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Abstract 

In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. 
This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random 
grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood estimates of 
propagation model parameters when the grains are nonrandom circle with unknown radii.  
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1. Introduction 

Outcomes of many random phenomena are objects or 
images which can be studied as sets in dR . For examples, 
consider the shape of a tumor or region affected by cancer 
in medicine, the area hitting by a meteorite or a bomb, the 
region covered by some plants or fire in a forest and the 
activated region of brain by some stimulant in neuroscience 
and so on. Thanks to the  improvement of computer 
capabilities  in storing  and analyzing these images, 
probability and statistics  experts pervasively, face these 
random phenomena and their realizations. To 
independently study the random behavior of these 
phenomena [6] and [4], , the theory of random closed sets 
is introduced. A vast literature and some models are also 
extended for modelling and generating  the realization of 
these phenomena of which, the most important one is the 
Boolean model and some others are [1,2,3,7,10,11]. 

In the next Section we will discuss random closed sets 
and Boolean model. Most of the researchers' studies  in the 
field of random sets  are focused on parameter estimation 
and studying characteristics of a random set using a 
realization of it. As examples see [2,9,11]. 

However, in many studies , there are some auxiliary 
information as well as the recording images. These 
information may affect the random set distribution. For  

 

 
 
 
example gender, age and other biological factors may 

affect the distribution of tumour shape. Hence, the study of 
relationships between random sets and auxiliary variables 
can be used to predict the behavior of the random sets. For 
this aim as well as extending statistical methods to random 
sets in this paper introduces regression models for Boolean 
random sets. Models depending  on the kind of auxiliary 
variables, will be called growth, propagation and 
growth− propagation models. A method for fitting 
propagation regression model when the grains are unknown 
and non-random circles is also presented. 

2. Random sets and Boolean models 

In [6] and [4] theories, a random closed set is defined 
on the base set E  which in general is a locally compact, 
Hausdorff and separable space. Let ℑ  be the set of all 
closed subsets of E  and K be the set of all compact 
subsets of E . For any EA⊂ , define 

={ : }, ={ : = }.A
A F F A F F Aℑ ∈ℑ ∩ ≠∅ ℑ ∈ℑ ∩ ∅ It 

can be shown that the collection of sets in form of 

1

K
G Gn

ℑ ∩ℑ ∩ ∩ℑL  for all K1,2,=n  where 

K ∈K and nGG ,,1 K  are open subset of E  is a 
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topologic base on E . Generated topology with this base is 
called the hit-or-miss topology. Let Σ  be the σ -field 
generated by the open sets of the hit-or-miss topology and 

,,( ΑΩ P )  be a probability space. A random closed set Y  
is defined as a measurable mapping from ),( ΑΩ  to 

),( ΣΦ . The induced probability by Y  on Σ  is:  

.))((=)( 1 Σ∈∀− BBYPBPY  
This probability function is too complicated to use. 
Fortunately, between this probability function and hitting 
function of Y  i.e. 

( ) = ( ) = ({ }),Y YT K P Y K P Y K K∩ ≠∅ ∩ ≠∅ ∈  K 
there exits a one to one correspondence [4]. Hitting 
function which has the same rule of cumulative distribution 
function of a random variable is more suitable to study than 
the distribution of the random set Y . 

In the sequel we will assume dE Ρ=  and review 
some characteristics and parameters of a random closed set. 
A random set Y  on dΡ  is called stationary if its hitting 
functional is invariant under translation and is called 
isotropic if its hitting function is invariant under rotation. 

One of the parameters used to describe the random set 
is volume fraction. The volume fraction p  is the mean 
fraction of volume occupied by Y  in a region of unit 
volume. For stationary random sets, this quantity does not 
depend on the choice of the region, and it can be shown 
that })({=)(= oTYoPp YY ∈  i.e. it is probability of 
hitting Y  to origin. 

One of the models that can generate such random closed 
sets is ``Boolean model". A Boolean model (or Boolean 
random set) is formed by placing random closed sets at the 
points of a homogeneous Poisson point process and taking 
the union of these sets. To be exact, if D  is a 
homogeneous Poisson point process with intensity λ  and 
for K1,2,=i ; iZ 's are independent copies of random 

closed set 0Z  a Boolean model Y  is defined as 

)(= ii
Did

dZY ⊕
∈
U  

(1) 

  
where }:{= iiii ZzdzdZ ∈+⊕ . The points of the 
Poisson process are called the germs and the associated 
random sets the grains. 

It can be shown (for example see [11]) the hitting 
functional of a Boolean model is:  

||]},[||{exp1=)( 0 KZEKTY

(
⊕−− λ  

where }:{= KkkK ∈−
(

, },:{= 00 KkZzkzKZ ∈∈−⊕
(

 

and |||| 0 KZ
(

⊕  is the Lebesgue measure of |||| 0 KZ
(

⊕ . 
From this equation For a Boolean random set we have 

||]}[||{exp1= 0ZEp λ−− . 

Finally we get familiar with the point process of tangent 
points which are used in constructing estimator of λ  and 
the grain distribution (for example see [2] and [8]) which in 
this paper are used for fitting the propagation model. If iZ  
is almost surely convex and u  is unique vector in upwards 
direction then the first touched point of the hyperplane with 
normal vector u  with iZ , is called a lower positive 
tangent point. Some of these tangent points are covered by 
other grains while other points are visible. These exposed, 
or observable, tangent points form a point process with 
intensity ||]}[||{exp=)(1 0ZEp λλλ −−  which is also 
called a lower positive point process, see [8]. Thus we can 
simply estimate λ , by  

,
)ˆ(1||||

=ˆ
pW

n
−

+

λ  (2) 

 
where +n  is the number of lower positive tangent points in 

window W  and 
||||

||||=ˆ
W

WYp ∩  is an unbiased estimator of 

p .  

3. Propagation model 

    Assume that '
kxxxX ),...,,(= 21  is a vector of 

explanatory variables which we want to study its relation 
with the Boolean random set Y  and evaluate effects of its 
elements on Y . The fact that the Boolean random sets are 
affected by two random sources; the Poisson process D  
and the distribution of the 0Z , leads us to classify the 
explanatory variables into three general categories:   
    • The explanatory variables that just affect D  which We 
will call these  propagation variables.  
    • The explanatory variables that just have effect on 0Z . 
Which We will call growth variables.  
    • Propagation - growth explanatory variables are the ones 
that affect both D  and 0Z .  
 The natural extension  of Boolean model (1) which shows 
the relationship of that with X  is  

),(= iiX

XDid
X dZY ⊕

∈
U  

(3) 

 
where conditional on X , iXZ  for K1,2,=i , are iid 

copies of XZ0  and XD  is a Poisson point process with the 

intensity Xλ . Obviously the vector of explanatory 
variables can contain all above three types of variables. In 
fact, establishing the type of explanatory variables affecting 
Y  is one of the main goals of the analysis. In this paper all 
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of explanatory variables are assumed to be propagation 
variables. In this case the model (3) reduces to  

).(= ii

XDid
X dZY ⊕

∈
U  

(4) 

 
In addition we suppose 

XD  is a Poisson point process with 

the intensity ),(= βXfXλ  where f  is a positive value 
and differentiable function and β  is a vector of unknown 

parameters of the model, and iZ 's are i.i.d. copies of 0Z . 
We call this model a propagation model. 
 Example 1: Figure 1, shows 8 simulated realization of 
model (4) in 11×  windows, together with value of an 
explanatory variable x , when )(exp= 10 ii xββλ +  and 

0Z  is nonrandom circle with radius R , for 7.1=0β , 

3=1 −β  and 0.0785=R . 
In the next section we shall introduce a method for 

fitting this model to the observation given in Figure 1, in 
general observations niXY ii ,1,2,=),,( K , where iY  is 

a realization of the Boolean model 
iXY  in window iW  and 

),,(= 1 ikii xxX K . 
  

  
 

Fig. 1. Realization of propagation model. 

4. Estimation of parameters 

when the distribution of grains is completely known, in 
[5] ,three methods for fitting propagation model are 
presented. In two methods they used the idea that the in s, 

the number of Poisson process in windows iW s, have 

Poisson distribution with mean iλ . They substitute an 

appropriate estimate for nonobservable in s. In the third 
method, they used number of lower positive tangent points 
in iW s (which are observed but their exact distribution is 
not known) and the approximate Poisson distribution. Here 
the third method will be adjusted in order to find the 

maximum likelihood estimate of propagation model 
parameters when grains are nonrandom circle with 
unknown radii. In fact if +

in s are exposed  to lower 

positive tangent points in windows iW s we will use the 
following approximation: 

0~  (|| || exp{ [|| ||] }).i i i in Poisson W E Zλ λ+ −  (5) 
 

when 0Z  is a circle with radius R , 2
0 ||=|| RZ π  and if let 

}{exp||=|| 2*
iiii RW λπλλ − , then log-likelihood function 

is  

.ln}ln)({=),(
1=

**

1=

++ ∑∑ −+− i

n

i
iii

n

i

nncl λλβ  

And likelihood equations are  









−
∂
∂

−−

+

+

∑
∑

0=)(

,1,=,0=)1)((

*

2*

iii
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i

i
ii

n

pjRn

λλ
β
λπ

λ
λ K  (6) 

 
also Fisher information matrix elements are  
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2
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k

i
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∂
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2
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2
=1

( , )[ ] = (2 ) .
( )

n

k k
k

l RE R
R

π λ λ∂
−

∂ ∑β  

(7) 

 
Example 2: In the special case where )(exp= 10 ii Xββλ + , 
likelihood equations (6) have the following form 
  









−
−−
−−

+

∗+

∗+

∑
∑
∑

0=)(
0=))(1(
0=))(1(

*

2

2

iii

iiii

iii

n
Rnx
Rn

λλ
λπλ
λπλ

 (8) 

 
in this case with using (7) Fisher information matrix is 

2 2 2 2

2 2 2 2 2

2 2

(1 ) (1 )
(1 ) (1 )

2 (1 ) 2 (1 )

i i i i i

i i i i i i

i i i i i i i

R x R
x R x R

R R R x R

λ π λ λ π λ
λ π λ λ π λ

π λλ π λ π λλ π λ

∗ ∗

∗ ∗

∗ ∗

 − −
 − −
− − − −

∑ ∑
∑ ∑
∑ ∑

 









−−
−−

∑
∑
∑

∗

∗
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2

)(2
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iii

R
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RR
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λπλλπ
λπλλπ

 

(9) 

  
Table  1 
Values of auxiliary variable and number of lower positive tangent points 
corresponding to images in Figure 1. 

  i   1   2   3   4   5   6   7   8  
x 1.68 1.47 1.37 1.23 1.18 1.12 1.03 0.95 
+n  7 14 19 13 22 20 24 14 
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Table 1 shows the number of lower positive tangent 
points for images given in the Figure 1. Replacing this 
values in equations (8) and solving these equations, the 
following maximum likelihood estimates are obtained,  

0.0753,=ˆ3.38,=ˆ7.86,=ˆ
10 R−ββ  

Replacing these values in matrix (9) and calculating its 
inverse the following asymptotic variances are obtained,     

0 1
ˆ ˆ ˆ ( ) =1.047,  ( ) =0.795,  ( ) =0.005,Var Var Var Rβ β  

so the fitted propagation model for images given in the 
Figure 1 is  

                )ˆ(=ˆ
ˆ

ii

xDid
x dZY ⊕

∈
U  

where xD̂ is Poisson point process with intensity 

)3.38(7.86exp=ˆ x−λ  and 
iẐ s are circles with radii 

0.0753=R̂ . 
As it can be seen the fitted model is also so close to the 

model generating the observations in the Figure 1. Our 
simulation studies show that although distribution of (5) is 
an approximation, the obtained maximum likelihood 
estimators have the usual large sample properties of 
maximum likelihood estimators, i.e., they are 
asymptotically unbiased with covariance matrix equal to 
the inverse of the Fisher information matrix and they have 
asymptotic normal distribution. 

5. Conclusion 

This paper introduces a propagation model to determine the 
relationship between Boolean random sets and some 
explanatory variables. Using an approximate likelihood 
function, this paper provides pseudo ml estimation for 
parameters for a propagation model. Despite using such 
approximate likelihood function, we conjecture, from 
several simulation studies, that the properties of the exact 
mle, for large sample,   have been met by our pseudo mle. 
Our study shows that such model and method appropriate 
for practical applications. More researches have to be done 
regarding goodness of fit of model and model selection.  
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