors such that the incurred cost is minimized and
the system throughput is maximized. In this paper, we
developed a hybrid VNS-SA algorithm for solving
TAP in a heterogeneous distributed computing system.
Minimization of the sum of the total execution and
communication costs was considered as the objective
function. In the proposed hybrid meta-heuristic
algorithm, VNS method worked as main algorithm and
SA method supported it for attaining better solution.
Employment of hybrid formation in the proposed

90 ==
80
70
60

50

RDI

40

304

20+

10+ =

VNS-SA HPSO

GA GVNS IDE

Fig. 5. Means plot and LSD intervals for algorithms, regarding RDI criterion
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Table 1
Comparison of the presented VNS-SA algorithm with the five famous TAP algorithms on 24 test problems
Problem Proposed hybrid algorithm HPSO SA GA GVNS IDE
No. rn d BC AV(C) AV(CPU) CO BC Cco BC (€¢] BC Cco BC CO BC CO
% % % % % %
1 96 03 412 421.6 11.85 0 448 8.03 432 4.62 412 0 412 0 412 0
2 0.5 563 572.3 12.46 0 598 5.85 579 2.767 579 2.76 563 0 563 0
3 0.8 723 730.4 14.47 0 763 5.24 741 2.428 747 321 723 0 723 0
4 1510 03 1134 1168.5 22.87 2.46 1295 14.59 1254 11.80 1212 8.74 1165 5.06 1106 0
5 0.5 1538 1598.6 21.55 0 1763 12.76 1737 11.45 1715 10.32 1651 6.84 1596 3.63
6 0.8 1732 1758.4 25.24 0 1922 9.88 1890 8.35 1874 7.57 1823 4.99 1804 3.99
7 2010 0.3 2153 2176.5 34.71 4.50 2513 18.18 2472 16.82 2433 15.49 2056 0 2174 5.42
8 0.5 2969 3044.8 35.14 0 3378 12.10 3249 8.61 3310 10.30 3129 5.11 3104 434
9 0.8 4272 4414.2 34.93 0 4914 13.06 4890 12.63 4829 11.53 4756 10.17 4694 8.99
10 3015 03 4520 4784.8 62.46 431 5632 23.20 5496 21.36 5071 14.71 4325 0 4569 5.34
11 0.5 5075 5422.6 66.29 0 6426 21.02 6278 19.16 6152 17.50 5682 10.68 5413 6.24
12 0.8 7419 7634.8 68.86 2.07 8624 15.75 8435 13.87 8104 10.35 7659 5.14 7265 0
134020 03 9625 9711.7 161.93 0 11277 14.64 1111 13.41 1082 11.06 1022 5.87 9935 3.12
14 0.5 9549 9732.4 152.37 0.90 1101 14.08 1092 13.38 1076 12.07 1014 6.69 9463 0
15 0.8 12289 12528.5 172.59 0 1423 13.68 1399 12.20 1366 10.04 1324 7.21 1332 7.76
16 5025 0.3 15226 15516.1 23295 1.73 1664 10.10 1618 7.53 1591 597 1552 3.60 1496 0
17 0.5 19969 20108.3 265.31 1.49 2182 9.86 2141 8.13 2082 5.54 2013 232 1967 0
18 0.8 23747 24389.4 287.61 0 2638 9.99 2604 8.80 2586 8.18 2527 6.05 2492 4.74
19 6030 0.3 29171 29556 304.89 0 3323 12.22 3287 11.27 3198 8.78 3123 6.59 3099 5.88
20 0.5 31052 31433.8 352.83 0 3499 11.26 3471 10.55 3431 9.49 3348 7.27 3315 6.35
21 0.8 34425 34982.4 334.59 0 3960 13.08 3927 12.35 3890 11.52 3824 9.98 3751 8.23
22 9060 0.3 52624 52923 456.68 0 55234 4725 5467 3.74 5414 2.80 5332 1.31 5318 1.06
23 0.5 61211 61982.8 443.92 0 6579 6.96 6505 591 6453 5.14 6378 4.04 6317 3.11
24 0.8 71532 72245.6 512.23 0 7928 9.77 7832 8.67 7751 7.71 7644 6.436 7574 5.56
Average CO % 0.72 12.08 10.41 8.78 4.80 3.49
Table 2
VNS-SA versus the five famous TAP algorithms on 24 generated test problems
Approach Better Equal Worse
HPSO 24 0 0
SA 24 0 0
GVNS 19 3 2
IDE 16 3 5
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Table 3

Average relative percentage deviation (RDI) for compared algorithms

Algorithms

Problem

number VNS-SA HPSO SA GA GVNS IDE
1 10.21 88.29 54.25 19.14 13.82 5.31
2 8.15 80.7 47.36 43.85 17.54 13.15
3 6.16 83.33 46.66 57.5 16.66 8.33
4 20.47 92.76 74.2 55.2 31.67 7.23
5 12.02 94.64 84.32 75.59 50.19 45.03
6 5.32 88.3 75.4 68.95 44.35 52.98
7 18.52 88.92 81.94 75.29 11.07 31.17
8 7.43 90.09 64.8 72.74 41.27 50.087
9 8.35 87.72 84.9 77.73 69.15 61.86
10 21.98 93.88 84.75 56.21 6.11 22.49
11 10.7 91.62 82.5 74.73 45.77 29.2
12 16.52 92.87 80.94 60.06 31.98 7.129
13 2.23 92.53 84.24 69.15 38.41 29.45
14 8.91 88.91 84.44 76.31 45.15 11.08
15 4.43 86.1 77.2 64.78 49.29 55.93
16 21.1 93.36 69.58 55.7 35.52 6.63
17 13.74 90.27 74.83 52.87 27.22 9.72
18 10.87 94.63 83.05 77.09 57.17 55.55
19 4.49 97.42 89.08 68.17 50.63 45.14
20 4.71 98.69 91.84 81.81 61.51 53.33
21 5.37 96.05 89.67 82.55 69.74 55.62
22 4.59 95.51 72.76 56.48 31.44 27.26
23 7.66 91.03 80.87 70.44 59.67 46.54
24 4.09 94.46 83.54 74.17 62.25 53.89

Average 9.91 91.33 76.79 65.27 40.31 32.67

method had important effect on increasing power of
intensification and diversification strategies in the
quest of solution space. Also, six effective
neighborhood structures were applied in various parts
of the presented hybrid method for searching the
solution space. The proposed algorithm was tested on
24 test problems. Experimental results show that the
VNS-SA algorithm performs well on finding the
optimal/near optimal task assignment, and it is a viable
approach for TAP. In the following, suggestions are
offered for future works:
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Developing another hybrid algorithms such as
GA-VNS, VNS-PSO, PSO-SA for TAP;
Investigation on another version of the TAP
where each processor and each communication
link has a failure ratio and the problem objective
is to maximize the reliability for accomplishing
the task execution;

Developing efficiently intelligent neighborhood
structures for better and more diverse searches
in the solution space of TAP;
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